[Skip to Content]
[Skip to Content Landing]

Seizure Cycles in Focal Epilepsy

Educational Objective
To establish the prevalence, strength, and temporal patterns of seizure cycles over timescales of hours to years.
1 Credit CME
Key Points

Question  What are the prevalence, strength, and patterns of seizure cycles in focal epilepsy?

Findings  In this cohort study of 222 patients who received an implantable continuous electroencephalographic recording device, the prevalence was 12% of weak circannual seizure cycles, 60% of moderate multidien seizure cycles, and 89% of moderate circadian seizure cycles. Prevalent cycles were further classified into 5 multidien (7, 15, 20, and 30 days and irregular) and 5 circadian (morning, mid-afternoon, evening, early night, and late night) seizure chronotypes.

Meaning  The findings establish the high prevalence of circadian and multidien seizure cycles and reveal the existence of distinct seizure chronotypes in focal epilepsy.

Abstract

Importance  Focal epilepsy is characterized by the cyclical recurrence of seizures, but, to our knowledge, the prevalence and patterns of seizure cycles are unknown.

Objective  To establish the prevalence, strength, and temporal patterns of seizure cycles over timescales of hours to years.

Design, Setting, and Participants  This retrospective cohort study analyzed data from continuous intracranial electroencephalography (cEEG) and seizure diaries collected between January 19, 2004, and May 18, 2018, with durations up to 10 years. A total of 222 adults with medically refractory focal epilepsy were selected from 256 total participants in a clinical trial of an implanted responsive neurostimulation device. Selection was based on availability of cEEG and/or self-reports of disabling seizures.

Exposures  Antiseizure medications and responsive neurostimulation, based on clinical indications.

Main Outcomes and Measures  Measures involved (1) self-reported daily seizure counts, (2) cEEG-based hourly counts of electrographic seizures, and (3) detections of interictal epileptiform activity (IEA), which fluctuates in daily (circadian) and multiday (multidien) cycles. Outcomes involved descriptive characteristics of cycles of IEA and seizures: (1) prevalence, defined as the percentage of patients with a given type of seizure cycle; (2) strength, defined as the degree of consistency with which seizures occur at certain phases of an underlying cycle, measured as the phase-locking value (PLV); and (3) seizure chronotypes, defined as patterns in seizure timing evident at the group level.

Results  Of the 222 participants, 112 (50%) were male, and the median age was 35 years (range, 18-66 years). The prevalence of circannual (approximately 1 year) seizure cycles was 12% (24 of 194), the prevalence of multidien (approximately weekly to approximately monthly) seizure cycles was 60% (112 of 186), and the prevalence of circadian (approximately 24 hours) seizure cycles was 89% (76 of 85). Strengths of circadian (mean [SD] PLV, 0.34 [0.18]) and multidien (mean [SD] PLV, 0.34 [0.17]) seizure cycles were comparable, whereas circannual seizure cycles were weaker (mean [SD] PLV, 0.17 [0.10]). Across individuals, circadian seizure cycles showed 5 peaks: morning, mid-afternoon, evening, early night, and late night. Multidien cycles of IEA showed peak periodicities centered around 7, 15, 20, and 30 days. Independent of multidien period length, self-reported and electrographic seizures consistently occurred during the days-long rising phase of multidien cycles of IEA.

Conclusions and Relevance  Findings in this large cohort establish the high prevalence of plural seizure cycles and help explain the natural variability in seizure timing. The results have the potential to inform the scheduling of diagnostic studies, the delivery of time-varying therapies, and the design of clinical trials in epilepsy.

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 Credit(s)™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

CME Disclosure Statement: Unless noted, all individuals in control of content reported no relevant financial relationships. If applicable, all relevant financial relationships have been mitigated.

Article Information

Accepted for Publication: December 11, 2020.

Published Online: February 8, 2021. doi:10.1001/jamaneurol.2020.5370

Corresponding Author: Maxime O. Baud, MD, PhD, Sleep-Wake-Epilepsy Center, NeuroTec, Center for Experimental Neurology, Department of Neurology, Inselspital Bern, University Hospital, University of Bern, Bern, Switzerland (maxime.baud.neuro@gmail.com); Vikram R. Rao, MD, PhD, Department of Neurology, University of California San Francisco Epilepsy Center, 400 Parnassus Ave, 8th Floor, San Francisco, CA 94143 (vikram.rao@ucsf.edu).

Author Contributions: Drs Rao and Baud had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. Drs Rao and Baud are co–senior authors and contributed equally to this work.

Concept and design: Leguia, Andrzejak, Tcheng, Rao, Baud.

Acquisition, analysis, or interpretation of data: All authors.

Drafting of the manuscript: Leguia, Andrzejak, Tcheng, Rao, Baud.

Critical revision of the manuscript for important intellectual content: Andrzejak, Rummel, Fan, Mirro, Tcheng, Rao, Baud.

Statistical analysis: Leguia, Andrzejak, Rummel, Fan, Tcheng, Baud.

Obtained funding: Baud.

Administrative, technical, or material support: Mirro, Rao, Baud.

Supervision: Andrzejak, Rao, Baud.

Conflict of Interest Disclosures: Ms Mirro and Dr Tcheng are employees of NeuroPace Inc and report having equity ownership and receiving stock options. Dr Rao reported receiving grants and personal fees from NeuroPace Inc during the conduct of the study. Dr Baud reported receiving grants from Swiss National Foundation for Science, Wyss Center for Bio and Neuroengineering, and Velux Stiftung; personal fees from Wyss Center for Bio and Neuroengineering as a part-time employee during the conduct of the study; and having a patent for a brain monitoring device pending under PCT 62665486. No other disclosures were reported.

Funding/Support: Dr Leguia is supported through a grant for a postdoctoral fellowship from the Wyss Center for Bio and Neuroengineering. Dr Rao is supported by the Ernest Gallo Foundation Distinguished Professorship in Neurology at the University of California, San Francisco. Dr Baud is supported by an Ambizione grant (PZ00P3_179929) from the Swiss National Science Foundation and by a grant from the Velux Stiftung (1232).

Role of the Funder/Sponsor: The funding sources had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Disclaimer: The contents do not represent the views of the US Department of Veterans Affairs or the US government.

References
1.
Magiorkinis  E , Sidiropoulou  K , Diamantis  A .  Hallmarks in the history of epilepsy: epilepsy in antiquity.   Epilepsy Behav. 2010;17(1):103-108. doi:10.1016/j.yebeh.2009.10.023PubMedGoogle ScholarCrossref
2.
Diamantis  A , Sidiropoulou  K , Magiorkinis  E .  Epilepsy during the middle ages, the renaissance and the enlightenment.   J Neurol. 2010;257(5):691-698. doi:10.1007/s00415-009-5433-7 PubMedGoogle ScholarCrossref
3.
Riva  MA , Tremolizzo  L , Spicci  M ,  et al.  The disease of the moon: the linguistic and pathological evolution of the English term “lunatic”.   J Hist Neurosci. 2011;20(1):65-73. doi:10.1080/0964704X.2010.481101 PubMedGoogle ScholarCrossref
4.
Herzog  AG .  Catamenial epilepsy: definition, prevalence pathophysiology and treatment.   Seizure. 2008;17(2):151-159. doi:10.1016/j.seizure.2007.11.014 PubMedGoogle ScholarCrossref
5.
Gowers  WR .  Epilepsy and Other Chronic Convulsive Diseases: Their Causes, Symptoms, and Treatment. Churchill; 1881.
6.
Griffiths  G , Fox  JT .  Rhythm in epilepsy.   Lancet. 1938;232(5999):409-416. doi:10.1016/S0140-6736(00)41614-4 Google ScholarCrossref
7.
Reppert  SM , Weaver  DR .  Coordination of circadian timing in mammals.   Nature. 2002;418(6901):935-941. doi:10.1038/nature00965 PubMedGoogle ScholarCrossref
8.
Langdon-Down  M , Brain  WR .  Time of day in relation to convulsions in epilepsy.   Lancet. 1929;213(5516):1029-1032. doi:10.1016/S0140-6736(00)79288-9 Google Scholar
9.
Patry  F .  The relation of time of day, sleep and other factors to the incidence of epileptic seizures.   Am J Psychiatry. 1931;87(5):789-813. doi:10.1176/ajp.87.5.789 Google Scholar
10.
Bercel  NA .  The periodic features of some seizure states.   Ann N Y Acad Sci. 1964;117(1):555-563. doi:10.1111/j.1749-6632.1964.tb48206.x PubMedGoogle ScholarCrossref
11.
Milton  JG , Gotman  J , Remillard  GM , Andermann  F .  Timing of seizure recurrence in adult epileptic patients: a statistical analysis.   Epilepsia. 1987;28(5):471-478. doi:10.1111/j.1528-1157.1987.tb03675.x PubMedGoogle ScholarCrossref
12.
Osorio  I , Frei  MG , Sornette  D , Milton  J .  Pharmaco-resistant seizures: self-triggering capacity, scale-free properties and predictability?   Eur J Neurosci. 2009;30(8):1554-1558. doi:10.1111/j.1460-9568.2009.06923.x PubMedGoogle ScholarCrossref
13.
van Campen  JS , Valentijn  FA , Jansen  FE , Joëls  M , Braun  KPJ .  Seizure occurrence and the circadian rhythm of cortisol: a systematic review.   Epilepsy Behav. 2015;47:132-137. doi:10.1016/j.yebeh.2015.04.071 PubMedGoogle ScholarCrossref
14.
Loddenkemper  T , Vendrame  M , Zarowski  M ,  et al.  Circadian patterns of pediatric seizures.   Neurology. 2011;76(2):145-153. doi:10.1212/WNL.0b013e318206ca46 PubMedGoogle ScholarCrossref
15.
Durazzo  TS , Spencer  SS , Duckrow  RB , Novotny  EJ , Spencer  DD , Zaveri  HP .  Temporal distributions of seizure occurrence from various epileptogenic regions.   Neurology. 2008;70(15):1265-1271. doi:10.1212/01.wnl.0000308938.84918.3f PubMedGoogle ScholarCrossref
16.
Ferastraoaru  V , Goldenholz  DM , Chiang  S , Moss  R , Theodore  WH , Haut  SR .  Characteristics of large patient-reported outcomes: where can one million seizures get us?   Epilepsia Open. 2018;3(3):364-373. doi:10.1002/epi4.12237 PubMedGoogle ScholarCrossref
17.
Karoly  PJ , Goldenholz  DM , Freestone  DR ,  et al.  Circadian and circaseptan rhythms in human epilepsy: a retrospective cohort study.   Lancet Neurol. 2018;17(11):977-985. doi:10.1016/S1474-4422(18)30274-6 PubMedGoogle ScholarCrossref
18.
Elger  CE , Hoppe  C .  Diagnostic challenges in epilepsy: seizure under-reporting and seizure detection.   Lancet Neurol. 2018;17(3):279-288. doi:10.1016/S1474-4422(18)30038-3 PubMedGoogle ScholarCrossref
19.
Karoly  P , Goldenholz  DM , Cook  M .  Are the days of counting seizures numbered?   Curr Opin Neurol. 2018;31(2):162-168. doi:10.1097/WCO.0000000000000533 PubMedGoogle ScholarCrossref
20.
Baud  MO , Kleen  JK , Mirro  EA ,  et al.  Multi-day rhythms modulate seizure risk in epilepsy.   Nat Commun. 2018;9(1):88. doi:10.1038/s41467-017-02577-y PubMedGoogle ScholarCrossref
21.
Leguia MG, Rao VR, Kleen JK, Baud MO. Measuring synchrony in biomedical timeseries.  Chaos. Published online January 31, 2021. doi:10.1063/5.0026733
22.
Cook  MJ , O’Brien  TJ , Berkovic  SF ,  et al.  Prediction of seizure likelihood with a long-term, implanted seizure advisory system in patients with drug-resistant epilepsy: a first-in-man study.   Lancet Neurol. 2013;12(6):563-571. doi:10.1016/S1474-4422(13)70075-9 PubMedGoogle ScholarCrossref
23.
Nair  DR , Laxer  KD , Weber  PB ,  et al; RNS System LTT Study.  Nine-year prospective efficacy and safety of brain-responsive neurostimulation for focal epilepsy.   Neurology. 2020;95(9):e1244-e1256. doi:10.1212/WNL.0000000000010154PubMedGoogle ScholarCrossref
24.
Karoly  PJ , Freestone  DR , Boston  R ,  et al.  Interictal spikes and epileptic seizures: their relationship and underlying rhythmicity.   Brain. 2016;139(pt 4):1066-1078. doi:10.1093/brain/aww019 PubMedGoogle ScholarCrossref
25.
Maturana  MI , Meisel  C , Dell  K ,  et al.  Critical slowing down as a biomarker for seizure susceptibility.   Nat Commun. 2020;11(1):2172. doi:10.1038/s41467-020-15908-3 PubMedGoogle ScholarCrossref
26.
Jobst  BC , Kapur  R , Barkley  GL ,  et al.  Brain-responsive neurostimulation in patients with medically intractable seizures arising from eloquent and other neocortical areas.   Epilepsia. 2017;58(6):1005-1014. doi:10.1111/epi.13739 PubMedGoogle ScholarCrossref
27.
Scheffer IE, Berkovic S, Capovilla G, et al. ILAE classification of the epilepsies: position paper of the ILAE Commission for Classification and Terminology.  Epilepsia. 2017;58(4):512-521. doi:10.1111/epi.13709
28.
Sillay  KA , Rutecki  P , Cicora  K ,  et al.  Long-term measurement of impedance in chronically implanted depth and subdural electrodes during responsive neurostimulation in humans.   Brain Stimul. 2013;6(5):718-726. doi:10.1016/j.brs.2013.02.001 PubMedGoogle ScholarCrossref
29.
Ung  H , Baldassano  SN , Bink  H ,  et al.  Intracranial EEG fluctuates over months after implanting electrodes in human brain.   J Neural Eng. 2017;14(5):056011. doi:10.1088/1741-2552/aa7f40 PubMedGoogle Scholar
30.
Morrell  MJ ; RNS System in Epilepsy Study Group.  Responsive cortical stimulation for the treatment of medically intractable partial epilepsy.   Neurology. 2011;77(13):1295-1304. doi:10.1212/WNL.0b013e3182302056 PubMedGoogle ScholarCrossref
31.
Bergey  GK , Morrell  MJ , Mizrahi  EM ,  et al.  Long-term treatment with responsive brain stimulation in adults with refractory partial seizures.   Neurology. 2015;84(8):810-817. doi:10.1212/WNL.0000000000001280 PubMedGoogle ScholarCrossref
32.
Spencer  DC , Sun  FT , Brown  SN ,  et al.  Circadian and ultradian patterns of epileptiform discharges differ by seizure-onset location during long-term ambulatory intracranial monitoring.   Epilepsia. 2016;57(9):1495-1502. doi:10.1111/epi.13455 PubMedGoogle ScholarCrossref
33.
Barry  W , Tcheng  T , Morrell  M , Arcot Desai  S . Cross-patient electrographic seizure classifier trained on a large ambulatory ECoG dataset using deep learning. In: American Epilepsy Society Annual Meeting; 2020: Abstract 488.
34.
Berens  P .  CircStat: a MATLAB toolbox for circular statistics.   J Stat Softw. 2009;31(10):1-21. doi:10.18637/jss.v031.i10 Google ScholarCrossref
35.
Schreiber  T , Schmitz  A .  Surrogate time series.   Phys D Nonlinear Phenom. 2000;142(3-4):346-382. doi:10.1016/S0167-2789(00)00043-9 Google ScholarCrossref
36.
Andrzejak  RG , Mormann  F , Kreuz  T ,  et al.  Testing the null hypothesis of the nonexistence of a preseizure state.   Phys Rev E Stat Nonlin Soft Matter Phys. 2003;67(1, pt 1):010901. doi:10.1103/PhysRevE.67.010901 PubMedGoogle Scholar
37.
Andrzejak  RG , Chicharro  D , Elger  CE , Mormann  F .  Seizure prediction: any better than chance?   Clin Neurophysiol. 2009;120(8):1465-1478. doi:10.1016/j.clinph.2009.05.019 PubMedGoogle ScholarCrossref
38.
Lee  DD , Seung  HS .  Learning the parts of objects by non-negative matrix factorization.   Nature. 1999;401(6755):788-791. doi:10.1038/44565 PubMedGoogle ScholarCrossref
39.
Ho  J , Tumkaya  T , Aryal  S , Choi  H , Claridge-Chang  A .  Moving beyond P values: data analysis with estimation graphics.   Nat Methods. 2019;16(7):565-566. doi:10.1038/s41592-019-0470-3 PubMedGoogle ScholarCrossref
40.
Rao  VR , Leguia  MG , Tcheng  TK , Baud  MO .  Cues for seizure timing.   Epilepsia. Published online August 1, 2020. PubMedGoogle Scholar
41.
Polychronopoulos  P , Argyriou  AA , Sirrou  V ,  et al.  Lunar phases and seizure occurrence: just an ancient legend?   Neurology. 2006;66(9):1442-1443. doi:10.1212/01.wnl.0000210482.75864.e8 PubMedGoogle ScholarCrossref
42.
Muraro  NI , Pírez  N , Ceriani  MF .  The circadian system: plasticity at many levels.   Neuroscience. 2013;247:280-293. doi:10.1016/j.neuroscience.2013.05.036 PubMedGoogle ScholarCrossref
43.
Burish  MJ , Chen  Z , Yoo  SH .  Cluster headache is in part a disorder of the circadian system.   JAMA Neurol. 2018;75(7):783-784. doi:10.1001/jamaneurol.2018.1049 PubMedGoogle ScholarCrossref
44.
Khan  S , Nobili  L , Khatami  R ,  et al.  Circadian rhythm and epilepsy.   Lancet Neurol. 2018;17(12):1098-1108. doi:10.1016/S1474-4422(18)30335-1 PubMedGoogle ScholarCrossref
45.
Baud  MO , Ghestem  A , Benoliel  JJ , Becker  C , Bernard  C .  Endogenous multidien rhythm of epilepsy in rats.   Exp Neurol. 2019;315:82-87. doi:10.1016/j.expneurol.2019.02.006 PubMedGoogle ScholarCrossref
46.
Celec  P , Ostatníková  D , Putz  Z ,  et al.  Circatrigintan cycle of salivary testosterone in human male.   Biol Rhythm Res. 2003;34(3):305-315. doi:10.1076/brhm.34.3.305.18807 Google ScholarCrossref
47.
Jozsa  R , Olah  A , Cornélissen  G ,  et al.  Circadian and extracircadian exploration during daytime hours of circulating corticosterone and other endocrine chronomes.   Biomed Pharmacother. 2005;59(suppl 1):S109-S116. doi:10.1016/S0753-3322(05)80018-6 PubMedGoogle ScholarCrossref
48.
Jafarpour  S , Hirsch  LJ , Gaínza-Lein  M , Kellinghaus  C , Detyniecki  K .  Seizure cluster: definition, prevalence, consequences, and management.   Seizure. 2019;68:9-15. doi:10.1016/j.seizure.2018.05.013 PubMedGoogle ScholarCrossref
49.
Gregg  NM , Nasseri  M , Kremen  V ,  et al.  Circadian and multiday seizure periodicities, and seizure clusters in canine epilepsy.   Brain Commun. 2020;2(1):a008. doi:10.1093/braincomms/fcaa008 PubMedGoogle ScholarCrossref
50.
Baud  MO , Rao  VR .  Gauging seizure risk.   Neurology. 2018;91(21):967-973. doi:10.1212/WNL.0000000000006548 PubMedGoogle ScholarCrossref
51.
Sánchez Fernández  I , Loddenkemper  T .  Chronotherapeutic implications of cyclic seizure patterns.   Nat Rev Neurol. 2018;14(12):696-697. doi:10.1038/s41582-018-0094-8 PubMedGoogle ScholarCrossref
52.
Romero  J , Larimer  P , Chang  B , Goldenholz  SR , Goldenholz  DM .  Natural variability in seizure frequency: implications for trials and placebo.   Epilepsy Res. 2020;162:106306. doi:10.1016/j.eplepsyres.2020.106306PubMedGoogle Scholar
53.
Karoly  PJ , Romero  J , Cook  MJ , Freestone  DR , Goldenholz  DM .  When can we trust responders? serious concerns when using 50% response rate to assess clinical trials.   Epilepsia. 2019;60(9):e99-e103. doi:10.1111/epi.16321 PubMedGoogle ScholarCrossref
54.
Proix T, Truccolo W, Leguia MG, et al. Forecasting seizure risk in adults with focal epilepsy: a development and validation study.  Lancet Neurol. Published online December 17, 2020. doi:10.1016/S1474-4422(20)30396-3
55.
Duun-Henriksen  J , Baud  M , Richardson  MP ,  et al.  A new era in electroencephalographic monitoring? subscalp devices for ultra-long-term recordings.   Epilepsia. 2020;61(9):1805-1817. doi:10.1111/epi.16630 PubMedGoogle ScholarCrossref
Close
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
Close
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close

Name Your Search

Save Search
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Close
Close

Lookup An Activity

or

My Saved Searches

You currently have no searches saved.

Close

My Saved Courses

You currently have no courses saved.

Close