Opportunities to Reduce Potential Bias in Ophthalmic Cost-Utility Analysis | Cataract and Other Lens Disorders | JN Learning | AMA Ed Hub [Skip to Content]
[Skip to Content Landing]

Opportunities to Reduce Potential Bias in Ophthalmic Cost-Utility Analysis

Educational Objective
To ascertain whether using nonpatient vision utilities and/or a maximum limit model constraining vision utility gain to the systemic comorbidity utility level biases against ophthalmic cost-utility outcomes.
1 Credit CME
Key Points

Question  Does using vision utilities acquired from surrogate (nonpatient) individuals and/or vision utility gains limited by systemic comorbidity utility affect preference-based comparative effectiveness and cost-effectiveness of ophthalmic interventions?

Findings  In this economic evaluation, cost-utility analyses of cataract surgery and neovascular age-related macular degeneration therapy using nonpatient vision utilities and/or vision utility gain limited to the systemic comorbidity utility level decreased preference-based comparative effectiveness and cost-effectiveness, potentially biasing against disabled, elderly, and minority populations.

Meaning  Bias against ophthalmic interventional comparative effectiveness and cost-effectiveness can theoretically limit advantageous patient interventions, decrease cost-utility analysis acceptance in US public policy, reduce ophthalmic research dollars, diminish interventional reimbursement, and lessen therapeutic advances.

Abstract

Importance  Select research methods in cost-utility analysis (incremental cost-effectiveness analysis) might potentially bias against patient value (quality-adjusted life-year [QALY]) gain and cost-effectiveness associated with common ophthalmic interventions in disabled, elderly, and African American populations.

Objective  To ascertain whether using nonpatient vision utilities and/or a maximum limit model constraining vision utility gain to the systemic comorbidity utility level biases against ophthalmic cost-utility outcomes.

Design, Setting, and Participants  This economic evaluation predominantly used data from the Center for Value-Based Medicine database to perform preference-based comparative effectiveness and cost-utility analyses for cataract surgery and intravitreal ranibizumab therapy for neovascular age-related macular degeneration (NVAMD) using vision utilities acquired from patients with ophthalmic disease (ophthalmic patient utilities) and from surrogate individuals (nonophthalmic patient vision utilities) with and without integrating systemic comorbidity utility limits on vision utility gain. Ophthalmic patient data were collected from January 1, 2000, to December 31, 2016, and analyzed from April 1 to July 1, 2020.

Interventions  Cost-utility analysis with 3% discount rate in 2018 US dollars.

Main Outcomes and Measures  QALY gains and dollars expended per QALY gain (the cost-utility ratio).

Results  A total of 309 participants in the nonophthalmic patient cohort and 505 patients in the ophthalmic patient cohort were included. A reference case of first-eye cataract surgery using ophthalmic patient vision utilities and no systemic comorbidity utility limits yielded a 2.574 (34.2%) QALY gain vs observation. Substituting nonophthalmic patient utilities resulted in a 1.502 (15.5%) QALY gain, whereas using the 0.76 patient systemic comorbidity utility to limit cataract surgery vision utility gain yielded a 1.337 (17.8%) QALY gain. Using both nonophthalmic patient utilities and systemic comorbidity utility limits yielded a 0.839 (8.7%) QALY gain. The substitutions decreased cataract surgery cost-effectiveness by 71.3% (95% CI, 70.6%-72.1%) for nonophthalmic patient utilities, 92.5% (95% CI, 51.9%-133.1%) for patient systemic comorbidity utility, and 206.8% (95% CI, 202.6%-211.2%) for both. The NVAMD ranibizumab therapy reference case yielded a 1.339 (26.1%) QALY gain. Similar substitutions resulted in QALY gains of 1.164 (22.7%) for nonophthalmic patient utilities while reducing cost-effectiveness by 16.4%, 1.001 (19.5%) for systematic-limiting comorbidity utility while reducing cost-effectiveness by 33.8%, and 0.971 (18.9%) for both while reducing cost-effectiveness by 37.9%.

Conclusions and Relevance  Using nonophthalmic patient vision utilities and/or the maximum limit model of limiting patient utility gains to the population systemic comorbidity utility level resulted in large decreases in patient value (QALY) gain and cost-effectiveness for common ophthalmic interventions. Ophthalmologists should realize these phenomena and consider correcting the potential discrimination against disabled, elderly, and African American populations. This negative potential bias could theoretically result in beneficial intervention denial, less research dollars, curbed therapeutic advances, and decreased interventional reimbursement.

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 CME Credit™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

Article Information

Accepted for Publication: November 12, 2020.

Published Online: February 4, 2021. doi:10.1001/jamaophthalmol.2020.6591

Corresponding Author: Gary C. Brown, MD, MBA, Center for Value-Based Medicine, PO Box 3417, Hilton Head, SC 29928 (gbrown@valuebasedmedicine.com).

Author Contributions: Dr G. C. Brown had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: G. C. Brown, M. M. Brown.

Acquisition, analysis, or interpretation of data: All authors.

Drafting of the manuscript: G. C. Brown, M. M. Brown.

Critical revision of the manuscript for important intellectual content: All authors.

Statistical analysis: G. C. Brown.

Administrative, technical, or material support: M. M. Brown.

Supervision: M. M. Brown.

Conflict of Interest Disclosures: Dr G. C. Brown reported being a shareholder in the Center for Value-Based Medicine. Dr M. M. Brown reported being a shareholder in the Center for Value-Based Medicine. No other disclosures were reported.

Additional Contributions: Sharon L. Christ, PhD, MS, Department of Human Development and Family Studies at the College of Health and Human Sciences, Purdue University, calculated the life expectancy associated with different levels of visual loss in the best-seeing eye. Dr Christ received no compensation from the authors for this endeavor.

References
1.
Sanders  GD , Neumann  PJ , Basu  A ,  et al.  Recommendations for conduct, methodological practices, and reporting of cost-effectiveness analyses: Second Panel on Cost-Effectiveness in Health and Medicine.   JAMA. 2016;316(10):1093-1103. doi:10.1001/jama.2016.12195 PubMedGoogle ScholarCrossref
2.
Brown  MM , Brown GC, Sharma S.  Evidence-Based to Value-Based Medicine. AMA Press, 2005:151-233.
3.
Stein  JD , Brown  MM , Brown  GC , Hollands  H , Sharma  S .  Quality of life with macular degeneration: perceptions of patients, clinicians, and community members.   Br J Ophthalmol. 2003;87(1):8-12. doi:10.1136/bjo.87.1.8 PubMedGoogle ScholarCrossref
4.
Brown  MM , Brown  GC , Sharma  S , Hollands  H , Landy  J .  Quality of life and systemic comorbidities in patients with ophthalmic disease.   Br J Ophthalmol. 2002;86(1):8-11. doi:10.1136/bjo.86.1.8 PubMedGoogle ScholarCrossref
5.
Real  FJ , Brown  GC , Brown  HC , Brown  MM .  The effect of comorbidities upon ocular and systemic health-related quality of life.   Br J Ophthalmol. 2008;92(6):770-774. doi:10.1136/bjo.2007.127407 PubMedGoogle ScholarCrossref
6.
Haagsma  JA , van Beeck  EF , Polinder  S , Toet  H , Panneman  M , Bonsel  GJ .  The effect of comorbidity on health-related quality of life for injury patients in the first year following injury: comparison of three comorbidity adjustment approaches.   Popul Health Metr. 2011;9:10. doi:10.1186/1478-7954-9-10 PubMedGoogle ScholarCrossref
7.
Park  B , Ock  M , Jo  MW ,  et al.  Health gap for multimorbidity: comparison of models combining uniconditional health gap.   Qual Life Res. 2020;29(9):2475-2483. doi:10.1007/s11136-020-02514-5 PubMedGoogle ScholarCrossref
8.
Brown  GC , Brown  MM .  Health care stakeholder perceptions of vision loss.   Surv Ophthalmol. 2019;64(3):345-352. doi:10.1016/j.survophthal.2018.11.001 PubMedGoogle ScholarCrossref
9.
Brown  GC , Brown  MM , Sharma  S .  Difference between ophthalmologists’ and patients’ perceptions of quality of life associated with age-related macular degeneration.   Can J Ophthalmol. 2000;35(3):127-133. doi:10.1016/S0008-4182(00)80005-8 PubMedGoogle ScholarCrossref
10.
Chaudry  I , Brown  GC , Brown  MM .  Medical student and patient perceptions of quality of life associated with vision loss.   Can J Ophthalmol. 2015;50(3):217-224. doi:10.1016/j.jcjo.2015.02.004 PubMedGoogle ScholarCrossref
11.
Brazier  J , Ara  R , Azzabi  I ,  et al.  Identification, review, and use of health state utilities in cost-effectiveness models: an ISPOR Good Practices for Outcomes Research Task Force Report.   Value Health. 2019;22(3):267-275. doi:10.1016/j.jval.2019.01.004 PubMedGoogle ScholarCrossref
12.
TANDVÅRDS- OCH LÄKEMEDELFÖRMÅNSVERKET. Health economics. Updated June 16, 2020. Accessed December 30, 2020. https://www.tlv.se/in-english/medicines/health-economics.html
13.
Brown  GC .  Vision and quality-of-life.   Trans Am Ophthalmol Soc. 1999;97:473-511.PubMedGoogle Scholar
14.
Brown  MM , Brown  GC , Sharma  S , Kistler  J , Brown  H .  Utility values associated with blindness in an adult population.   Br J Ophthalmol. 2001;85(3):327-331. doi:10.1136/bjo.85.3.327 PubMedGoogle ScholarCrossref
15.
Hollands  H , Lam  M , Pater  J ,  et al.  Reliability of the time trade-off technique of utility assessment in patients with retinal disease.   Can J Ophthalmol. 2001;36(4):202-209. doi:10.1016/S0008-4182(01)80041-7 PubMedGoogle ScholarCrossref
16.
Sharma  S , Brown  GC , Brown  MM , Hollands  H , Robins  R , Shah  GK .  Validity of the time trade-off and standard gamble methods of utility assessment in retinal patients.   Br J Ophthalmol. 2002;86(5):493-496. doi:10.1136/bjo.86.5.493 PubMedGoogle ScholarCrossref
17.
Espallargues  M , Czoski-Murray  CJ , Bansback  NJ ,  et al.  The impact of age-related macular degeneration on health status utility values.   Invest Ophthalmol Vis Sci. 2005;46(11):4016-4023. doi:10.1167/iovs.05-0072 PubMedGoogle ScholarCrossref
18.
Pearson  I , Rycroft  C , Irving  A , Ainsworth  C , Wittrup-Jensen  K .  A systematic literature review of utility weights in wet age-related macular degeneration.   J Med Econ. 2013;16(11):1307-1316. doi:10.3111/13696998.2013.839946 PubMedGoogle ScholarCrossref
19.
Health Utilities Inc. Multi-attribute health status classification system: Health Utilities Index Mark 3 (HUI3). Updated April 2018. Accessed August 9, 2020. http://www.healthutilities.com/hui3.htm
20.
Brown  GC , Brown  MM , Busbee  BG .  Cost-utility analysis of cataract surgery in the United States for the year 2018.   J Cataract Refract Surg. 2019;45(7):927-938. doi:10.1016/j.jcrs.2019.02.006PubMedGoogle ScholarCrossref
21.
Brown  GC , Brown  MM , Rapuano  SB , Boyer  D .  Patient preference-based cost-utility analysis of VEGF-inhibitor therapy for neovascular age-related macular degeneration in the United States in 2018.   Am J Ophthalmol. 2020;218:225-241. doi:10.1016/j.ajo.2020.05.029 PubMedGoogle ScholarCrossref
22.
World Medical Association.  World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects.   JAMA. 2013;310(20):2191-2194. doi:10.1001/jama.2013.281053PubMedGoogle ScholarCrossref
23.
Brown  GC , Brown  MM , Stein  JD , Smiddy  WE ; Ophthalmic Utility Research Study Group.  Vision-related quality-of-life associated with unilateral and bilateral ocular conditions.   Ophthalmology. 2018;125(7):965-971. doi:10.1016/j.ophtha.2017.12.033 PubMedGoogle ScholarCrossref
24.
Maguire  MG , Martin  DF , Ying  GS ,  et al; Comparison of Age-related Macular Degeneration Treatments Trials (CATT) Research Group.  Five-year outcomes with anti-vascular endothelial growth factor treatment of neovascular age-related macular degeneration: the Comparison of Age-related Macular Degeneration Treatments Trials.   Ophthalmology. 2016;123(8):1751-1761. doi:10.1016/j.ophtha.2016.03.045 PubMedGoogle ScholarCrossref
25.
Shah  AR , Del Priore  LV .  Progressive visual loss in subfoveal exudation in age-related macular degeneration: a meta-analysis using Lineweaver-Burke plots.   Am J Ophthalmol. 2007;143(1):83-89. doi:10.1016/j.ajo.2006.09.043 PubMedGoogle ScholarCrossref
26.
Quiñones  AR , Botoseneanu  A , Markwardt  S ,  et al.  Racial/ethnic differences in multimorbidity development and chronic disease accumulation for middle-aged adults.   PLoS One. 2019;14(6):e0218462. doi:10.1371/journal.pone.0218462 PubMedGoogle Scholar
27.
Christ  SL , Zheng  DD , Swenor  BK ,  et al.  Longitudinal relationships among visual acuity, daily functional status, and mortality: the Salisbury Eye Evaluation Study.   JAMA Ophthalmol. 2014;132(12):1400-1406. doi:10.1001/jamaophthalmol.2014.2847 PubMedGoogle ScholarCrossref
28.
Centers for Medicare & Medicaid Services. Physician fee schedule search. Accessed December 29, 2020. https://www.cms.gov/apps/physician-fee-schedule/search/search-criteria.aspx
29.
National Institute for Health and Care Excellence. Developing NICE guidelines: the manual. Published October 31, 2014. Accessed September 11, 2020. https://www.nice.org.uk/process/pmg20/resources/developing-nice-guidelines-the-manual-pdf-72286708700869
30.
Fryback  DG , Dasbach  EJ , Klein  R ,  et al.  The Beaver Dam Health Outcomes Study: initial catalog of health-state quality factors.   Med Decis Making. 1993;13(2):89-102. doi:10.1177/0272989X9301300202 PubMedGoogle ScholarCrossref
31.
Feeny  D , Krahn  M , Prosser  LA , Salomon  JA . Valuing health outcomes. In: Neumann  PJ , Sanders  GD , Russell  LB , Siegel  JE , Ganiats  TG , eds.  Cost-Effectiveness in Health and Medicine. 2nd ed. Oxford University Press; 2017:167-199.
32.
Centers for Medicare & Medicaid Services. Health Outcomes Survey (HOS). Modified November 19, 2020. Accessed October 19, 2020. https://www.cms.gov/Research-Statistics-Data-and-Systems/Research/HOS
33.
Heffler  E , Blasi  F , Latorre  M ,  et al; SANI Network.  The Severe Asthma Network in Italy: findings and perspectives.   J Allergy Clin Immunol Pract. 2019;7(5):1462-1468. doi:10.1016/j.jaip.2018.10.016 PubMedGoogle ScholarCrossref
34.
Bajwa  ZH , Sial  KA , Malik  AB , Steinman  TI .  Pain patterns in patients with polycystic kidney disease.   Kidney Int. 2004;66(4):1561-1569. doi:10.1111/j.1523-1755.2004.00921.x PubMedGoogle ScholarCrossref
35.
Baena Díez  JM , Carrera Morodo  M , Corral Roca  M , Calatayud Subías  E , Flores Jiménez  I , de la Arada Acebes  AM .  Impact of the new criteria of the ACC/AHA on the diagnostic prevalence of hypertension.   Med Clin (Barc). 2020;154(7):254-256. doi:10.1016/j.medcli.2019.06.021 PubMedGoogle ScholarCrossref
36.
Centers for Disease Control and Prevention. National Diabetes Statistics Report 2020: estimate of diabetes and its burden in the United States. Accessed December 30, 2020. https://www.cdc.gov/diabetes/pdfs/data/statistics/national-diabetes-statistics-report.pdf
37.
Owens  DK , Siegel  JE , Sculpher  MJ , Salomon  JA . Designing a cost-effectiveness analysis. In Neumann  PJ , Sanders  GD , Russell  LB , Siegel  JE , Ganiats  TG , eds.  Cost-Effectiveness in Health and Medicine. 2nd ed. Oxford University Press; 2017;75-104.
38.
Zhao  Y , Feng  HM , Qu  J , Luo  X , Ma  WJ , Tian  JH .  A systematic review of pharmacoeconomic guidelines.   J Med Econ. 2018;21(1):85-96. doi:10.1080/13696998.2017.1387118PubMedGoogle ScholarCrossref
39.
Brown  GC , Brown  MM , Rapuano  SB , Boyer  DA .  A cost-benefit analysis of VEGF-inhibitor therapy for neovascular age-related macular degeneration in the United States.   Am J Ophthalmol. Published online July 16, 2020.PubMedGoogle Scholar
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_Multimedia_LoginSubscribe_Purchase
Close
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_Multimedia_LoginSubscribe_Purchase
Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close

Name Your Search

Save Search
Close
With a personal account, you can:
  • Track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
jn-learning_Modal_SaveSearch_NoAccess_Purchase
Close

Lookup An Activity

or

Close

My Saved Searches

You currently have no searches saved.

Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close