Short-Course Antimicrobial Therapy for Pediatric Community-Acquired Pneumonia | Emergency Medicine | JN Learning | AMA Ed Hub [Skip to Content]
[Skip to Content Landing]

Short-Course Antimicrobial Therapy for Pediatric Community-Acquired PneumoniaThe SAFER Randomized Clinical Trial

Educational Objective
To determine whether 5 days of high-dose amoxicillin for community-acquired pneumonia was associated with noninferior rates of clinical cure compared with 10 days of high-dose amoxicillin.
1 Credit CME
Key Points

Question  Is short-course antibiotic therapy (5 days of high-dose amoxicillin) inferior to standard care (10 days of high-dose amoxicillin) for the treatment of children aged 6 months to 10 years diagnosed with community-acquired pneumonia in an outpatient setting?

Findings  In this 2-center, blinded randomized clinical trial, children treated with short-course antibiotic therapy had comparable rates of clinical cure at 14 to 21 days after enrollment compared with standard care (85.7% vs 84.1%).

Meaning  Results of this study suggest that short-course therapy for pediatric community-acquired pneumonia not requiring hospitalization offers more benefit than harm and should be considered for inclusion in treatment guidelines.

Abstract

Importance  Community-acquired pneumonia (CAP) is a common occurrence in childhood; consequently, evidence-based recommendations for its treatment are required.

Objective  To determine whether 5 days of high-dose amoxicillin for CAP was associated with noninferior rates of clinical cure compared with 10 days of high-dose amoxicillin.

Design, Setting, and Participants  The SAFER (Short-Course Antimicrobial Therapy for Pediatric Respiratory Infections) study was a 2-center, parallel-group, noninferiority randomized clinical trial consisting of a single-center pilot study from December 1, 2012, to March 31, 2014, and the follow-up main study from August 1, 2016, to December 31, 2019 at the emergency departments of McMaster Children’s Hospital and the Children’s Hospital of Eastern Ontario. Research staff, participants, and outcome assessors were blinded to treatment allocation. Eligible children were aged 6 months to 10 years and had fever within 48 hours, respiratory symptoms, chest radiography findings consistent with pneumonia as per the emergency department physician, and a primary diagnosis of pneumonia. Children were excluded if they required hospitalization, had comorbidities that would predispose them to severe disease and/or pneumonia of unusual origin, or had previous β-lactam antibiotic therapy. Data were analyzed from March 1 to July 8, 2020.

Interventions  Five days of high-dose amoxicillin therapy followed by 5 days of placebo (intervention group) vs 5 days of high-dose amoxicillin followed by a different formulation of 5 days of high-dose amoxicillin (control group).

Main Outcomes and Measures  Clinical cure at 14 to 21 days.

Results  Among the 281 participants, the median age was 2.6 (interquartile range, 1.6-4.9) years (160 boys [57.7%] of 279 with sex listed). Clinical cure was observed in 101 of 114 children (88.6%) in the intervention group and in 99 of 109 (90.8%) in the control group in per-protocol analysis (risk difference, −0.016; 97.5% confidence limit, −0.087). Clinical cure at 14 to 21 days was observed in 108 of 126 (85.7%) in the intervention group and in 106 of 126 (84.1%) in the control group in the intention-to-treat analysis (risk difference, 0.023; 97.5% confidence limit, −0.061).

Conclusions and Relevance  Short-course antibiotic therapy appeared to be comparable to standard care for the treatment of previously healthy children with CAP not requiring hospitalization. Clinical practice guidelines should consider recommending 5 days of amoxicillin for pediatric pneumonia management in accordance with antimicrobial stewardship principles.

Trial Registration  ClinicalTrials.gov Identifier: NCT02380352

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 CME Credit™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

Article Information

Accepted for Publication: October 22, 2020.

Published Online: March 8, 2021. doi:10.1001/jamapediatrics.2020.6735

Corresponding Author: Jeffrey M. Pernica, MD, MSc, Division of Infectious Diseases, Department of Pediatrics, McMaster University, 1280 Main St W, Hamilton, ON L8S 4K1, Canada (pernica@mcmaster.ca).

Author Contributions: Dr Pernica had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: Pernica, Harman, Kam, Carciumaru, Khan, Main, Smieja, Thabane, Loeb.

Acquisition, analysis, or interpretation of data: Pernica, Harman, Kam, Vanniyasingam, Crawford, Dalgleish, Slinger, Fulford, Main, Smieja, Thabane.

Drafting of the manuscript: Pernica, Carciumaru, Dalgleish, Main, Thabane.

Critical revision of the manuscript for important intellectual content: Pernica, Harman, Kam, Vanniyasingam, Crawford, Khan, Slinger, Fulford, Smieja, Loeb.

Statistical analysis: Vanniyasingam, Thabane.

Obtained funding: Pernica, Thabane.

Administrative, technical, or material support: Harman, Kam, Carciumaru, Crawford, Dalgleish, Khan, Slinger, Fulford, Main, Smieja, Loeb.

Supervision: Harman, Kam, Carciumaru, Thabane.

Conflict of Interest Disclosures: Dr Pernica reported receiving grant funding from bioMerieux SA for a study of enteropathogen diagnostics for children with severe gastroenteritis in Botswana outside the submitted work. Dr Loeb reported receiving personal fees from Avibr and Sunovion Pharmaceuticals Inc outside the submitted work and a contract with the World Health Organization to work on the antibiotic section of the Essential List of Medicines. No other disclosures were reported.

Funding/Support: This study was supported by Hamilton Health Sciences (New Investigator Fund and an Early Career Award), the PSI Foundation, and Pediatric Emergency Research Canada.

Role of the Funder/Sponsor: The sponsors had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Data Sharing Statement: See Supplement 3.

Additional Contributions: We acknowledge the efforts of our data monitoring committee, including Tania Principi, MD (Chair), Adrienne Davis, MD, (The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada) and Hubert Wong, PhD (University of British Columbia, Vancouver, British Columbia, Canada). They received no compensation for their contributions to this article.

References
1.
McIntosh  K .  Community-acquired pneumonia in children.   N Engl J Med. 2002;346(6):429-437. doi:10.1056/NEJMra011994 PubMedGoogle ScholarCrossref
2.
Rudan  I , Boschi-Pinto  C , Biloglav  Z , Mulholland  K , Campbell  H .  Epidemiology and etiology of childhood pneumonia.   Bull World Health Organ. 2008;86(5):408-416. doi:10.2471/BLT.07.048769 PubMedGoogle ScholarCrossref
3.
World Health Organization. Pneumonia fact sheet No. 331. Published August 2, 2019. Accessed January 28, 2021. https://www.who.int/mediacentre/factsheets/fs331/en/index.html
4.
Wardlaw  T , Salama  P , Johansson  EW , Mason  E .  Pneumonia: the leading killer of children.   Lancet. 2006;368(9541):1048-1050. doi:10.1016/S0140-6736(06)69334-3 PubMedGoogle ScholarCrossref
5.
Bradley  JS , Byington  CL , Shah  SS ,  et al.  The management of community-acquired pneumonia in infants and children older than 3 months of age: clinical practice guidelines by the PIDS and IDSA.   Clin Infect Dis. 2011;53(7):e25-e76. doi:10.1093/cid/cir531 PubMedGoogle ScholarCrossref
6.
Le Saux  N , Robinson  JL ; Canadian Paediatric Society, Infectious Diseases and Immunization Committee.  Uncomplicated pneumonia in healthy Canadian children and youth: practice points for management.   Paediatr Child Health. 2015;20(8):441-450. doi:10.1093/pch/20.8.441 PubMedGoogle ScholarCrossref
7.
Dunbar  LM , Wunderink  RG , Habib  MP ,  et al.  High-dose, short-course levofloxacin for community-acquired pneumonia: a new treatment paradigm.   Clin Infect Dis. 2003;37(6):752-760. doi:10.1086/377539 PubMedGoogle ScholarCrossref
8.
Uranga  A , España  PP , Bilbao  A ,  et al.  Duration of antibiotic treatment in community-acquired pneumonia: a multicenter randomized clinical trial.   JAMA Intern Med. 2016;176(9):1257-1265. doi:10.1001/jamainternmed.2016.3633 PubMedGoogle ScholarCrossref
9.
Kogan  R , Martínez  MA , Rubilar  L ,  et al.  Comparative randomized trial of azithromycin versus erythromycin and amoxicillin for treatment of community-acquired pneumonia in children.   Pediatr Pulmonol. 2003;35(2):91-98. doi:10.1002/ppul.10180 PubMedGoogle ScholarCrossref
10.
Wubbel  L , Muniz  L , Ahmed  A ,  et al.  Etiology and treatment of community-acquired pneumonia in ambulatory children.   Pediatr Infect Dis J. 1999;18(2):98-104. doi:10.1097/00006454-199902000-00004 PubMedGoogle ScholarCrossref
11.
Harris  JA , Kolokathis  A , Campbell  M , Cassell  GH , Hammerschlag  MR .  Safety and efficacy of azithromycin in the treatment of community-acquired pneumonia in children.   Pediatr Infect Dis J. 1998;17(10):865-871. doi:10.1097/00006454-199810000-00004 PubMedGoogle ScholarCrossref
12.
Oczkowski  SJ .  A clinician’s guide to the assessment and interpretation of noninferiority trials for novel therapies.   Open Med. 2014;8(2):e67-e72.PubMedGoogle Scholar
13.
Greenberg  D , Givon-Lavi  N , Sadaka  Y , Ben-Shimol  S , Bar-Ziv  J , Dagan  R .  Short-course antibiotic treatment for community-acquired alveolar pneumonia in ambulatory children: a double-blind, randomized, placebo-controlled trial.   Pediatr Infect Dis J. 2014;33(2):136-142. doi:10.1097/INF.0000000000000023 PubMedGoogle ScholarCrossref
14.
Williams  DJ , Shah  SS , Myers  A ,  et al.  Identifying pediatric community-acquired pneumonia hospitalizations: accuracy of administrative billing codes.   JAMA Pediatr. 2013;167(9):851-858. doi:10.1001/jamapediatrics.2013.186 PubMedGoogle ScholarCrossref
15.
Lukrafka  JL , Fuchs  SC , Fischer  GB , Flores  JA , Fachel  JM , Castro-Rodriguez  JA .  Chest physiotherapy in paediatric patients hospitalised with community-acquired pneumonia: a randomised clinical trial.   Arch Dis Child. 2012;97(11):967-971. doi:10.1136/archdischild-2012-302279 PubMedGoogle ScholarCrossref
16.
Chappuy  H , Keitel  K , Gehri  M ,  et al.  Nasopharyngeal carriage of individual Streptococcus pneumoniae serotypes during pediatric radiologically confirmed community acquired pneumonia following PCV7 introduction in Switzerland.   BMC Infect Dis. 2013;13:357. doi:10.1186/1471-2334-13-357 PubMedGoogle ScholarCrossref
17.
Atkinson  M , Lakhanpaul  M , Smyth  A ,  et al.  Comparison of oral amoxicillin and intravenous benzyl penicillin for community acquired pneumonia in children (PIVOT trial): a multicentre pragmatic randomised controlled equivalence trial.   Thorax. 2007;62(12):1102-1106. doi:10.1136/thx.2006.074906 PubMedGoogle ScholarCrossref
19.
Public Health Ontario. Immunization coverage report for school pupils in Ontario: 2018-19 school year. Queen’s Printer for Ontario. Published August 10, 2020. Accessed January 28, 2021. https://www.publichealthontario.ca/en/health-topics/immunization/vaccine-coverage
20.
Ali  M , Han  S , Gunst  CJ , Lim  S , Luinstra  K , Smieja  M .  Throat and nasal swabs for molecular detection of respiratory viruses in acute pharyngitis.   Virol J. 2015;12:178. doi:10.1186/s12985-015-0408-z PubMedGoogle ScholarCrossref
21.
Pernica  J , Harman  S , Kam  A ,  et al.  Short-course antimicrobial therapy for paediatric respiratory infections (SAFER): study protocol for a randomized controlled trial.   Trials. 2018;19(1):83. doi:10.1186/s13063-018-2457-2 PubMedGoogle ScholarCrossref
22.
Jain  S , Self  WH , Wunderink  RG ,  et al; CDC EPIC Study Team.  Community-acquired pneumonia requiring hospitalization among US adults.   N Engl J Med. 2015;373(5):415-427. doi:10.1056/NEJMoa1500245 PubMedGoogle ScholarCrossref
23.
Jain  S , Williams  DJ , Arnold  SR ,  et al; CDC EPIC Study Team.  Community-acquired pneumonia requiring hospitalization among US children.   N Engl J Med. 2015;372(9):835-845. doi:10.1056/NEJMoa1405870 PubMedGoogle ScholarCrossref
24.
Centers for Disease Control and Prevention.  Antibiotic Resistance Threats in the United States, 2019. US Department of Health and Human Services; 2019.
25.
Yam  ELY .  COVID-19 will further exacerbate global antimicrobial resistance.   J Travel Med. 2020;27(6):taaa098. doi:10.1093/jtm/taaa098 PubMedGoogle Scholar
26.
Nieuwlaat  R , Mbuagbaw  L , Mertz  D ,  et al.  COVID-19 and antimicrobial resistance: parallel and interacting health emergencies.   Clin Infect Dis. 2020;ciaa773. doi:10.1093/cid/ciaa773 PubMedGoogle Scholar
27.
Spellberg  B , Rice  LB .  Duration of antibiotic therapy: shorter is better.   Ann Intern Med. 2019;171(3):210-211. doi:10.7326/M19-1509 PubMedGoogle ScholarCrossref
28.
Wald-Dickler  N , Spellberg  B .  Short-course antibiotic therapy-replacing constantine units with “shorter is better”.   Clin Infect Dis. 2019;69(9):1476-1479. doi:10.1093/cid/ciy1134 PubMedGoogle ScholarCrossref
29.
Bennett  JE , Dolin  R , Blaser  MJ .  Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases. Elsevier; 2020.
30.
World Health Organization.  Global Action Plan on Antimicrobial Resistance. World Health Organization; 2019.
31.
Gillies  M , Ranakusuma  A , Hoffmann  T ,  et al.  Common harms from amoxicillin: a systematic review and meta-analysis of randomized placebo-controlled trials for any indication.   CMAJ. 2015;187(1):E21-E31. doi:10.1503/cmaj.140848PubMedGoogle ScholarCrossref
32.
Hernández  E , Bargiela  R , Diez  MS ,  et al.  Functional consequences of microbial shifts in the human gastrointestinal tract linked to antibiotic treatment and obesity.   Gut Microbes. 2013;4(4):306-315. doi:10.4161/gmic.25321 PubMedGoogle ScholarCrossref
33.
Cox  LM , Blaser  MJ .  Pathways in microbe-induced obesity.   Cell Metab. 2013;17(6):883-894. doi:10.1016/j.cmet.2013.05.004 PubMedGoogle ScholarCrossref
34.
Bailey  LC , Forrest  CB , Zhang  P , Richards  TM , Livshits  A , DeRusso  PA .  Association of antibiotics in infancy with early childhood obesity.   JAMA Pediatr. 2014;168(11):1063-1069. doi:10.1001/jamapediatrics.2014.1539 PubMedGoogle ScholarCrossref
35.
Saari  A , Virta  LJ , Sankilampi  U , Dunkel  L , Saxen  H .  Antibiotic exposure in infancy and risk of being overweight in the first 24 months of life.   Pediatrics. 2015;135(4):617-626. doi:10.1542/peds.2014-3407 PubMedGoogle ScholarCrossref
36.
Cox  LM , Yamanishi  S , Sohn  J ,  et al.  Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences.   Cell. 2014;158(4):705-721. doi:10.1016/j.cell.2014.05.052 PubMedGoogle ScholarCrossref
37.
Cho  I , Yamanishi  S , Cox  L ,  et al.  Antibiotics in early life alter the murine colonic microbiome and adiposity.   Nature. 2012;488(7413):621-626. doi:10.1038/nature11400 PubMedGoogle ScholarCrossref
38.
Patrick  DM , Sbihi  H , Dai  DLY ,  et al.  Decreasing antibiotic use, the gut microbiota, and asthma incidence in children: evidence from population-based and prospective cohort studies.   Lancet Respir Med. 2020;8(11):1094-1105. doi:10.1016/S2213-2600(20)30052-7 PubMedGoogle ScholarCrossref
39.
Panzer  AR , Lynch  SV .  Influence and effect of the human microbiome in allergy and asthma.   Curr Opin Rheumatol. 2015;27(4):373-380. doi:10.1097/BOR.0000000000000191 PubMedGoogle ScholarCrossref
40.
Arrieta  MC , Stiemsma  LT , Dimitriu  PA ,  et al; CHILD Study Investigators.  Early infancy microbial and metabolic alterations affect risk of childhood asthma.   Sci Transl Med. 2015;7(307):307ra152. doi:10.1126/scitranslmed.aab2271 PubMedGoogle Scholar
41.
Fujimura  KE , Lynch  SV .  Microbiota in allergy and asthma and the emerging relationship with the gut microbiome.   Cell Host Microbe. 2015;17(5):592-602. doi:10.1016/j.chom.2015.04.007 PubMedGoogle ScholarCrossref
42.
Horton  DB , Scott  FI , Haynes  K ,  et al.  Antibiotic exposure and juvenile idiopathic arthritis: a case-control study.   Pediatrics. 2015;136(2):e333-e343. doi:10.1542/peds.2015-0036 PubMedGoogle ScholarCrossref
43.
Borre  YE , O’Keeffe  GW , Clarke  G , Stanton  C , Dinan  TG , Cryan  JF .  Microbiota and neurodevelopmental windows: implications for brain disorders.   Trends Mol Med. 2014;20(9):509-518. doi:10.1016/j.molmed.2014.05.002 PubMedGoogle ScholarCrossref
44.
Borre  YE , Moloney  RD , Clarke  G , Dinan  TG , Cryan  JF .  The impact of microbiota on brain and behavior: mechanisms & therapeutic potential.   Adv Exp Med Biol. 2014;817:373-403. doi:10.1007/978-1-4939-0897-4_17 PubMedGoogle ScholarCrossref
45.
Silverman  MA , Konnikova  L , Gerber  JS .  Impact of antibiotics on necrotizing enterocolitis and antibiotic-associated diarrhea.   Gastroenterol Clin North Am. 2017;46(1):61-76. doi:10.1016/j.gtc.2016.09.010 PubMedGoogle ScholarCrossref
46.
Antonsen  J , Hansen  S , Morgen  CS , Jess  T , Jorgensen  LN , Allin  KH .  Antibiotics during childhood and development of appendicitis: a nationwide cohort study.   Aliment Pharmacol Ther. 2020;53(1):87-93. doi:10.1111/apt.16084 PubMedGoogle Scholar
47.
Meyer Sauteur  PM .  Challenges and progress towards determining pneumonia etiology.   Clin Infect Dis. 2020;71(3):514-516. doi:10.1093/cid/ciz879 Google ScholarCrossref
48.
Harris  M , Clark  J , Coote  N ,  et al; British Thoracic Society Standards of Care Committee.  British Thoracic Society guidelines for the management of community acquired pneumonia in children: update 2011.   Thorax. 2011;66(suppl 2):ii1-ii23. doi:10.1136/thoraxjnl-2011-200598 PubMedGoogle ScholarCrossref
49.
Florin  TA , Ambroggio  L , Brokamp  C ,  et al.  Biomarkers and disease severity in children with community-acquired pneumonia.   Pediatrics. 2020;145(6):e20193728. doi:10.1542/peds.2019-3728 PubMedGoogle Scholar
50.
Neuman  MI , Lee  EY , Bixby  S ,  et al.  Variability in the interpretation of chest radiographs for the diagnosis of pneumonia in children.   J Hosp Med. 2012;7(4):294-298. doi:10.1002/jhm.955PubMedGoogle ScholarCrossref
51.
Elemraid  MA , Muller  M , Spencer  DA ,  et al; North East of England Paediatric Respiratory Infection Study Group.  Accuracy of the interpretation of chest radiographs for the diagnosis of paediatric pneumonia.   PLoS One. 2014;9(8):e106051. doi:10.1371/journal.pone.0106051 PubMedGoogle Scholar
52.
Johnson  J , Kline  JA .  Intraobserver and interobserver agreement of the interpretation of pediatric chest radiographs.   Emerg Radiol. 2010;17(4):285-290. doi:10.1007/s10140-009-0854-2 PubMedGoogle ScholarCrossref
53.
Andronikou  S , Lambert  E , Halton  J ,  et al.  Guidelines for the use of chest radiographs in community-acquired pneumonia in children and adolescents.   Pediatr Radiol. 2017;47(11):1405-1411. doi:10.1007/s00247-017-3944-4 PubMedGoogle ScholarCrossref
54.
Xavier-Souza  G , Vilas-Boas  AL , Fontoura  MS ,  et al; PNEUMOPAC-Efficacy Study Group.  The inter-observer variation of chest radiograph reading in acute lower respiratory tract infection among children.   Pediatr Pulmonol. 2013;48(5):464-469. doi:10.1002/ppul.22644 PubMedGoogle ScholarCrossref
55.
Lyttle  MD , Bielicki  JA , Barratt  S ,  et al; PERUKI, GAPRUKI and the CAP-IT trial team.  Efficacy, safety and impact on antimicrobial resistance of duration and dose of amoxicillin treatment for young children with community-acquired pneumonia: a protocol for a randomised controlled Trial (CAP-IT).   BMJ Open. 2019;9(5):e029875. doi:10.1136/bmjopen-2019-029875 PubMedGoogle Scholar
56.
ClinicalTrials.gov. A Phase IV Double-Blind, Placebo-Controlled, Randomized Trial to Evaluate Short Course vs.Standard Course Outpatient Therapy of Community Acquired Pneumonia in Children (SCOUT-CAP). NCT02891915. Accessed September 23, 2020. https://clinicaltrials.gov/ct2/show/NCT02891915
57.
World Health Organization.  Revised WHO Classification and Treatment of Childhood Pneumonia at Health Facilities: Evidence of Summaries. World Health Organization; 2014:46.
58.
World Health Organization.  Recommendations for Management of Common Childhood Conditions: Evidence for Technical Update of Pocket Book Recommendations: Newborn Conditions, Dysentery, Pneumonia, Oxygen Use and Delivery, Common Causes of Fever, Severe Acute Malnutrition and Supportive Care. World Health Organization; 2012.
59.
World Health Organization.  Integrated Management of Childhood Illness Chart Booklet. World Health Organization; 2014.
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_Multimedia_LoginSubscribe_Purchase
Close
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_Multimedia_LoginSubscribe_Purchase
Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close

Name Your Search

Save Search
Close
With a personal account, you can:
  • Track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
jn-learning_Modal_SaveSearch_NoAccess_Purchase
Close

Lookup An Activity

or

Close

My Saved Searches

You currently have no searches saved.

Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close