Respiratory Function in Children Wearing Face Masks During the COVID-19 Pandemic | Pediatrics | JN Learning | AMA Ed Hub [Skip to Content]
[Skip to Content Landing]

Assessment of Respiratory Function in Infants and Young Children Wearing Face Masks During the COVID-19 Pandemic

Educational Objective
To identify the key insights or developments described in this article
Key Points

Question  Are surgical masks associated with episodes of oxygen desaturation or respiratory distress among children?

Findings  In this cohort study of 47 infants and young children in Italy, wearing surgical face masks for 30 minutes was not associated with changes in respiratory parameters or clinical signs of respiratory distress.

Meaning  These findings suggest that the use of surgical masks among children may be promoted during the coronavirus disease 2019 pandemic, especially in view of the reopening of schools.

Abstract

Importance  Face masks have been associated with effective prevention of diffusion of viruses via droplets. However, the use of face masks among children, especially those aged younger than 3 years, is debated, and the US Centers for Disease Control and American Academy of Physicians recommend the use of face mask only among individuals aged 3 years or older.

Objective  To examine whether the use of surgical facial masks among children is associated with episodes of oxygen desaturation or respiratory distress.

Design, Setting, and Participants  This cohort study was conducted from May through June 2020 in a secondary-level hospital pediatric unit in Italy. Included participants were 47 healthy children divided by age (ie, group A, aged ≤24 months, and group B, aged >24 months to ≤144 months). Data were analyzed from May through June 2020.

Interventions  All participants were monitored every 15 minutes for changes in respiratory parameters for the first 30 minutes while not wearing a surgical face mask and for the next 30 minutes while wearing a face mask. Children aged 24 months and older then participated in a walking test for 12 minutes.

Main Outcomes and Measures  Changes in respiratory parameters during the use of surgical masks were evaluated.

Results  Among 47 children, 22 children (46.8%) were aged 24 months or younger (ie, group A), with 11 boys (50.0%) and median (interquartile range [IQR]) age 12.5 (10.0-17.5) months, and 25 children (53.2%) were aged older than 24 months to 144 months or younger, with 13 boys (52.0%) and median (IQR) age 100.0 (72.0-120.0) months. During the first 60 minutes of evaluation in the 2 groups, there was no significant change in group A in median (IQR) partial pressure of end-tidal carbon dioxide (Petco2; 33.0 [32.0-34.0] mm Hg; P for Kruskal Wallis = .59), oxygen saturation (Sao2; 98.0% [97.0%-99.0%]; P for Kruskal Wallis = .61), pulse rate (PR; 130.0 [115.0-140.0] pulsations/min; P for Kruskal Wallis = .99), or respiratory rate (RR; 30.0 [28.0-33.0] breaths/min; P for Kruskal Wallis = .69) or for group B in median (IQR) Petco2 (36.0 [34.0-38.0] mm Hg; P for Kruskal Wallis = .97), Sao2 (98.0% [97.0%-98.0%]; P for Kruskal Wallis = .52), PR (96.0 [84.0-104.5] pulsations/min; P for Kruskal Wallis test = .48), or RR (22.0 [20.0-25.0] breaths/min; P for Kruskal Wallis = .55). After the group B walking test, compared with before the walking test, there was a significant increase in median (IQR) PR (96.0 [84.0-104.5] pulsations/min vs 105.0 [100.0-115.0] pulsations/min; P < .02) and RR (22.0 [20.0-25.0] breaths/min vs 26.0 [24.0-29.0] breaths/min; P < .05).

Conclusions and Relevance  This cohort study among infants and young children in Italy found that the use of facial masks was not associated with significant changes in Sao2 or Petco2, including among children aged 24 months and younger.

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 CME Credit™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

Article Information

Accepted for Publication: January 11, 2021.

Published: March 2, 2021. doi:10.1001/jamanetworkopen.2021.0414

Open Access: This is an open access article distributed under the terms of the CC-BY License. © 2021 Lubrano R et al. JAMA Network Open.

Corresponding Author: Silvia Bloise, MD, Pediatric and Neonatology Unit, Maternal and Child Department, Sapienza University of Rome, Polo Pontino, Ospedale Santa Maria Goretti, Polo di Latina, Via Albenga 56, Rome 00186, Italy (silvia.bloise1989@gmail.com).

Author Contributions: Drs Lubrano and Bloise had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: Lubrano, Bloise, Marcellino, Dilillo, Martucci, Sanseviero, Del Giudice, Ventriglia.

Acquisition, analysis, or interpretation of data: Bloise, Testa, Marcellino, Dilillo, Mallardo, Isoldi, Martucci, Sanseviero, Del Giudice, Malvaso, Iorfida, Ventriglia.

Drafting of the manuscript: Bloise, Testa, Marcellino, Dilillo, Mallardo, Martucci, Sanseviero, Del Giudice, Iorfida, Ventriglia.

Critical revision of the manuscript for important intellectual content: Lubrano, Isoldi, Malvaso, Ventriglia.

Statistical analysis: Bloise, Marcellino, Dilillo, Isoldi, Martucci, Sanseviero, Del Giudice, Iorfida.

Administrative, technical, or material support: Testa.

Supervision: Lubrano, Marcellino, Malvaso, Ventriglia.

Conflict of Interest Disclosures: None reported.

References
1.
Zhang  J , Litvinova  M , Wang  W ,  et al.  Evolving epidemiology and transmission dynamics of coronavirus disease 2019 outside Hubei province, China: a descriptive and modelling study.   Lancet Infect Dis. 2020;20(7):793-802. doi:10.1016/S1473-3099(20)30230-9 PubMedGoogle ScholarCrossref
2.
Shiu  EYC , Leung  NHL , Cowling  BJ .  Controversy around airborne versus droplet transmission of respiratory viruses: implication for infection prevention.   Curr Opin Infect Dis. 2019;32(4):372-379. doi:10.1097/QCO.0000000000000563 PubMedGoogle ScholarCrossref
3.
Tellier  R , Li  Y , Cowling  BJ , Tang  JW .  Recognition of aerosol transmission of infectious agents: a commentary.   BMC Infect Dis. 2019;19(1):101. doi:10.1186/s12879-019-3707-y PubMedGoogle ScholarCrossref
4.
World Health Organization. Modes of transmission of virus causing COVID-19: implications for IPC precaution recommendations. Updated October 20, 2020. Accessed April 3, 2020. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/question-and-answers-hub/q-a-detail/q-a-how-is-covid-19-transmitted
5.
Lewis  D .  Is the coronavirus airborne: experts can’t agree.   Nature. 2020;580(7802):175. doi:10.1038/d41586-020-00974-w PubMedGoogle ScholarCrossref
6.
van Doremalen  N , Bushmaker  T , Morris  DH ,  et al.  Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1.   N Engl J Med. 2020;382(16):1564-1567. doi:10.1056/NEJMc2004973 PubMedGoogle ScholarCrossref
7.
Feng  S , Shen  C , Xia  N , Song  W , Fan  M , Cowling  BJ .  Rational use of face masks in the COVID-19 pandemic.   Lancet Respir Med. 2020;8(5):434-436. doi:10.1016/S2213-2600(20)30134-X PubMedGoogle ScholarCrossref
8.
Day  M .  Covid-19: identifying and isolating asymptomatic people helped eliminate virus in Italian village.   BMJ. 2020;368:m1165. doi:10.1136/bmj.m1165 PubMedGoogle ScholarCrossref
9.
Day  M .  Covid-19: four fifths of cases are asymptomatic, China figures indicate.   BMJ. 2020;369:m1375. doi:10.1136/bmj.m1375 PubMedGoogle ScholarCrossref
10.
Zhou  F , Yu  T , Du  R ,  et al.  Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study.   Lancet. 2020;395(10229):1054-1062. doi:10.1016/S0140-6736(20)30566-3 PubMedGoogle ScholarCrossref
11.
Rothe  C , Schunk  M , Sothmann  P ,  et al.  Transmission of 2019-nCoV infection from an asymptomatic contact in Germany.   N Engl J Med. 2020;382(10):970-971. doi:10.1056/NEJMc2001468 PubMedGoogle ScholarCrossref
12.
Qiu  H , Wu  J , Hong  L , Luo  Y , Song  Q , Chen  D .  Clinical and epidemiological features of 36 children with coronavirus disease 2019 (COVID-19) in Zhejiang, China: an observational cohort study.   Lancet Infect Dis. 2020;20(6):689-696. doi:10.1016/S1473-3099(20)30198-5 PubMedGoogle ScholarCrossref
13.
Lu  X , Zhang  L , Du  H ,  et al; Chinese Pediatric Novel Coronavirus Study Team.  SARS- CoV-2 infection in children.   N Engl J Med. 2020;382(17):1663-1665. doi:10.1056/NEJMc2005073 PubMedGoogle ScholarCrossref
14.
Dong  Y , Mo  X , Hu  Y ,  et al.  Epidemiology of COVID-19 among children in China.   Pediatrics. 2020;145(6):e20200702. doi:10.1542/peds.2020-0702 PubMedGoogle Scholar
15.
Esposito  S , Principi  N .  School closure during the coronavirus disease 2019 (COVID-19) pandemic: an effective intervention at the global level?   JAMA Pediatr. 2020;174(10):921-922. doi:10.1001/jamapediatrics.2020.1892 PubMedGoogle ScholarCrossref
16.
Wu  Z , McGoogan  JM .  Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention.   JAMA. 2020;323(13):1239-1242. doi:10.1001/jama.2020.2648 PubMedGoogle ScholarCrossref
17.
Davies  NG , Klepac  P , Liu  Y , Prem  K , Jit  M , Eggo  RM ; CMMID COVID-19 working group.  Age-dependent effects in the transmission and control of COVID-19 epidemics.   Nat Med. 2020;26(8):1205-1211. doi:10.1038/s41591-020-0962-9 PubMedGoogle ScholarCrossref
18.
Esposito  S , Principi  N .  Debates around the role of school closures in the coronavirus 2019 pandemic-reply.   JAMA Pediatr. 2021;175(1):107-108. doi:10.1001/jamapediatrics.2020.3552 PubMedGoogle ScholarCrossref
19.
Götzinger  F , Santiago-García  B , Noguera-Julián  A ,  et al; ptbnet COVID-19 Study Group.  COVID-19 in children and adolescents in Europe: a multinational, multicentre cohort study.   Lancet Child Adolesc Health. 2020;4(9):653-661. doi:10.1016/S2352-4642(20)30177-2 PubMedGoogle ScholarCrossref
20.
Yonker  LM , Neilan  AM , Bartsch  Y ,  et al.  Pediatric severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): clinical presentation, infectivity, and immune responses.   J Pediatr. 2020;227:45-52.e5. doi:10.1016/j.jpeds.2020.08.037 PubMedGoogle ScholarCrossref
21.
Huff  HV , Singh  A .  Asymptomatic transmission during the COVID-19 pandemic and implications for public health strategies.   Clin Infect Dis. 2020;ciaa654. Published online May 28, 2020. doi:10.1093/cid/ciaa654PubMedGoogle Scholar
22.
Kam  KQ , Yung  CF , Cui  L ,  et al.  A well infant with coronavirus disease 2019 with high viral load.   Clin Infect Dis. 2020;71(15):847-849. doi:10.1093/cid/ciaa201 PubMedGoogle ScholarCrossref
23.
Heald-Sargent  T , Muller  WJ , Zheng  X , Rippe  J , Patel  AB , Kociolek  LK .  Age-related differences in nasopharyngeal severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) levels in patients with mild to moderate coronavirus disease 2019 (COVID-19).   JAMA Pediatr. 2020;174(9):902-903. doi:10.1001/jamapediatrics.2020.3651 PubMedGoogle ScholarCrossref
24.
Ma  Q-X , Shan  H , Zhang  H-L , Li  G-M , Yang  R-M , Chen  J-M .  Potential utilities of mask-wearing and instant hand hygiene for fighting SARS-CoV-2.   J Med Virol. 2020;92(9):1567-1571. doi:10.1002/jmv.25805 PubMedGoogle ScholarCrossref
25.
Lau  JT , Tsui  H , Lau  M , Yang  X .  SARS transmission, risk factors, and prevention in Hong Kong.   Emerg Infect Dis. 2004;10(4):587-592. doi:10.3201/eid1004.030628 PubMedGoogle ScholarCrossref
26.
Chan  KH , Yuen  KY .  COVID-19 epidemic: disentangling the re-emerging controversy about medical facemasks from an epidemiological perspective.   Int J Epidemiol. 2020;49(4):1063-1066. doi:10.1093/ije/dyaa044 PubMedGoogle ScholarCrossref
27.
Li  R , Pei  S , Chen  B ,  et al.  Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV-2).   Science. 2020;368(6490):489-493. doi:10.1126/science.abb3221 PubMedGoogle ScholarCrossref
28.
He  X , Lau  EHY , Wu  P ,  et al.  Temporal dynamics in viral shedding and transmissibility of COVID-19.   Nat Med. 2020;26(5):672-675. doi:10.1038/s41591-020-0869-5 PubMedGoogle ScholarCrossref
29.
Eikenberry  SE , Mancuso  M , Iboi  E ,  et al.  To mask or not to mask: modeling the potential for face mask use by the general public to curtail the COVID-19 pandemic.   Infect Dis Model. 2020;5:293-308. PubMedGoogle Scholar
30.
Kyung  SY , Kim  Y , Hwang  H , Park  JW , Jeong  SH .  Risks of N95 face mask use in subjects with COPD.   Respir Care. 2020;65(5):658-664. doi:10.4187/respcare.06713 PubMedGoogle ScholarCrossref
31.
Lazzarino  AI , Steptoe  A , Hamer  M , Michie  S .  Covid-19: important potential side effects of wearing face masks that we should bear in mind.   BMJ. 2020;369:m2003. doi:10.1136/bmj.m2003 PubMedGoogle ScholarCrossref
32.
US Centers for Disease Control and Prevention.  Guidance for K-12 school administrators on the use of masks in schools. Updated December 18, 2020. Accessed April 9, 2020. https://www.cdc.gov/coronavirus/2019-ncov/community/schools-childcare/cloth-face-cover.html
33.
American Academy of Pediatrics. Cloth face coverings for children during COVID-19. Accessed April 9, 2020. https://www.healthychildren.org/English/health-issues/conditions/COVID-19/Pages/Cloth-Face-Coverings-for-Children-During-COVID-19.aspx
34.
World Medical Association.  World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects.   JAMA. 2013;310(20):2191-2194. doi:10.1001/jama.2013.281053 PubMedGoogle ScholarCrossref
35.
Italian Society of Pediatric Emergency and Urgent Medicine.  COVID-19 and masks in children. Accessed January 25, 2021. https://www.facebook.com/SIMEUP/videos/2636235849928388
36.
Cazzola  M , Biscione  GL , Pasqua  F ,  et al.  Use of 6-min and 12-min walking test for assessing the efficacy of formoterol in COPD.   Respir Med. 2008;102(10):1425-1430. doi:10.1016/j.rmed.2008.04.017 PubMedGoogle ScholarCrossref
37.
Verhoeff  F , Sykes  MK .  Delayed detection of hypoxic events by pulse oximeters: computer simulations.   Anaesthesia. 1990;45(2):103-109. doi:10.1111/j.1365-2044.1990.tb14271.x PubMedGoogle ScholarCrossref
38.
Coté  CJ , Notterman  DA , Karl  HW , Weinberg  JA , McCloskey  C .  Adverse sedation events in pediatrics: a critical incident analysis of contributing factors.   Pediatrics. 2000;105(4 Pt 1):805-814. doi:10.1542/peds.105.4.805 PubMedGoogle ScholarCrossref
39.
Malviya  S , Voepel-Lewis  T , Tait  AR .  Adverse events and risk factors associated with the sedation of children by nonanesthesiologists.   Anesth Analg. 1997;85(6):1207-1213. doi:10.1213/00000539-199712000-00005 PubMedGoogle ScholarCrossref
40.
Poirier  MP , Gonzalez Del-Rey  JA , McAneney  CM , DiGiulio  GA .  Utility of monitoring capnography, pulse oximetry, and vital signs in the detection of airway mishaps: a hyperoxemic animal model.   Am J Emerg Med. 1998;16(4):350-352. doi:10.1016/S0735-6757(98)90125-5 PubMedGoogle ScholarCrossref
41.
Napolitano  N , Nishisaki  A , Buffman  HS , Leffelman  J , Maltese  MR , Nadkarni  VM .  redesign of an open-system oxygen face mask with mainstream capnometer for children.   Respir Care. 2017;62(1):70-77. doi:10.4187/respcare.04751 PubMedGoogle ScholarCrossref
42.
Lightdale  JR , Goldmann  DA , Feldman  HA , Newburg  AR , DiNardo  JA , Fox  VL .  Microstream capnography improves patient monitoring during moderate sedation: a randomized, controlled trial.   Pediatrics. 2006;117(6):e1170-e1178. doi:10.1542/peds.2005-1709 PubMedGoogle ScholarCrossref
43.
Soto  RG , Fu  ES , Vila  H  Jr , Miguel  RV .  Capnography accurately detects apnea during monitored anesthesia care.   Anesth Analg. 2004;99(2):379-382. doi:10.1213/01.ANE.0000131964.67524.E7 PubMedGoogle ScholarCrossref
44.
Vargo  JJ , Zuccaro  G  Jr , Dumot  JA , Conwell  DL , Morrow  JB , Shay  SS .  Automated graphic assessment of respiratory activity is superior to pulse oximetry and visual assessment for the detection of early respiratory depression during therapeutic upper endoscopy.   Gastrointest Endosc. 2002;55(7):826-831. doi:10.1067/mge.2002.124208 PubMedGoogle ScholarCrossref
45.
Blankush  JM , Freeman  R , McIlvaine  J , Tran  T , Nassani  S , Leitman  IM .  Implementation of a novel postoperative monitoring system using automated Modified Early Warning Scores (MEWS) incorporating end-tidal capnography.   J Clin Monit Comput. 2017;31(5):1081-1092. doi:10.1007/s10877-016-9943-4PubMedGoogle ScholarCrossref
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_Multimedia_LoginSubscribe_Purchase
Close
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_Multimedia_LoginSubscribe_Purchase
Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close

Name Your Search

Save Search
Close
With a personal account, you can:
  • Track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
jn-learning_Modal_SaveSearch_NoAccess_Purchase
Close

Lookup An Activity

or

Close

My Saved Searches

You currently have no searches saved.

Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close