[Skip to Content]
[Skip to Content Landing]

Filtering Facepiece Respirator (N95 Respirator) ReprocessingA Systematic Review

Educational Objective
To identify the key insights or developments described in this article
1 Credit CME
Key Points

Question  What methods of filtering facepiece respirator decontamination are effective and feasible?

Findings  Five decontamination processes and 42 studies were reviewed. Ultraviolet germicidal irradiation, moist heat, and microwave-generated steam processing were effective for pathogen removal, preserved respirator filtration, and had short treatment times and readily available equipment. Vaporized hydrogen peroxide is a suitable alternative with longer decontamination durations and is more expensive. Ethylene oxide may leave toxic residues and is less easily implemented.

Meaning  Ultraviolet germicidal irradiation, moist heat, and microwave-generated steam processing of filtering facepiece respirators are effective means for decontamination and are simple to implement.

Abstract

Importance  The COVID-19 pandemic has resulted in a persistent shortage of personal protective equipment; therefore, a need exists for hospitals to reprocess filtering facepiece respirators (FFRs), such as N95 respirators.

Objective  To perform a systematic review to evaluate the evidence on effectiveness and feasibility of different processes used for decontaminating N95 respirators.

Evidence Review  A search of PubMed and EMBASE (through January 31, 2021) was completed for 5 types of respirator-decontaminating processes including UV irradiation, vaporized hydrogen peroxide, moist-heat incubation, microwave-generated steam, and ethylene oxide. Data were abstracted on process method, pathogen removal, mask filtration efficiency, facial fit, user safety, and processing capability.

Findings  Forty-two studies were included that examined 65 total types of masks. All were laboratory studies (no clinical trials), and 2 evaluated respirator performance and fit with actual clinical use of N95 respirators. Twenty-seven evaluated UV germicidal irradiation, 19 vaporized hydrogen peroxide, 9 moist-heat incubation, 10 microwave-generated steam, and 7 ethylene oxide. Forty-three types of N95 respirators were treated with UV irradiation. Doses of 1 to 2 J/cm2 effectively sterilized most pathogens on N95 respirators (>103 reduction in influenza virus [4 studies], MS2 bacteriophage [3 studies], Bacillus spores [2 studies], Escherichia virus MS2 [1 study], vesicular stomatitis virus [1 study], and Middle East respiratory syndrome virus/SARS-CoV-1 [1 study]) without degrading respirator components. Doses higher than 1.5 to 2 J/cm2 may be needed based on 2 studies demonstrating greater than 103 reduction in SARS-CoV-2. Vaporized hydrogen peroxide eradicated the pathogen in all 7 efficacy studies (>104 reduction in SARS-CoV-2 [3 studies] and >106 reduction of Bacillus and Geobacillus stearothermophilus spores [4 studies]). Pressurized chamber systems with higher concentrations of hydrogen peroxide caused FFR damage (6 studies), while open-room systems did not degrade respirator components. Moist heat effectively reduced SARS-CoV-2 (2 studies), influenza virus by greater than 104 (2 studies), vesicular stomatitis virus (1 study), and Escherichia coli (1 study) and preserved filtration efficiency and facial fit for 11 N95 respirators using preheated containers/chambers at 60 °C to 85 °C (5 studies); however, diminished filtration performance was seen for the Caron incubator. Microwave-generated steam (1100-W to 1800-W devices; 40 seconds to 3 minutes) effectively reduced pathogens by greater than 103 (influenza virus [2 studies], MS2 bacteriophage [3 studies], and Staphylococcus aureus [1 study]) and maintained filtration performance in 10 N95 respirators; however, damage was noted in least 1 respirator type in 4 studies. In 6 studies, ethylene oxide preserved respirator components in 16 N95 respirator types but left residual carcinogenic by-product (1 study).

Conclusions and Relevance  Ultraviolet germicidal irradiation, vaporized hydrogen peroxide, moist heat, and microwave-generated steam processing effectively sterilized N95 respirators and retained filtration performance. Ultraviolet irradiation and vaporized hydrogen peroxide damaged respirators the least. More research is needed on decontamination effectiveness for SARS-CoV-2 because few studies specifically examined this pathogen.

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 Credit(s)™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

CME Disclosure Statement: Unless noted, all individuals in control of content reported no relevant financial relationships. If applicable, all relevant financial relationships have been mitigated.

Article Information

Corresponding Author: Max A. Schumm, MD, Department of Surgery, UCLA David Geffen School of Medicine, 10833 Le Conte Ave, 72-227 CHS, Los Angeles, CA 90095 (mschumm@mednet.ucla.edu).

Accepted for Publication: February 11, 2021.

Published Online: March 3, 2021. doi:10.1001/jama.2021.2531

Author Contributions: Dr Schumm had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: Schumm, Hadaya, Mody, Myers.

Acquisition, analysis, or interpretation of data: Schumm, Hadaya, Maggard-Gibbons.

Drafting of the manuscript: Schumm, Hadaya.

Critical revision of the manuscript for important intellectual content: All authors.

Statistical analysis: Schumm, Hadaya.

Supervision: Maggard-Gibbons.

Conflict of Interest Disclosures: None reported.

References
1.
Bar-On  YM , Flamholz  A , Phillips  R , Milo  R .  SARS-CoV-2 (COVID-19) by the numbers.   Elife. 2020;9:e57309. doi:10.7554/eLife.57309PubMedGoogle Scholar
2.
Bourouiba  L .  Turbulent gas clouds and respiratory pathogen emissions: potential implications for reducing transmission of COVID-19.   JAMA. 2020;323(18):1837-1838. doi:10.1001/jama.2020.4756PubMedGoogle Scholar
3.
Bauchner  H , Fontanarosa  PB , Livingston  EH .  Conserving supply of personal protective equipment—a call for ideas.   JAMA. 2020;323(19):1911. doi:10.1001/jama.2020.4770PubMedGoogle ScholarCrossref
4.
Livingston  E , Desai  A , Berkwits  M .  Sourcing personal protective equipment during the COVID-19 pandemic.   JAMA. 2020;323(19):1912-1914. doi:10.1001/jama.2020.5317PubMedGoogle ScholarCrossref
5.
Centers for Disease Control and Prevention. Decontamination and reuse of filtering facepiece respirators using contingency and crisis capacity strategies. Accessed April 1, 2020. https://www.cdc.gov/coronavirus/2019-ncov/hcp/ppe-strategy/decontamination-reuse-respirators.html
6.
Lore  MB , Heimbuch  BK , Brown  TL , Wander  JD , Hinrichs  SH .  Effectiveness of three decontamination treatments against influenza virus applied to filtering facepiece respirators.   Ann Occup Hyg. 2012;56(1):92-101. doi:10.1093/annhyg/mer054PubMedGoogle Scholar
7.
Heimbuch  BK , Wallace  WH , Kinney  K ,  et al.  A pandemic influenza preparedness study: use of energetic methods to decontaminate filtering facepiece respirators contaminated with H1N1 aerosols and droplets.   Am J Infect Control. 2011;39(1):e1-e9. doi:10.1016/j.ajic.2010.07.004PubMedGoogle ScholarCrossref
8.
Bergman  M , Viscusi  DJ , Heimbuch  BK , Wander  JD , Sambol  AR , Shaffer  RE .  Evaluation of multiple (3-cycle) decontamination processing for filtering facepiece respirators.   J Eng Fiber Fabr. 2010;5(4):33-41. doi:10.1177/155892501000500405Google Scholar
9.
Moher  D , Shamseer  L , Clarke  M ,  et al; PRISMA-P Group.  Preferred Reporting Items for Systematic Review and Meta-analysis Protocols (PRISMA-P) 2015 statement.   Syst Rev. 2015;4:1. doi:10.1186/2046-4053-4-1PubMedGoogle ScholarCrossref
10.
Department of Health and Human Services. Recommendations for Sponsors Requesting EUAs for Decontamination and Bioburden Reduction Systems for Surgical Masks and Respirators During the Coronavirus Disease 2019 (COVID-19) Public Health Emergency. Published May 2020. Accessed November 2, 2020. https://www.fda.gov/media/138362/download
11.
Occupational Safety and Health Administration. Assigned Protection Factors for the Revised Respiratory Protection Standard. Published 2009. Accessed October 30, 2020. https://www.osha.gov/Publications/3352-APF-respirators.pdf
12.
Centers for Disease Control and Prevention. Respirator fact sheet. Accessed October 30, 2020. https://www.cdc.gov/niosh/npptl/topics/respirators/factsheets/respsars.html#note2
13.
Fischer  RJ , Morris  DH , van Doremalen  N ,  et al.  Effectiveness of N95 respirator decontamination and reuse against SARS-CoV-2 virus.   Emerg Infect Dis. 2020;26(9):2253-2255. doi:10.3201/eid2609.201524PubMedGoogle ScholarCrossref
14.
Ozog  DM , Sexton  JZ , Narla  S ,  et al.  The effect of ultraviolet C radiation against different N95 respirators inoculated with SARS-CoV-2.   Int J Infect Dis. 2020;100:224-229. doi:10.1016/j.ijid.2020.08.077PubMedGoogle ScholarCrossref
15.
Cadnum  JL , Li  DF , Redmond  SN , John  AR , Pearlmutter  B , Donskey  CJ .  Effectiveness of ultraviolet-C light and a high-level disinfection cabinet for decontamination of N95 respirators.   Pathog Immun. 2020;5(1):52-67. doi:10.20411/pai.v5i1.372PubMedGoogle ScholarCrossref
16.
Smith  JS , Hanseler  H , Welle  J ,  et al.  Effect of various decontamination procedures on disposable N95 mask integrity and SARS-CoV-2 infectivity.   J Clin Transl Sci. Published online June 11, 2020. doi:10.1017/cts.2020.494Google Scholar
17.
Jung  S , Hemmatian  T , Song  E ,  et al.  Disinfection treatments of disposable respirators influencing the bactericidal/bacteria removal efficiency, filtration performance, and structural integrity.   Polymers (Basel). 2020;13(1):E45. doi:10.3390/polym13010045PubMedGoogle Scholar
18.
Boyce  JM , Donskey  CJ .  Understanding ultraviolet light surface decontamination in hospital rooms: a primer.   Infect Control Hosp Epidemiol. 2019;40(9):1030-1035. doi:10.1017/ice.2019.161PubMedGoogle ScholarCrossref
19.
Fisher  EM , Noti  JD , Lindsley  WG , Blachere  FM , Shaffer  RE .  Validation and application of models to predict facemask influenza contamination in healthcare settings.   Risk Anal. 2014;34(8):1423-1434. doi:10.1111/risa.12185PubMedGoogle ScholarCrossref
20.
Mills  D , Harnish  DA , Lawrence  C , Sandoval-Powers  M , Heimbuch  BK .  Ultraviolet germicidal irradiation of influenza-contaminated N95 filtering facepiece respirators.   Am J Infect Control. 2018;46(7):e49-e55. doi:10.1016/j.ajic.2018.02.018PubMedGoogle ScholarCrossref
21.
Heimbuch  B , Harnish  D . Research to Mitigate a Shortage of Respiratory Protection Devices During Public Health Emergencies. Applied Research Associates. Published September 30, 2019. Accessed June 26, 2020. https://www.ara.com/wp-content/uploads/MitigateShortageofRespiratoryProtectionDevices_3.pdf
22.
Lindsley  WG , Martin  SB  Jr , Thewlis  RE ,  et al.  Effects of ultraviolet germicidal irradiation (UVGI) on N95 respirator filtration performance and structural integrity.   J Occup Environ Hyg. 2015;12(8):509-517. doi:10.1080/15459624.2015.1018518PubMedGoogle ScholarCrossref
23.
Viscusi  DJ , Bergman  MS , Novak  DA ,  et al.  Impact of three biological decontamination methods on filtering facepiece respirator fit, odor, comfort, and donning ease.   J Occup Environ Hyg. 2011;8(7):426-436. doi:10.1080/15459624.2011.585927PubMedGoogle ScholarCrossref
24.
Ou  Q , Pei  C , Chan Kim  S , Abell  E , Pui  DYH .  Evaluation of decontamination methods for commercial and alternative respirator and mask materials—view from filtration aspect.   J Aerosol Sci. 2020;150:105609-105609. doi:10.1016/j.jaerosci.2020.105609PubMedGoogle ScholarCrossref
25.
Purschke  M , Elsamaloty  M , Wilde  JP ,  et al.  Construction and validation of UV-C decontamination cabinets for filtering facepiece respirators.   Appl Opt. 2020;59(25):7585-7595. doi:10.1364/AO.401602PubMedGoogle ScholarCrossref
26.
Grillet  AM , Nemer  MB , Storch  S ,  et al.  COVID-19 global pandemic planning: performance and electret charge of N95 respirators after recommended decontamination methods.   Exp Biol Med (Maywood). Published online December 16, 2020. doi:10.1177/1535370220976386PubMedGoogle Scholar
27.
Kumar  A , Kasloff  SB , Leung  A ,  et al.  Decontamination of N95 masks for re-use employing 7 widely available sterilization methods.   PLoS One. 2020;15(12):e0243965. doi:10.1371/journal.pone.0243965PubMedGoogle Scholar
28.
Liao  L , Xiao  W , Zhao  M ,  et al.  Can N95 respirators be reused after disinfection? how many times?   ACS Nano. 2020;14(5):6348-6356. doi:10.1021/acsnano.0c03597PubMedGoogle ScholarCrossref
29.
Rohit  A , Rajasekaran  S , Shenoy  S , Rai  S , Iddya  K , Dorairajan  SK .  Reprocessing of N95 masks: experience from a resource-limited setting in India.   Int J Infect Dis. 2020;104:41-44. doi:10.1016/j.ijid.2020.12.070PubMedGoogle ScholarCrossref
30.
Peltier  RE , Wang  J , Hollenbeck  BL ,  et al.  Addressing decontaminated respirators: some methods appear to damage mask integrity and protective function.   Infect Control Hosp Epidemiol. 2020;41(12):1446-1448. doi:10.1017/ice.2020.332PubMedGoogle ScholarCrossref
31.
Purschke  M , Elsamaloty  M , Wilde  JP ,  et al.  Construction and validation of UV-C decontamination cabinets for filtering facepiece respirators.   Appl Opt. 2020;59(25):7585-7595. doi:10.1364/AO.401602PubMedGoogle ScholarCrossref
32.
Gilbert  RM , Donzanti  MJ , Minahan  DJ ,  et al.  Mask reuse in the COVID-19 pandemic: creating an inexpensive and scalable ultraviolet system for filtering facepiece respirator decontamination.   Glob Health Sci Pract. 2020;8(3):582-595. doi:10.9745/GHSP-D-20-00218PubMedGoogle ScholarCrossref
33.
Kayani  BJ , Weaver  DT , Gopalakrishnan  V ,  et al.  UV-C tower for point-of-care decontamination of filtering facepiece respirators.   Am J Infect Control. Published online November 10, 2020. doi:10.1016/j.ajic.2020.11.010PubMedGoogle Scholar
34.
UV-C replacement bulbs. CureUV.com website. Accessed November 3, 2020. https://www.cureuv.com/pages/uv-c-bulbs-for-air-water-and-surface-sterilization
35.
Biosafety cabinets. Cole-Parmer website. Accessed November 3, 2020. https://www.coleparmer.com/c/biosafety-cabinets
36.
Biosafety cabinets. Fisher Scientific website. Accessed November 3, 2020. https://www.fishersci.com/us/en/browse/90200068/biosafety-cabinets
37.
ClorDiSys website. Accessed November 6, 2020. https://cleanhospital.com
38.
Goyal  SM , Chander  Y , Yezli  S , Otter  JA .  Evaluating the virucidal efficacy of hydrogen peroxide vapour.   J Hosp Infect. 2014;86(4):255-259. doi:10.1016/j.jhin.2014.02.003PubMedGoogle ScholarCrossref
39.
Jatta  M , Kiefer  C , Patolia  H ,  et al.  N95 reprocessing by low temperature sterilization with 59% vaporized hydrogen peroxide during the 2020 COVID-19 pandemic.   Am J Infect Control. 2020;49(1):8-14. doi:10.1016/j.ajic.2020.06.194PubMedGoogle ScholarCrossref
40.
Lieu  A , Mah  J , Zanichelli  V , Exantus  RC , Longtin  Y .  Impact of extended use and decontamination with vaporized hydrogen peroxide on N95 respirator fit.   Am J Infect Control. 2020;48(12):1457-1461. doi:10.1016/j.ajic.2020.08.010PubMedGoogle ScholarCrossref
41.
US Food and Drug Administration; Batelle. Final Report for the Bioquell Hydrogen Peroxide Vapor (HPV) Decontamination for Reuse of N95 Respirators. Published July 2016. Accessed April 15, 2020. https://www.fda.gov/media/136386/download
42.
Richardson  AW , Hofacre  KC , Keyes  PH , Thurston  RM , Clay  JD .  Strap performance of N95 filtering facepiece respirators after multiple decontamination cycles.   MRS Adv. 2020;5(56):2881-2888. doi:10.1557/adv.2020.378PubMedGoogle ScholarCrossref
43.
Saini  V , Sikri  K , Batra  SD , Kalra  P , Gautam  K .  Development of a highly effective low-cost vaporized hydrogen peroxide-based method for disinfection of personal protective equipment for their selective reuse during pandemics.   Gut Pathog. 2020;12:29. doi:10.1186/s13099-020-00367-4PubMedGoogle ScholarCrossref
44.
Levine  C , Grady  C , Block  T ,  et al.  Use, re-use or discard? quantitatively defined variance in the functional integrity of N95 respirators following vaporized hydrogen peroxide decontamination during the COVID-19 pandemic.   J Hosp Infect. 2021;107:50-56. doi:10.1016/j.jhin.2020.10.007PubMedGoogle ScholarCrossref
45.
Perkins  DJ , Villescas  S , Wu  TH ,  et al.  COVID-19 global pandemic planning: decontamination and reuse processes for N95 respirators.   Exp Biol Med (Maywood). 2020;245(11):933-939. doi:10.1177/1535370220925768PubMedGoogle ScholarCrossref
46.
Russo  R , Levine  C , Grady  C ,  et al.  Decontaminating N95 respirators during the COVID-19 pandemic: simple and practical approaches to increase decontamination capacity, speed, safety and ease of use.   J Hosp Infect. 2020;109:52-57. doi:10.1016/j.jhin.2020.12.006PubMedGoogle ScholarCrossref
47.
Salter  WB , Kinney  K , Wallace  WH , Lumley  AE , Heimbuch  BK , Wander  JD .  Analysis of residual chemicals on filtering facepiece respirators after decontamination.   J Occup Environ Hyg. 2010;7(8):437-445. doi:10.1080/15459624.2010.484794PubMedGoogle ScholarCrossref
48.
McCreanor  V , Graves  N .  An economic analysis of the benefits of sterilizing medical instruments in low-temperature systems instead of steam.   Am J Infect Control. 2017;45(7):756-760. doi:10.1016/j.ajic.2017.02.026PubMedGoogle ScholarCrossref
49.
Bioquell website. Accessed November 6, 2020. https://www.bioquell.com
50.
Daeschler  SC , Manson  N , Joachim  K ,  et al.  Effect of moist heat reprocessing of N95 respirators on SARS-CoV-2 inactivation and respirator function.   CMAJ. 2020;192(41):E1189-E1197. doi:10.1503/cmaj.201203PubMedGoogle ScholarCrossref
51.
Bergman  M , Viscusi  D , Palmiero  AJ , Powell  J , Shaffer  RE .  Impact of three cycles of decontamination treatments on filtering facepiece respirator fit.   J Int Soc Respir Prot. 2011;28(1):48-59.Google Scholar
52.
Caron environmental test chambers—model 6010, model 6010-1. Berktree website. Accessed November 1, 2020. https://www.berktree.com/caron-environmental-test-chambers-models-6010-and-6030-model-6010-model-6010-1-each.html
53.
Caron 6010 environmental chamber. Hamilton Instrument website. Accessed November 1, 2020. http://www.hamiltoninstrument.com/index.php?route=product/product&product_id=156
54.
Viscusi  DJ , King  WP , Shaffer  RE .  Effect of decontamination on the filtration efficiency of two filtering facepiece respirator models.   J Int Soc Respir Prot. 2007;24:93-107.Google Scholar
55.
Viscusi  DJ , Bergman  MS , Eimer  BC , Shaffer  RE .  Evaluation of five decontamination methods for filtering facepiece respirators.   Ann Occup Hyg. 2009;53(8):815-827. doi:10.1093/annhyg/mep070PubMedGoogle Scholar
56.
Fisher  E , Rengasamy  S , Viscusi  D , Vo  E , Shaffer  R .  Development of a test system to apply virus-containing particles to filtering facepiece respirators for the evaluation of decontamination procedures.   Appl Environ Microbiol. 2009;75(6):1500-1507. doi:10.1128/AEM.01653-08PubMedGoogle ScholarCrossref
57.
Zulauf  KE , Green  AB , Nguyen Ba  AN ,  et al.  Microwave-generated steam decontamination of N95 respirators utilizing universally accessible materials.   mBio. 2020;11(3):e00997-20. doi:10.1128/mBio.00997-20PubMedGoogle Scholar
58.
Pascoe  MJ , Robertson  A , Crayford  A ,  et al.  Dry heat and microwave-generated steam protocols for the rapid decontamination of respiratory personal protective equipment in response to COVID-19-related shortages.   J Hosp Infect. 2020;106(1):10-19. doi:10.1016/j.jhin.2020.07.008PubMedGoogle ScholarCrossref
59.
Fisher  EW , Shaffer  J .  The effect of soil accumulation on multiple decontamination processing of N95 filtering facepiece respirator coupons using physical methods.   J Int Soc Respir Prot. 2010;27(1):16-26.Google Scholar
60.
Best sellers in commercial microwaves. Amazon.com website. Accessed November 6, 2020. https://www.amazon.com/Best-Sellers-Industrial-Scientific-Commercial-Microwaves/zgbs/industrial/5315084011
61.
Microwave Research & Applications Inc BP110 laboratory grade microwave. Fisher Scientific website. Accessed November 6, 2020. https://www.fishersci.com/shop/products/bp110-lab-microwave/nc9528110
62.
Mendes  GC , Brandão  TR , Silva  CL .  Ethylene oxide sterilization of medical devices: a review.   Am J Infect Control. 2007;35(9):574-581. doi:10.1016/j.ajic.2006.10.014PubMedGoogle ScholarCrossref
63.
Sickbert-Bennett  EE , Samet  JM , Clapp  PW ,  et al.  Filtration efficiency of hospital face mask alternatives available for use during the COVID-19 pandemic.   JAMA Intern Med. Published online August 11, 2020. doi:10.1001/jamainternmed.2020.4221PubMedGoogle Scholar
64.
Seattle Technology Surgical Division website. Accessed November 1, 2020. https://www.stsurg.com
65.
Jinot  J , Fritz  JM , Vulimiri  SV , Keshava  N .  Carcinogenicity of ethylene oxide: key findings and scientific issues.   Toxicol Mech Methods. 2018;28(5):386-396. doi:10.1080/15376516.2017.1414343PubMedGoogle ScholarCrossref
66.
Weinheimer  CM , Ellsworth  M , Ferguson  L ,  et al.  Reprocessing N95s with hydrogen peroxide vaporization: a robust system from collection to dispensing.   Am J Infect Control. Published online October 20, 2020. doi:10.1016/j.ajic.2020.10.011PubMedGoogle Scholar
67.
Reponen  T , Lee  SA , Grinshpun  SA , Johnson  E , McKay  R .  Effect of fit testing on the protection offered by N95 filtering facepiece respirators against fine particles in a laboratory setting.   Ann Occup Hyg. 2011;55(3):264-271. doi:10.1093/annhyg/meq085PubMedGoogle ScholarCrossref
68.
Ozog  D , Parks-Miller  A , Kohli  I ,  et al.  The importance of fit testing in decontamination of N95 respirators: a cautionary note.   J Am Acad Dermatol. 2020;83(2):672-674. doi:10.1016/j.jaad.2020.05.008PubMedGoogle ScholarCrossref
69.
Baluja  A , Arines  J , Vilanova  R , Cortiñas  J , Bao-Varela  C , Flores-Arias  MT .  UV light dosage distribution over irregular respirator surfaces: methods and implications for safety.   J Occup Environ Hyg. 2020;17(9):390-397. doi:10.1080/15459624.2020.1786576PubMedGoogle ScholarCrossref
70.
Battelle Critical Care Decontamination System FDA Emergency Use Authorization. Published January 21, 2021. Accessed February 6, 2021. https://www.fda.gov/media/136529/download
71.
Vo  E , Rengasamy  S , Shaffer  R .  Development of a test system to evaluate procedures for decontamination of respirators containing viral droplets.   Appl Environ Microbiol. 2009;75(23):7303-7309. doi:10.1128/AEM.00799-09PubMedGoogle ScholarCrossref
72.
Fisher  EM , Shaffer  RE .  A method to determine the available UV-C dose for the decontamination of filtering facepiece respirators.   J Appl Microbiol. 2011;110(1):287-295. doi:10.1111/j.1365-2672.2010.04881.xPubMedGoogle ScholarCrossref
73.
Woo  MH , Grippin  A , Anwar  D , Smith  T , Wu  CY , Wander  JD .  Effects of relative humidity and spraying medium on UV decontamination of filters loaded with viral aerosols.   Appl Environ Microbiol. 2012;78(16):5781-5787. doi:10.1128/AEM.00465-12PubMedGoogle ScholarCrossref
74.
Lin  TH , Tang  FC , Hung  PC , Hua  ZC , Lai  CY .  Relative survival of Bacillus subtilis spores loaded on filtering facepiece respirators after five decontamination methods.   Indoor Air. 2018;28(5):754-762. doi:10.1111/ina.12475PubMedGoogle ScholarCrossref
75.
Fisher  EM , Williams  JL , Shaffer  RE .  Evaluation of microwave steam bags for the decontamination of filtering facepiece respirators.   PLoS One. 2011;6(4):e18585. doi:10.1371/journal.pone.0018585PubMedGoogle Scholar
AMA CME Accreditation Information

Credit Designation Statement: The American Medical Association designates this Journal-based CME activity activity for a maximum of 1.00  AMA PRA Category 1 Credit(s)™. Physicians should claim only the credit commensurate with the extent of their participation in the activity.

Successful completion of this CME activity, which includes participation in the evaluation component, enables the participant to earn up to:

  • 1.00 Medical Knowledge MOC points in the American Board of Internal Medicine's (ABIM) Maintenance of Certification (MOC) program;;
  • 1.00 Self-Assessment points in the American Board of Otolaryngology – Head and Neck Surgery’s (ABOHNS) Continuing Certification program;
  • 1.00 MOC points in the American Board of Pediatrics’ (ABP) Maintenance of Certification (MOC) program;
  • 1.00 Lifelong Learning points in the American Board of Pathology’s (ABPath) Continuing Certification program; and
  • 1.00 CME points in the American Board of Surgery’s (ABS) Continuing Certification program

It is the CME activity provider's responsibility to submit participant completion information to ACCME for the purpose of granting MOC credit.

Close
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
Close
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close

Name Your Search

Save Search
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Close
Close

Lookup An Activity

or

My Saved Searches

You currently have no searches saved.

Close

My Saved Courses

You currently have no courses saved.

Close