SARS-CoV-2 Viral Variants—Tackling a Moving Target | Vaccination | JN Learning | AMA Ed Hub [Skip to Content]
[Skip to Content Landing]

SARS-CoV-2 Viral Variants—Tackling a Moving Target

Educational Objective
To identify the key insights or developments described in this article
1 Credit CME

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 CME Credit™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

CME Disclosure Statement: Unless noted, all individuals in control of content reported no relevant financial relationships. If applicable, all relevant financial relationships have been mitigated.

Article Information

Corresponding Author: John R. Mascola, MD, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Dr, Bethesda, MD 20853 (jmascola@mail.nih.gov).

Published Online: February 11, 2021. doi:10.1001/jama.2021.2088

Conflict of Interest Disclosures: Dr Graham reports a patent for design of spike antigens with stabilizing mutations with multiple nonexclusive licenses for use in candidate vaccines. No other disclosures were reported.

References
1.
Zhang  W , Davis  BD , Chen  SS ,  et al.  Emergence of a novel SARS-CoV-2 strain in Southern California.   JAMA. Published online February 11, 2021. doi:10.1001/jama.2021.1612Google Scholar
2.
Nextstrain. Accessed February 8, 2021. https://nextstrain.org/
3.
PANGO lineages. Accessed February 8, 2021. https://cov-lineages.org
4.
Korber  B , Fischer  WM , Gnanakaran  S ,  et al; Sheffield COVID-19 Genomics Group.  Tracking changes in SARS-CoV-2 spike: evidence that D614G increases infectivity of the COVID-19 virus.   Cell. 2020;182(4):812-827.e19. doi:10.1016/j.cell.2020.06.043PubMedGoogle ScholarCrossref
5.
Yurkovetskiy  L , Wang  X , Pascal  KE ,  et al.  Structural and functional analysis of the D614G SARS-CoV-2 spike protein variant.   Cell. 2020;183(3):739-751.e8. doi:10.1016/j.cell.2020.09.032PubMedGoogle ScholarCrossref
6.
Hou  YJ , Chiba  S , Halfmann  P ,  et al.  SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo.   Science. 2020;370(6523):1464-1468. doi:10.1126/science.abe8499PubMedGoogle Scholar
7.
Rambaut  A , Loman  N , Pybus  O ,  et al; COVID-19 Genomics Consortium UK. Preliminary genomic characterisation of an emergent SARS-CoV-2 lineage in the UK defined by a novel set of spike mutations. Virological.org. Posted December 18, 2020. Accessed January 3, 2021. https://virological.org/t/preliminary-genomic-characterisation-of-anemergent-sars-cov-2-lineage-in-the-uk-definedby-a-novel-set-of-spike-mutations/563
8.
Horby P, Huntley C, Davies N, et al. Paper from the New and Emerging Respiratory Virus Threats Advisory Group (NERVTAG) on new coronavirus (COVID-19) variant B.1.1.7. Posted January 21, 2021. Accessed February 8, 2021. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/955239/NERVTAG_paper_on_variant_of_concern__VOC__B.1.1.7.pdf
9.
Tegally  H , Wilkinson  E , Giovanetti  M ,  et al.  Emergence and rapid spread of a new severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) lineage with multiple spike mutations in South Africa.   medRxiv. Preprint published online December 22, 2020. doi:10.1101/2020.12.21.20248640Google Scholar
10.
Wibmer  CK , Ayres  F , Hermanus  T ,  et al.  SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma.   bioRxiv. Preprint published online January 19, 2021. doi:10.1101/2021.01.18.427166Google Scholar
11.
Wu  K , Werner  AP , Moliva  JI ,  et al.  mRNA-1273 vaccine induces neutralizing antibodies against spike mutants from global SARS-CoV-2 variants.   bioRxiv. Preprint published online January 25, 2021. doi:10.1101/2021.01.25.427948Google Scholar
12.
Ho  D , Wang  P , Liu  L ,  et al.  Increased resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7 to antibody neutralization.   Res Sq. Preprint published online January 29, 2021. doi:10.21203/rs.3.rs-155394/v1Google Scholar
13.
Johnson & Johnson announces single-shot Janssen COVID-19 vaccine candidate met primary endpoints in interim analysis of its phase 3 ENSEMBLE trial. Johnson & Johnson. Posted January 29, 2021. Accessed February 8, 2021. https://www.jnj.com/johnson-johnson-announces-single-shot-janssen-covid-19-vaccine-candidate-met-primary-endpoints-in-interim-analysis-of-its-phase-3-ensemble-trial
14.
Novavax COVID-19 vaccine demonstrates 89.3% efficacy in UK phase 3 trial. Novavax. Posted January 28, 2021. Accessed February 8, 2021. https://ir.novavax.com/news-releases/news-release-details/novavax-covid-19-vaccine-demonstrates-893-efficacy-uk-phase-3
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_Multimedia_LoginSubscribe_Purchase
Close
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_Multimedia_LoginSubscribe_Purchase
Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close

Name Your Search

Save Search
Close
With a personal account, you can:
  • Track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
jn-learning_Modal_SaveSearch_NoAccess_Purchase
Close

Lookup An Activity

or

Close

My Saved Searches

You currently have no searches saved.

Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close