Diagnosis and Management of Transient Ischemic Attack and Acute Ischemic Stroke | Cerebrovascular Disease | JN Learning | AMA Ed Hub [Skip to Content]
[Skip to Content Landing]

Diagnosis and Management of Transient Ischemic Attack and Acute Ischemic StrokeA Review

Educational Objective
To review the clinical management of transient ischemic attack and acute ischemic stroke.
1 Credit CME
Abstract

Importance  Stroke is the fifth leading cause of death and a leading cause of disability in the United States, affecting nearly 800 000 individuals annually.

Observations  Sudden neurologic dysfunction caused by focal brain ischemia with imaging evidence of acute infarction defines acute ischemic stroke (AIS), while an ischemic episode with neurologic deficits but without acute infarction defines transient ischemic attack (TIA). An estimated 7.5% to 17.4% of patients with TIA will have a stroke in the next 3 months. Patients presenting with nondisabling AIS or high-risk TIA (defined as a score ≥4 on the age, blood pressure, clinical symptoms, duration, diabetes [ABCD2] instrument; range, 0-7 [7 indicating worst stroke risk]), who do not have severe carotid stenosis or atrial fibrillation, should receive dual antiplatelet therapy with aspirin and clopidigrel within 24 hours of presentation. Subsequently, combined aspirin and clopidigrel for 3 weeks followed by single antiplatelet therapy reduces stroke risk from 7.8% to 5.2% (hazard ratio, 0.66 [95% CI, 0.56-0.77]). Patients with symptomatic carotid stenosis should receive carotid revascularization and single antiplatelet therapy, and those with atrial fibrillation should receive anticoagulation. In patients presenting with AIS and disabling deficits interfering with activities of daily living, intravenous alteplase improves the likelihood of minimal or no disability by 39% with intravenous recombinant tissue plasminogen activator (IV rtPA) vs 26% with placebo (odds ratio [OR], 1.6 [95% CI, 1.1-2.6]) when administered within 3 hours of presentation and by 35.3% with IV rtPA vs 30.1% with placebo (OR, 1.3 [95% CI, 1.1-1.5]) when administered within 3 to 4.5 hours of presentation. Patients with disabling AIS due to anterior circulation large-vessel occlusions are more likely to be functionally independent when treated with mechanical thrombectomy within 6 hours of presentation vs medical therapy alone (46.0% vs 26.5%; OR, 2.49 [95% CI, 1.76-3.53]) or when treated within 6 to 24 hours after symptom onset if they have a large ratio of ischemic to infarcted tissue on brain magnetic resonance diffusion or computed tomography perfusion imaging (modified Rankin Scale score 0-2: 53% vs 18%; OR, 4.92 [95% CI, 2.87-8.44]).

Conclusions and Relevance  Dual antiplatelet therapy initiated within 24 hours of symptom onset and continued for 3 weeks reduces stroke risk in select patients with high-risk TIA and minor stroke. For select patients with disabling AIS, thrombolysis within 4.5 hours and mechanical thrombectomy within 24 hours after symptom onset improves functional outcomes.

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 CME Credit™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

Article Information

Corresponding Author: Shyam Prabhakaran, MD, MS, Pritzker School of Medicine, University of Chicago, 5841 S Maryland Ave, MC 2030, A-223, Chicago, IL 60637 (shyam1@neurology.bsd.uchicago.edu).

Accepted for Publication: December 28, 2020.

Author Contributions: Dr Prabhakaran had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: Both authors.

Acquisition, analysis, or interpretation of data: Both authors.

Drafting of the manuscript: Both authors.

Critical revision of the manuscript for important intellectual content: Both authors.

Administrative, technical, or material support: Mendelson.

Supervision: Prabhakaran.

Conflict of Interest Disclosures: Dr Mendelson reports no disclosures. Dr Prabhakaran reports receipt of grants from the National Institutes of Health/National Institute of Neurological Disorders and Stroke and the Agency for Healthcare Research and Quality; consulting fees from Abbvie; and royalties from UpToDate.

References
1.
Benjamin  EJ , Muntner  P , Alonso  A ,  et al; American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee.  Heart disease and stroke statistics-2019 update: a report from the American Heart Association.   Circulation. 2019;139(10):e56-e528. doi:10.1161/CIR.0000000000000659PubMedGoogle ScholarCrossref
2.
Heron  M .  Deaths: leading causes for 2017.   Natl Vital Stat Rep. 2019;68(6):1-77.PubMedGoogle Scholar
3.
Johnston  SC , Rothwell  PM , Nguyen-Huynh  MN ,  et al.  Validation and refinement of scores to predict very early stroke risk after transient ischaemic attack.   Lancet. 2007;369(9558):283-292. doi:10.1016/S0140-6736(07)60150-0PubMedGoogle ScholarCrossref
4.
Coull  AJ , Lovett  JK , Rothwell  PM , Oxford Vascular Study.  Population based study of early risk of stroke after transient ischaemic attack or minor stroke: implications for public education and organisation of services.   BMJ. 2004;328(7435):326. doi:10.1136/bmj.37991.635266.44PubMedGoogle ScholarCrossref
5.
Brown  RD  Jr , Petty  GW , O’Fallon  WM , Wiebers  DO , Whisnant  JP .  Incidence of transient ischemic attack in Rochester, Minnesota, 1985-1989.   Stroke. 1998;29(10):2109-2113. doi:10.1161/01.STR.29.10.2109PubMedGoogle ScholarCrossref
6.
Degan  D , Ornello  R , Tiseo  C ,  et al.  Epidemiology of transient ischemic attacks using time- or tissue-based definitions: a population-based study.   Stroke. 2017;48(3):530-536. doi:10.1161/STROKEAHA.116.015417PubMedGoogle ScholarCrossref
7.
Kleindorfer  D , Panagos  P , Pancioli  A ,  et al.  Incidence and short-term prognosis of transient ischemic attack in a population-based study.   Stroke. 2005;36(4):720-723. doi:10.1161/01.STR.0000158917.59233.b7PubMedGoogle ScholarCrossref
8.
Easton  JD , Saver  JL , Albers  GW ,  et al; American Heart Association; American Stroke Association Stroke Council; Council on Cardiovascular Surgery and Anesthesia; Council on Cardiovascular Radiology and Intervention; Council on Cardiovascular Nursing; Interdisciplinary Council on Peripheral Vascular Disease.  Definition and evaluation of transient ischemic attack: a scientific statement for healthcare professionals from the American Heart Association/American Stroke Association Stroke Council; Council on Cardiovascular Surgery and Anesthesia; Council on Cardiovascular Radiology and Intervention; Council on Cardiovascular Nursing; and the Interdisciplinary Council on Peripheral Vascular Disease: the American Academy of Neurology affirms the value of this statement as an educational tool for neurologists.   Stroke. 2009;40(6):2276-2293. doi:10.1161/STROKEAHA.108.192218PubMedGoogle ScholarCrossref
9.
Sacco  RL , Kasner  SE , Broderick  JP ,  et al; American Heart Association Stroke Council, Council on Cardiovascular Surgery and Anesthesia; Council on Cardiovascular Radiology and Intervention; Council on Cardiovascular and Stroke Nursing; Council on Epidemiology and Prevention; Council on Peripheral Vascular Disease; Council on Nutrition, Physical Activity and Metabolism.  An updated definition of stroke for the 21st century: a statement for healthcare professionals from the American Heart Association/American Stroke Association.   Stroke. 2013;44(7):2064-2089. doi:10.1161/STR.0b013e318296aecaPubMedGoogle ScholarCrossref
10.
Timpone  VM , Jensen  A , Poisson  SN , Trivedi  PS .  Compliance with imaging guidelines for workup of transient ischemic attack: evidence from the nationwide emergency department sample.   Stroke. 2020;51(8):2563-2567. doi:10.1161/STROKEAHA.120.029858PubMedGoogle ScholarCrossref
11.
Douglas  VC , Johnston  CM , Elkins  J , Sidney  S , Gress  DR , Johnston  SC .  Head computed tomography findings predict short-term stroke risk after transient ischemic attack.   Stroke. 2003;34(12):2894-2898. doi:10.1161/01.STR.0000102900.74360.D9PubMedGoogle ScholarCrossref
12.
Förster  A , Gass  A , Kern  R ,  et al.  Brain imaging in patients with transient ischemic attack: a comparison of computed tomography and magnetic resonance imaging.   Eur Neurol. 2012;67(3):136-141. doi:10.1159/000333286PubMedGoogle ScholarCrossref
13.
Lövblad  KO , Laubach  HJ , Baird  AE ,  et al.  Clinical experience with diffusion-weighted MR in patients with acute stroke.   AJNR Am J Neuroradiol. 1998;19(6):1061-1066.PubMedGoogle Scholar
14.
Brazzelli  M , Chappell  FM , Miranda  H ,  et al.  Diffusion-weighted imaging and diagnosis of transient ischemic attack.   Ann Neurol. 2014;75(1):67-76. doi:10.1002/ana.24026PubMedGoogle ScholarCrossref
15.
Castle  J , Mlynash  M , Lee  K ,  et al.  Agreement regarding diagnosis of transient ischemic attack fairly low among stroke-trained neurologists.   Stroke. 2010;41(7):1367-1370. doi:10.1161/STROKEAHA.109.577650PubMedGoogle ScholarCrossref
16.
Koudstaal  PJ , van Gijn  J , Staal  A , Duivenvoorden  HJ , Gerritsma  JG , Kraaijeveld  CL .  Diagnosis of transient ischemic attacks: improvement of interobserver agreement by a check-list in ordinary language.   Stroke. 1986;17(4):723-728. doi:10.1161/01.STR.17.4.723PubMedGoogle ScholarCrossref
17.
Calanchini  PR , Swanson  PD , Gotshall  RA ,  et al.  Cooperative study of hospital frequency and character of transient ischemic attacks IV: the reliability of diagnosis.   JAMA. 1977;238(19):2029-2033. doi:10.1001/jama.1977.03280200041015PubMedGoogle ScholarCrossref
18.
Ferro  JM , Falcão  I , Rodrigues  G ,  et al.  Diagnosis of transient ischemic attack by the nonneurologist: a validation study.   Stroke. 1996;27(12):2225-2229. doi:10.1161/01.STR.27.12.2225PubMedGoogle ScholarCrossref
19.
Johnston  SC , Sidney  S , Bernstein  AL , Gress  DR .  A comparison of risk factors for recurrent TIA and stroke in patients diagnosed with TIA.   Neurology. 2003;60(2):280-285. doi:10.1212/01.WNL.0000042780.64786.EFPubMedGoogle ScholarCrossref
20.
Prabhakaran  S , Silver  AJ , Warrior  L , McClenathan  B , Lee  VH .  Misdiagnosis of transient ischemic attacks in the emergency room.   Cerebrovasc Dis. 2008;26(6):630-635. doi:10.1159/000166839PubMedGoogle ScholarCrossref
21.
Amarenco  P , Labreuche  J , Lavallée  PC .  Patients with transient ischemic attack with ABCD2 <4 can have similar 90-day stroke risk as patients with transient ischemic attack with ABCD2 ≥4.   Stroke. 2012;43(3):863-865. doi:10.1161/STROKEAHA.111.636506PubMedGoogle ScholarCrossref
22.
Ildstad  F , Ellekjær  H , Wethal  T ,  et al.  Stroke risk after transient ischemic attack in a Norwegian prospective cohort.   BMC Neurol. 2019;19(1):2. doi:10.1186/s12883-018-1225-yPubMedGoogle ScholarCrossref
23.
Wardlaw  JM , Brazzelli  M , Chappell  FM ,  et al.  ABCD2 score and secondary stroke prevention: meta-analysis and effect per 1000 patients triaged.   Neurology. 2015;85(4):373-380. doi:10.1212/WNL.0000000000001780PubMedGoogle ScholarCrossref
24.
Giles  MF , Albers  GW , Amarenco  P ,  et al  Addition of brain infarction to the ABCD2 Score (ABCD2I): a collaborative analysis of unpublished data on 4574 patients.   Stroke. 2010;41(9):1907-1913. doi:10.1161/STROKEAHA.110.578971PubMedGoogle ScholarCrossref
25.
Ay  H , Arsava  EM , Johnston  SC ,  et al.  Clinical- and imaging-based prediction of stroke risk after transient ischemic attack: the CIP model.   Stroke. 2009;40(1):181-186. doi:10.1161/STROKEAHA.108.521476PubMedGoogle ScholarCrossref
26.
Calvet  D , Touzé  E , Oppenheim  C , Turc  G , Meder  JF , Mas  JL .  DWI lesions and TIA etiology improve the prediction of stroke after TIA.   Stroke. 2009;40(1):187-192. doi:10.1161/STROKEAHA.108.515817PubMedGoogle ScholarCrossref
27.
Engelter  ST , Amort  M , Jax  F ,  et al.  Optimizing the risk estimation after a transient ischaemic attack—the ABCDE⊕ score.   Eur J Neurol. 2012;19(1):55-61. doi:10.1111/j.1468-1331.2011.03428.xPubMedGoogle ScholarCrossref
28.
Rothwell  PM , Algra  A , Chen  Z , Diener  HC , Norrving  B , Mehta  Z .  Effects of aspirin on risk and severity of early recurrent stroke after transient ischaemic attack and ischaemic stroke: time-course analysis of randomised trials.   Lancet. 2016;388(10042):365-375. doi:10.1016/S0140-6736(16)30468-8PubMedGoogle ScholarCrossref
29.
Rothwell  PM , Giles  MF , Chandratheva  A ,  et al; Early use of Existing Preventive Strategies for Stroke (EXPRESS) study.  Effect of urgent treatment of transient ischaemic attack and minor stroke on early recurrent stroke (EXPRESS study): a prospective population-based sequential comparison.   Lancet. 2007;370(9596):1432-1442. doi:10.1016/S0140-6736(07)61448-2PubMedGoogle ScholarCrossref
30.
Lavallée  PC , Meseguer  E , Abboud  H ,  et al.  A transient ischaemic attack clinic with round-the-clock access (SOS-TIA): feasibility and effects.   Lancet Neurol. 2007;6(11):953-960. doi:10.1016/S1474-4422(07)70248-XPubMedGoogle ScholarCrossref
31.
Kennedy  J , Hill  MD , Ryckborst  KJ , Eliasziw  M , Demchuk  AM , Buchan  AM ; FASTER Investigators.  Fast assessment of stroke and transient ischaemic attack to prevent early recurrence (FASTER): a randomised controlled pilot trial.   Lancet Neurol. 2007;6(11):961-969. doi:10.1016/S1474-4422(07)70250-8PubMedGoogle ScholarCrossref
32.
Wang  Y , Wang  Y , Zhao  X ,  et al; CHANCE Investigators.  Clopidogrel with aspirin in acute minor stroke or transient ischemic attack.   N Engl J Med. 2013;369(1):11-19. doi:10.1056/NEJMoa1215340PubMedGoogle ScholarCrossref
33.
Johnston  SC , Amarenco  P , Albers  GW ,  et al; SOCRATES Steering Committee and Investigators.  Ticagrelor versus aspirin in acute stroke or transient ischemic attack.   N Engl J Med. 2016;375(1):35-43. doi:10.1056/NEJMoa1603060PubMedGoogle ScholarCrossref
34.
Johnston  SC , Easton  JD , Farrant  M ,  et al; Clinical Research Collaboration, Neurological Emergencies Treatment Trials Network, and the POINT Investigators.  Clopidogrel and aspirin in acute ischemic stroke and high-risk TIA.   N Engl J Med. 2018;379(3):215-225. doi:10.1056/NEJMoa1800410PubMedGoogle ScholarCrossref
35.
Johnston  SC , Amarenco  P , Denison  H ,  et al; THALES Investigators.  Ticagrelor and aspirin or aspirin alone in acute ischemic stroke or TIA.   N Engl J Med. 2020;383(3):207-217. doi:10.1056/NEJMoa1916870PubMedGoogle ScholarCrossref
36.
Pan  Y , Elm  JJ , Li  H ,  et al.  Outcomes associated with clopidogrel-aspirin use in minor stroke or transient ischemic attack: a pooled analysis of clopidogrel in high-risk patients with acute non-disabling cerebrovascular events (CHANCE) and platelet-oriented inhibition in new tia and minor ischemic stroke (POINT) trials.   JAMA Neurol. 2019;76(12):1466-1473. doi:10.1001/jamaneurol.2019.2531PubMedGoogle ScholarCrossref
37.
Bath  PM , Woodhouse  LJ , Appleton  JP ,  et al; TARDIS Investigators.  Antiplatelet therapy with aspirin, clopidogrel, and dipyridamole versus clopidogrel alone or aspirin and dipyridamole in patients with acute cerebral ischaemia (TARDIS): a randomised, open-label, phase 3 superiority trial.   Lancet. 2018;391(10123):850-859. doi:10.1016/S0140-6736(17)32849-0PubMedGoogle ScholarCrossref
38.
Chalela  JA , Kidwell  CS , Nentwich  LM ,  et al.  Magnetic resonance imaging and computed tomography in emergency assessment of patients with suspected acute stroke: a prospective comparison.   Lancet. 2007;369(9558):293-298. doi:10.1016/S0140-6736(07)60151-2PubMedGoogle ScholarCrossref
39.
von Kummer  R , Allen  KL , Holle  R ,  et al.  Acute stroke: usefulness of early CT findings before thrombolytic therapy.   Radiology. 1997;205(2):327-333. doi:10.1148/radiology.205.2.9356611PubMedGoogle ScholarCrossref
40.
National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group.  Tissue plasminogen activator for acute ischemic stroke.   N Engl J Med. 1995;333(24):1581-1587. doi:10.1056/NEJM199512143332401PubMedGoogle ScholarCrossref
41.
Hacke  W , Donnan  G , Fieschi  C ,  et al; ATLANTIS Trials Investigators; ECASS Trials Investigators; NINDS rt-PA Study Group Investigators.  Association of outcome with early stroke treatment: pooled analysis of ATLANTIS, ECASS, and NINDS rt-PA stroke trials.   Lancet. 2004;363(9411):768-774. doi:10.1016/S0140-6736(04)15692-4PubMedGoogle ScholarCrossref
42.
Levine  SR , Khatri  P , Broderick  JP ,  et al; Re-examining Acute Eligibility for Thrombolysis (TREAT) Task Force; NINDS rt-PA Stroke Trial Investigators.  Review, historical context, and clarifications of the NINDS rt-PA stroke trials exclusion criteria: part 1: rapidly improving stroke symptoms.   Stroke. 2013;44(9):2500-2505. doi:10.1161/STROKEAHA.113.000878PubMedGoogle ScholarCrossref
43.
Kelly  AG , Hellkamp  AS , Olson  D , Smith  EE , Schwamm  LH .  Predictors of rapid brain imaging in acute stroke: analysis of the Get With the Guidelines-Stroke program.   Stroke. 2012;43(5):1279-1284. doi:10.1161/STROKEAHA.111.626374PubMedGoogle ScholarCrossref
44.
Hopyan  J , Ciarallo  A , Dowlatshahi  D ,  et al.  Certainty of stroke diagnosis: incremental benefit with CT perfusion over noncontrast CT and CT angiography.   Radiology. 2010;255(1):142-153. doi:10.1148/radiol.09091021PubMedGoogle ScholarCrossref
45.
Campbell  BC , Weir  L , Desmond  PM ,  et al.  CT perfusion improves diagnostic accuracy and confidence in acute ischaemic stroke.   J Neurol Neurosurg Psychiatry. 2013;84(6):613-618. doi:10.1136/jnnp-2012-303752PubMedGoogle ScholarCrossref
46.
Wintermark  M , Rowley  HA , Lev  MH .  Acute stroke triage to intravenous thrombolysis and other therapies with advanced CT or MR imaging: pro CT.   Radiology. 2009;251(3):619-626. doi:10.1148/radiol.2513081073PubMedGoogle ScholarCrossref
47.
Smith  AG , Rowland Hill  C .  Imaging assessment of acute ischaemic stroke: a review of radiological methods.   Br J Radiol. 2018;91(1083):20170573.PubMedGoogle Scholar
48.
Berkhemer  OA , Fransen  PS , Beumer  D ,  et al; MR CLEAN Investigators.  A randomized trial of intraarterial treatment for acute ischemic stroke.   N Engl J Med. 2015;372(1):11-20. doi:10.1056/NEJMoa1411587PubMedGoogle ScholarCrossref
49.
Campbell  BC , Mitchell  PJ , Kleinig  TJ ,  et al; EXTEND-IA Investigators.  Endovascular therapy for ischemic stroke with perfusion-imaging selection.   N Engl J Med. 2015;372(11):1009-1018. doi:10.1056/NEJMoa1414792PubMedGoogle ScholarCrossref
50.
Goyal  M , Demchuk  AM , Menon  BK ,  et al; ESCAPE Trial Investigators.  Randomized assessment of rapid endovascular treatment of ischemic stroke.   N Engl J Med. 2015;372(11):1019-1030. doi:10.1056/NEJMoa1414905PubMedGoogle ScholarCrossref
51.
Jovin  TG , Chamorro  A , Cobo  E ,  et al; REVASCAT Trial Investigators.  Thrombectomy within 8 hours after symptom onset in ischemic stroke.   N Engl J Med. 2015;372(24):2296-2306. doi:10.1056/NEJMoa1503780PubMedGoogle ScholarCrossref
52.
Saver  JL , Goyal  M , Bonafe  A ,  et al; SWIFT PRIME Investigators.  Stent-retriever thrombectomy after intravenous t-PA vs t-PA alone in stroke.   N Engl J Med. 2015;372(24):2285-2295. doi:10.1056/NEJMoa1415061PubMedGoogle ScholarCrossref
53.
Latchaw  RE , Alberts  MJ , Lev  MH ,  et al; American Heart Association Council on Cardiovascular Radiology and Intervention, Stroke Council, and the Interdisciplinary Council on Peripheral Vascular Disease.  Recommendations for imaging of acute ischemic stroke: a scientific statement from the American Heart Association.   Stroke. 2009;40(11):3646-3678. doi:10.1161/STROKEAHA.108.192616PubMedGoogle ScholarCrossref
54.
Campbell  BC , Purushotham  A , Christensen  S ,  et al; EPITHET–DEFUSE Investigators.  The infarct core is well represented by the acute diffusion lesion: sustained reversal is infrequent.   J Cereb Blood Flow Metab. 2012;32(1):50-56. doi:10.1038/jcbfm.2011.102PubMedGoogle ScholarCrossref
55.
Mokin  M , Levy  EI , Saver  JL ,  et al; SWIFT PRIME Investigators.  Predictive value of rapid assessed perfusion thresholds on final infarct volume in SWIFT PRIME (solitaire with the intention for thrombectomy as primary endovascular treatment).   Stroke. 2017;48(4):932-938. doi:10.1161/STROKEAHA.116.015472PubMedGoogle ScholarCrossref
56.
Straka  M , Albers  GW , Bammer  R .  Real-time diffusion-perfusion mismatch analysis in acute stroke.   J Magn Reson Imaging. 2010;32(5):1024-1037. doi:10.1002/jmri.22338PubMedGoogle ScholarCrossref
57.
Saver  JL .  Number needed to treat estimates incorporating effects over the entire range of clinical outcomes: novel derivation method and application to thrombolytic therapy for acute stroke.   Arch Neurol. 2004;61(7):1066-1070. doi:10.1001/archneur.61.7.1066PubMedGoogle ScholarCrossref
58.
Lansberg  MG , Schrooten  M , Bluhmki  E , Thijs  VN , Saver  JL .  Treatment time-specific number needed to treat estimates for tissue plasminogen activator therapy in acute stroke based on shifts over the entire range of the modified Rankin Scale.   Stroke. 2009;40(6):2079-2084. doi:10.1161/STROKEAHA.108.540708PubMedGoogle ScholarCrossref
59.
Saver  JL .  Hemorrhage after thrombolytic therapy for stroke: the clinically relevant number needed to harm.   Stroke. 2007;38(8):2279-2283. doi:10.1161/STROKEAHA.107.487009PubMedGoogle ScholarCrossref
60.
Rao  NM , Levine  SR , Gornbein  JA , Saver  JL .  Defining clinically relevant cerebral hemorrhage after thrombolytic therapy for stroke: analysis of the National Institute of Neurological Disorders and Stroke tissue-type plasminogen activator trials.   Stroke. 2014;45(9):2728-2733. doi:10.1161/STROKEAHA.114.005135PubMedGoogle ScholarCrossref
61.
Emberson  J , Lees  KR , Lyden  P ,  et al; Stroke Thrombolysis Trialists’ Collaborative Group.  Effect of treatment delay, age, and stroke severity on the effects of intravenous thrombolysis with alteplase for acute ischaemic stroke: a meta-analysis of individual patient data from randomised trials.   Lancet. 2014;384(9958):1929-1935. doi:10.1016/S0140-6736(14)60584-5PubMedGoogle ScholarCrossref
62.
Demaerschalk  BM , Kleindorfer  DO , Adeoye  OM ,  et al; American Heart Association Stroke Council and Council on Epidemiology and Prevention.  Scientific rationale for the inclusion and exclusion criteria for intravenous alteplase in acute ischemic stroke: a statement for healthcare professionals from the American Heart Association/American Stroke Association.   Stroke. 2016;47(2):581-641. doi:10.1161/STR.0000000000000086PubMedGoogle ScholarCrossref
63.
Lees  KR , Emberson  J , Blackwell  L ,  et al; Stroke Thrombolysis Trialists’ Collaborators Group.  Effects of alteplase for acute stroke on the distribution of functional outcomes: a pooled analysis of 9 trials.   Stroke. 2016;47(9):2373-2379. doi:10.1161/STROKEAHA.116.013644PubMedGoogle ScholarCrossref
64.
Hacke  W , Lyden  P , Emberson  J ,  et al; Stroke Thrombolysis Trialists’ Collaborators Group.  Effects of alteplase for acute stroke according to criteria defining the European Union and United States marketing authorizations: individual-patient-data meta-analysis of randomized trials.   Int J Stroke. 2018;13(2):175-189. doi:10.1177/1747493017744464PubMedGoogle ScholarCrossref
65.
Messé  SR , Khatri  P , Reeves  MJ ,  et al.  Why are acute ischemic stroke patients not receiving IV tPA? results from a national registry.   Neurology. 2016;87(15):1565-1574. doi:10.1212/WNL.0000000000003198PubMedGoogle ScholarCrossref
66.
Khatri  P , Conaway  MR , Johnston  KC ; Acute Stroke Accurate Prediction Study (ASAP) Investigators.  Ninety-day outcome rates of a prospective cohort of consecutive patients with mild ischemic stroke.   Stroke. 2012;43(2):560-562. doi:10.1161/STROKEAHA.110.593897PubMedGoogle ScholarCrossref
67.
Khatri  P , Kleindorfer  DO , Devlin  T ,  et al; PRISMS Investigators.  Effect of alteplase vs aspirin on functional outcome for patients with acute ischemic stroke and minor nondisabling neurologic deficits: the PRISMS randomized clinical trial.   JAMA. 2018;320(2):156-166. doi:10.1001/jama.2018.8496PubMedGoogle ScholarCrossref
68.
Thomalla  G , Simonsen  CZ , Boutitie  F ,  et al; WAKE-UP Investigators.  MRI-guided thrombolysis for stroke with unknown time of onset.   N Engl J Med. 2018;379(7):611-622. doi:10.1056/NEJMoa1804355PubMedGoogle ScholarCrossref
69.
Thomalla  G , Cheng  B , Ebinger  M ,  et al; STIR and VISTA Imaging Investigators.  DWI-FLAIR mismatch for the identification of patients with acute ischaemic stroke within 4·5 h of symptom onset (PRE-FLAIR): a multicentre observational study.   Lancet Neurol. 2011;10(11):978-986. doi:10.1016/S1474-4422(11)70192-2PubMedGoogle ScholarCrossref
70.
Ma  H , Campbell  BCV , Parsons  MW ,  et al; EXTEND Investigators.  Thrombolysis guided by perfusion imaging up to 9 hours after onset of stroke.   N Engl J Med. 2019;380(19):1795-1803. doi:10.1056/NEJMoa1813046PubMedGoogle ScholarCrossref
71.
Ringleb  P , Bendszus  M , Bluhmki  E ,  et al; ECASS-4 study group.  Extending the time window for intravenous thrombolysis in acute ischemic stroke using magnetic resonance imaging-based patient selection.   Int J Stroke. 2019;14(5):483-490. doi:10.1177/1747493019840938PubMedGoogle ScholarCrossref
72.
Tsivgoulis  G , Katsanos  AH , Malhotra  K ,  et al.  Thrombolysis for acute ischemic stroke in the unwitnessed or extended therapeutic time window.   Neurology. 2020;94(12):e1241-e1248. doi:10.1212/WNL.0000000000008904PubMedGoogle ScholarCrossref
73.
Burgos  AM , Saver  JL .  Evidence that tenecteplase is noninferior to alteplase for acute ischemic stroke: meta-analysis of 5 randomized trials.   Stroke. 2019;50(8):2156-2162. doi:10.1161/STROKEAHA.119.025080PubMedGoogle ScholarCrossref
74.
Campbell  BCV , Mitchell  PJ , Churilov  L ,  et al; EXTEND-IA TNK Investigators.  Tenecteplase versus alteplase before thrombectomy for ischemic stroke.   N Engl J Med. 2018;378(17):1573-1582. doi:10.1056/NEJMoa1716405PubMedGoogle ScholarCrossref
75.
González  RG , Furie  KL , Goldmacher  GV ,  et al.  Good outcome rate of 35% in IV-tPA-treated patients with computed tomography angiography confirmed severe anterior circulation occlusive stroke.   Stroke. 2013;44(11):3109-3113. doi:10.1161/STROKEAHA.113.001938PubMedGoogle ScholarCrossref
76.
Broderick  JP , Palesch  YY , Demchuk  AM ,  et al; Interventional Management of Stroke (IMS) III Investigators.  Endovascular therapy after intravenous t-PA versus t-PA alone for stroke.   N Engl J Med. 2013;368(10):893-903. doi:10.1056/NEJMoa1214300PubMedGoogle ScholarCrossref
77.
Bracard  S , Ducrocq  X , Mas  JL ,  et al; THRACE Investigators.  Mechanical thrombectomy after intravenous alteplase versus alteplase alone after stroke (THRACE): a randomised controlled trial.   Lancet Neurol. 2016;15(11):1138-1147. doi:10.1016/S1474-4422(16)30177-6PubMedGoogle ScholarCrossref
78.
Mocco  J , Zaidat  OO , von Kummer  R ,  et al; THERAPY Trial Investigators*.  Aspiration thrombectomy after intravenous alteplase versus intravenous alteplase alone.   Stroke. 2016;47(9):2331-2338. doi:10.1161/STROKEAHA.116.013372PubMedGoogle ScholarCrossref
79.
Muir  KW , Ford  GA , Messow  CM ,  et al; PISTE Investigators.  Endovascular therapy for acute ischaemic stroke: the pragmatic ischaemic stroke thrombectomy evaluation (PISTE) randomised, controlled trial.   J Neurol Neurosurg Psychiatry. 2017;88(1):38-44. doi:10.1136/jnnp-2016-314117PubMedGoogle ScholarCrossref
80.
Nogueira  RG , Jadhav  AP , Haussen  DC ,  et al; DAWN Trial Investigators.  Thrombectomy 6 to 24 hours after stroke with a mismatch between deficit and infarct.   N Engl J Med. 2018;378(1):11-21. doi:10.1056/NEJMoa1706442PubMedGoogle ScholarCrossref
81.
Albers  GW , Marks  MP , Kemp  S ,  et al; DEFUSE 3 Investigators.  Thrombectomy for stroke at 6 to 16 hours with selection by perfusion imaging.   N Engl J Med. 2018;378(8):708-718. doi:10.1056/NEJMoa1713973PubMedGoogle ScholarCrossref
82.
Goyal  M , Menon  BK , van Zwam  WH ,  et al; HERMES collaborators.  Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials.   Lancet. 2016;387(10029):1723-1731. doi:10.1016/S0140-6736(16)00163-XPubMedGoogle ScholarCrossref
83.
Liu  X , Dai  Q , Ye  R ,  et al; BEST Trial Investigators.  Endovascular treatment versus standard medical treatment for vertebrobasilar artery occlusion (BEST): an open-label, randomised controlled trial.   Lancet Neurol. 2020;19(2):115-122. doi:10.1016/S1474-4422(19)30395-3PubMedGoogle ScholarCrossref
84.
Schonewille  WJ ; BASICS Study Group.  A Radomized Acute Stroke Trial of Endovascular Therapy in Acute Basilar Artery Occlusion. Webinar: European Stroke Organisation-World Stroke Organization Conference. May 12, 2020. https://www.youtube.com/watch?v=6DoW-dENJ9c
85.
Powers  WJ , Rabinstein  AA , Ackerson  T ,  et al.  Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 Guidelines for the Early Management of Acute Ischemic Stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association.   Stroke. 2019;50(12):e344-e418. doi:10.1161/STR.0000000000000211PubMedGoogle ScholarCrossref
86.
Albers  GW , Lansberg  MG , Kemp  S ,  et al.  A multicenter randomized controlled trial of endovascular therapy following imaging evaluation for ischemic stroke (DEFUSE 3).   Int J Stroke. 2017;12(8):896-905. doi:10.1177/1747493017701147PubMedGoogle ScholarCrossref
87.
Snelling  B , Mccarthy  DJ , Chen  S ,  et al.  Extended window for stroke thrombectomy.   J Neurosci Rural Pract. 2019;10(2):294-300. doi:10.4103/jnrp.jnrp_365_18PubMedGoogle ScholarCrossref
88.
Langhorne  P , Ramachandra  S ; Stroke Unit Trialists’ Collaboration.  Organised inpatient (stroke unit) care for stroke: network meta-analysis.   Cochrane Database Syst Rev. 2020;23(4):CD000197. doi:10.1002/14651858.CD000197.pub4PubMedGoogle Scholar
89.
Wei  H , Jia  FM , Yin  HX , Guo  ZL .  Decompressive hemicraniectomy versus medical treatment of malignant middle cerebral artery infarction: a systematic review and meta-analysis.   Biosci Rep. 2020;40(1):BSR20191448. doi:10.1042/BSR20191448PubMedGoogle Scholar
90.
Wijdicks  EF , Sheth  KN , Carter  BS ,  et al; American Heart Association Stroke Council.  Recommendations for the management of cerebral and cerebellar infarction with swelling: a statement for healthcare professionals from the American Heart Association/American Stroke Association.   Stroke. 2014;45(4):1222-1238. doi:10.1161/01.str.0000441965.15164.d6PubMedGoogle ScholarCrossref
91.
Adams  HP  Jr , Bendixen  BH , Kappelle  LJ ,  et al.  Classification of subtype of acute ischemic stroke: definitions for use in a multicenter clinical trial: TOAST trial of org 10172 in acute stroke treatment.   Stroke. 1993;24(1):35-41. doi:10.1161/01.STR.24.1.35PubMedGoogle ScholarCrossref
92.
Ay  H , Benner  T , Arsava  EM ,  et al.  A computerized algorithm for etiologic classification of ischemic stroke: the Causative Classification of Stroke System.   Stroke. 2007;38(11):2979-2984. doi:10.1161/STROKEAHA.107.490896PubMedGoogle ScholarCrossref
93.
Amarenco  P , Bogousslavsky  J , Caplan  LR , Donnan  GA , Wolf  ME , Hennerici  MG .  The ASCOD phenotyping of ischemic stroke (updated ASCO phenotyping).   Cerebrovasc Dis. 2013;36(1):1-5. doi:10.1159/000352050PubMedGoogle ScholarCrossref
94.
Gökçal  E , Niftaliyev  E , Asil  T .  Etiological classification of ischemic stroke in young patients: a comparative study of TOAST, CCS, and ASCO.   Acta Neurol Belg. 2017;117(3):643-648. doi:10.1007/s13760-017-0813-8PubMedGoogle ScholarCrossref
95.
Marnane  M , Duggan  CA , Sheehan  OC ,  et al.  Stroke subtype classification to mechanism-specific and undetermined categories by TOAST, A-S-C-O, and causative classification system: direct comparison in the North Dublin population stroke study.   Stroke. 2010;41(8):1579-1586. doi:10.1161/STROKEAHA.109.575373PubMedGoogle ScholarCrossref
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_Multimedia_LoginSubscribe_Purchase
Close
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_Multimedia_LoginSubscribe_Purchase
Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close

Name Your Search

Save Search
Close
With a personal account, you can:
  • Track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
jn-learning_Modal_SaveSearch_NoAccess_Purchase
Close

Lookup An Activity

or

Close

My Saved Searches

You currently have no searches saved.

Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close