Corresponding Author: Joshua D. Stein, MD, MS, Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan, 1000 Wall St, Ann Arbor, MI 48105 (jdstein@med.umich.edu).
Accepted for Publication: October 19, 2020.
Author Contributions: Dr Stein had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.
Concept and design: All authors.
Acquisition, analysis, or interpretation of data: Weizer.
Drafting of the manuscript: All authors.
Critical revision of the manuscript for important intellectual content: Khawaja, Weizer.
Administrative, technical, or material support: Khawaja, Weizer.
Supervision: Weizer.
Conflict of Interest Disclosures: Dr Stein reported receipt of grants from the National Eye Institute, the Lighthouse Guild, and Research to Prevent Blindness during the conduct of the study. Dr Khawaja reported receipt of personal fees from Allergan, Novartis, Thea, Aerie, Santen, and from Google Health outside the submitted work. No other disclosures were reported.
Funding/Support: The Lighthouse Guild, National Eye Institute (1R01EY026641-01A1), and Dr Beverley and Gerson Geltner Fund (Dr Stein); Research to Prevent Blindness (Drs Stein and Weizer); Moorfields Eye Charity Career Development Fellowship (Dr Khawaja).
Role of the Funder/Sponsor: None of the funders or sponsors had any role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.
3.Bourne
RRA , Flaxman
SR , Braithwaite
T ,
et al. Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment.
Lancet Glob Health. 2017;5(9):e888-e897. doi:
10.1016/S2214-109X(17)30293-0PubMedGoogle Scholar 6.Stein
JD , Kim
DS , Niziol
LM ,
et al. Differences in rates of glaucoma among Asian Americans and other racial groups, and among various Asian ethnic groups.
Ophthalmology. 2011;118(6):1031-1037. doi:
10.1016/j.ophtha.2010.10.024PubMedGoogle Scholar 7.Hollands
H , Johnson
D , Hollands
S , Simel
DL , Jinapriya
D , Sharma
S . Do findings on routine examination identify patients at risk for primary open-angle glaucoma?
JAMA. 2013;309(19):2035-2042. doi:
10.1001/jama.2013.5099PubMedGoogle Scholar 10.Quigley
HA , West
SK , Rodriguez
J , Munoz
B , Klein
R , Snyder
R . The prevalence of glaucoma in a population-based study of Hispanic subjects: Proyecto VER.
Arch Ophthalmol. 2001;119(12):1819-1826. doi:
10.1001/archopht.119.12.1819PubMedGoogle Scholar 16.Ramulu
PY , Swenor
BK , Jefferys
JL , Friedman
DS , Rubin
GS . Difficulty with out-loud and silent reading in glaucoma.
Invest Ophthalmol Vis Sci. 2013;54(1):666-672. doi:
10.1167/iovs.12-10618PubMedGoogle Scholar 20.Helmer
C , Malet
F , Rougier
MB ,
et al. Is there a link between open-angle glaucoma and dementia ?
Ann Neurol. 2013;74(2):171-179.
PubMedGoogle Scholar 22.Wang
K , Gaitsch
H , Poon
H , Cox
NJ , Rzhetsky
A . Classification of common human diseases derived from shared genetic and environmental determinants.
Nat Genet. 2017;49(9):1319-1325. doi:
10.1038/ng.3931PubMedGoogle Scholar 23.Wolfs
RC , Klaver
CC , Ramrattan
RS , van Duijn
CM , Hofman
A , de Jong
PT . Genetic risk of primary open-angle glaucoma: population-based familial aggregation study.
Arch Ophthalmol. 1998;116(12):1640-1645. doi:
10.1001/archopht.116.12.1640PubMedGoogle Scholar 25.Souzeau
E , Tram
KH , Witney
M ,
et al. Myocilin predictive genetic testing for primary open-angle glaucoma leads to early identification of at-risk individuals.
Ophthalmology. 2017;124(3):303-309. doi:
10.1016/j.ophtha.2016.11.011PubMedGoogle Scholar 27.Khawaja
AP , Cooke Bailey
JN , Wareham
NJ ,
et al. Genome-wide analyses identify 68 new loci associated with intraocular pressure and improve risk prediction for primary open-angle glaucoma.
Nat Genet. 2018;50(6):778-782. doi:
10.1038/s41588-018-0126-8PubMedGoogle Scholar 28.Springelkamp
H , Iglesias
AI , Mishra
A ,
et al. New insights into the genetics of primary open-angle glaucoma based on meta-analyses of intraocular pressure and optic disc characteristics.
Hum Mol Genet. 2017;26(2):438-453. doi:
10.1093/hmg/ddw399PubMedGoogle Scholar 34.Memarzadeh
F , Ying-Lai
M , Chung
J , Azen
SP , Varma
R . Blood pressure, perfusion pressure, and open-angle glaucoma.
Invest Ophthalmol Vis Sci. 2010;51(6):2872-2877. doi:
10.1167/iovs.08-2956PubMedGoogle Scholar 35.De Moraes
CG , Cioffi
GA , Weinreb
RN , Liebmann
JM . New recommendations for the treatment of systemic hypertension and their potential implications for glaucoma management.
J Glaucoma. 2018;27(7):567-571. doi:
10.1097/IJG.0000000000000981PubMedGoogle Scholar 39.McCann
P , Hogg
RE , Fallis
R , Azuara-Blanco
A . The effect of statins on intraocular pressure and on the incidence and progression of glaucoma.
Invest Ophthalmol Vis Sci. 2016;57(6):2729-2748. doi:
10.1167/iovs.15-18595PubMedGoogle Scholar 42.Garcia
GGP , Lavieri
MS , Andrews
C ,
et al. Accuracy of Kalman filtering in forecasting visual field and intraocular pressure trajectory in patients with ocular hypertension.
JAMA Ophthalmol. Published online November 14, 2019. doi:
10.1001/jamaophthalmol.2019.4190PubMedGoogle Scholar 44.Wang
M , Shen
LQ , Pasquale
LR ,
et al. An artificial intelligence approach to detect visual field progression in glaucoma based on spatial pattern analysis.
Invest Ophthalmol Vis Sci. 2019;60(1):365-375. doi:
10.1167/iovs.18-25568PubMedGoogle Scholar 45.Kazemian
P , Lavieri
MS , Van Oyen
MP , Andrews
C , Stein
JD . Personalized prediction of glaucoma progression under different target intraocular pressure levels using filtered forecasting methods.
Ophthalmology. 2018;125(4):569-577. doi:
10.1016/j.ophtha.2017.10.033PubMedGoogle Scholar 46.Kass
MA , Heuer
DK , Higginbotham
EJ ,
et al. The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma.
Arch Ophthalmol. 2002;120(6):701-713. doi:
10.1001/archopht.120.6.701PubMedGoogle Scholar 47.Ertel
MK , Aref
AA , Akkara
JD , Seibold
LK , Fernández
MAM , Tabernero
SS .
American Academy of Ophthalmology EyeWiki website. Clinical trials in glaucoma. Published May 19, 2020. Accessed September 24, 2019.
https://eyewiki.aao.org/Clinical_Trials_in_Glaucoma 48.Washington University School of Medicine in St Louis.
Ocular Hypertension Treatment Study (OHTS) risk calculator. Accessed June 14, 2020.
https://ohts.wustl.edu/risk/ 50.Musch
DC , Gillespie
BW , Lichter
PR , Niziol
LM , Janz
NK ; CIGTS Study Investigators. Visual field progression in the Collaborative Initial Glaucoma Treatment Study the impact of treatment and other baseline factors.
Ophthalmology. 2009;116(2):200-207. doi:
10.1016/j.ophtha.2008.08.051PubMedGoogle Scholar 53.Collaborative Normal-Tension Glaucoma Study Group. Comparison of glaucomatous progression between untreated patients with normal-tension glaucoma and patients with therapeutically reduced intraocular pressures.
Am J Ophthalmol. 1998;126(4):487-497. doi:
10.1016/s0002-9394(98)00223-2PubMedGoogle Scholar 54.The AGIS Investigators. The Advanced Glaucoma Intervention Study (AGIS), 7: the relationship between control of intraocular pressure and visual field deterioration.
Am J Ophthalmol. 2000;130(4):429-440. doi:
10.1016/s0002-9394(00)00538-9PubMedGoogle Scholar 55.Lichter
PR , Musch
DC , Gillespie
BW ,
et al. Interim clinical outcomes in the Collaborative Initial Glaucoma Treatment Study comparing initial treatment randomized to medications or surgery.
Ophthalmology. 2001;108(11):1943-1953. doi:
10.1016/s0161-6420(01)00873-9PubMedGoogle Scholar 56.Kass
MA , Heuer
DK , Higginbotham
EJ ,
et al. The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma.
Arch Ophthalmol. 2002;120(6):701-713. doi:
10.1001/archopht.120.6.701PubMedGoogle Scholar 57.Heijl
A , Leske
MC , Bengtsson
B , Hyman
L , Bengtsson
B , Hussein
M ; Early Manifest Glaucoma Trial Group. Reduction of intraocular pressure and glaucoma progression.
Arch Ophthalmol. 2002;120(10):1268-1279. doi:0.1001/archopht.120.10.1268
PubMedGoogle Scholar 59.Gedde
SJ , Herndon
LW , Brandt
JD , Budenz
DL , Feuer
WJ , Schiffman
JC . Postoperative complications in the Tube Versus Trabeculectomy (TVT) study during five years of follow-up.
Am J Ophthalmol. 2012;153(5):804-814.e1. doi:
10.1016/j.ajo.2011.10.024PubMedGoogle Scholar 61.Gazzard
G , Konstantakopoulou
E , Garway-Heath
D ,
et al. Selective laser trabeculoplasty versus eye drops for first-line treatment of ocular hypertension and glaucoma (LiGHT).
Lancet. 2019;393(10180):1505-1516. doi:
10.1016/S0140-6736(18)32213-XPubMedGoogle Scholar 63.Gedde
SJ , Feuer
WJ , Sheng Lim
K ,
et al. Treatment outcomes in the Primary Tube Versus Trabeculectomy Study after 3 years of Follow-up. 2020;127(3):333-345. doi:
10.1016/j.ophtha.2019.10.002PubMed 70.Craven
ER , Walters
T , Christie
WC ,
et al; Bimatoprost SR Study Group. 24-Month phase i/ii clinical trial of bimatoprost sustained-release implant (Bimatoprost SR) in glaucoma patients.
Drugs. 2020;80(2):167-179. doi:
10.1007/s40265-019-01248-0PubMedGoogle Scholar 71.Newman-Casey
PA , Niziol
LM , Mackenzie
CK ,
et al. Personalized behavior change program for glaucoma patients with poor adherence: a pilot interventional cohort study with a pre-post design.
Pilot Feasibility Stud. 2018;4:128. doi:
10.1186/s40814-018-0320-6PubMedGoogle Scholar 74.Stein
JD , Kim
DD , Peck
WW , Giannetti
SM , Hutton
DW . Cost-effectiveness of medications compared with laser trabeculoplasty in patients with newly diagnosed open-angle glaucoma.
Arch Ophthalmol. 2012;130(4):497-505. doi:
10.1001/archophthalmol.2011.2727PubMedGoogle Scholar 75.The AGIS Investigators. The Advanced Glaucoma Intervention Study (AGIS): 7. the relationship between control of intraocular pressure and visual field deterioration.
Am J Ophthalmol. 2000;130(4):429-440. doi:
10.1016/S0002-9394(00)00538-9PubMedGoogle Scholar 76.Rasmuson
E , Lindén
C , Lundberg
B , Jóhannesson
G . Efficacy and safety of transscleral cyclophotocoagulation in Swedish glaucoma patients.
Acta Ophthalmol. 2019;97(8):764-770. doi:
10.1111/aos.14125PubMedGoogle Scholar 79.Samuelson
TW , Chang
DF , Marquis
R ,
et al; HORIZON Investigators. A schlemm canal microstent for intraocular pressure reduction in primary open-angle glaucoma and cataract: the HORIZON study.
Ophthalmology. 2019;126(1):29-37. doi:
10.1016/j.ophtha.2018.05.012PubMedGoogle Scholar 80.Ahmed
IIK , Fea
A , Au
L ,
et al; COMPARE Investigators. A prospective randomized trial comparing Hydrus and iStent microinvasive glaucoma surgery implants for standalone treatment of open-angle glaucoma: the COMPARE Study.
Ophthalmology. 2020;127(1):52-61. doi:
10.1016/j.ophtha.2019.04.034PubMedGoogle Scholar 82.Radhakrishnan
S , Chen
PP , Junk
AK , Nouri-Mahdavi
K , Chen
TC . Laser peripheral iridotomy in primary angle closure: a report by the American Academy of Ophthalmology.
Ophthalmology. 2018;125(7):1110-1120. doi:
10.1016/j.ophtha.2018.01.015PubMedGoogle Scholar 85.Hauser
MA , Allingham
RR , Aung
T ,
et al; Genetics of Glaucoma in People of African Descent (GGLAD) Consortium. Association of genetic variants with primary open-angle glaucoma among individuals with African ancestry.
JAMA. 2019;322(17):1682-1691. doi:
10.1001/jama.2019.16161PubMedGoogle Scholar