Estimated Effectiveness of Case-Based and Population-Based Interventions on COVID-19 Containment | Global Health | JN Learning | AMA Ed Hub [Skip to Content]
[Skip to Content Landing]

Comparison of Estimated Effectiveness of Case-Based and Population-Based Interventions on COVID-19 Containment in Taiwan

Educational Objective
To identify the key insights or developments described in this article
1 Credit CME
Key Points

Question  What are the explanations for the initial success of COVID-19 control in Taiwan, a country that has one of the lowest per capita incidence and mortality rates in the world?

Findings  In this comparative effectiveness research study that used detailed epidemiologic and contact tracing data, neither case-based interventions (including contact tracing and quarantine) or population-based interventions (including social distancing and facial masking) alone were estimated to have been sufficient to contain COVID-19. The combination of case-based and population-based interventions was needed.

Meaning  The combination of case-based interventions with population-based interventions with wide adherence may explain the success of COVID-19 control in Taiwan.

Abstract

Importance  Taiwan is one of the few countries with initial success in COVID-19 control without strict lockdown or school closure. The reasons remain to be fully elucidated.

Objective  To compare and evaluate the effectiveness of case-based (including contact tracing and quarantine) and population-based (including social distancing and facial masking) interventions for COVID-19 in Taiwan.

Design, Setting, and Participants  This comparative effectiveness study used a stochastic branching process model using COVID-19 epidemic datafrom Taiwan, an island nation of 23.6 million people, with no locally acquired cases of COVID-19 reported for 253 days between April and December 2020.

Main Outcomes and Measures  Effective reproduction number of COVID-19 cases (the number of secondary cases generated by 1 primary case) and the probability of outbreak extinction (0 new cases within 20 generations). For model development and calibration, an estimation of the incubation period (interval from exposure to symptom onset), serial interval (time between symptom onset in an infector-infectee pair), and the statistical distribution of the number of any subsequent infections generated by 1 primary case was calculated.

Results  This study analyzed data from 158 confirmed COVID-19 cases (median age, 45 years; interquartile range, 25-55 years; 84 men [53%]). An estimated 55% (95% credible interval [CrI], 41%-68%) of transmission events occurred during the presymptomatic stage. In our estimated analysis, case detection, contact tracing, and 14-day quarantine of close contacts (regardless of symptoms) was estimated to decrease the reproduction number from the counterfactual value of 2.50 to 1.53 (95% CrI, 1.50-1.57), which would not be sufficient for epidemic control, which requires a value of less than 1. In our estimated analysis, voluntary population-based interventions, if used alone, were estimated to have reduced the reproduction number to 1.30 (95% CrI, 1.03-1.58). Combined case-based and population-based interventions were estimated to reduce the reproduction number to below unity (0.85; 95% CrI, 0.78-0.89). Results were similar for additional analyses with influenza data and sensitivity analyses.

Conclusions and Relevance  In this comparative effectiveness research study, the combination of case-based and population-based interventions (with wide adherence) may explain the success of COVID-19 control in Taiwan in 2020. Either category of interventions alone would have been insufficient, even in a country with an effective public health system and comprehensive contact tracing program. Mitigating the COVID-19 pandemic requires the collaborative effort of public health professionals and the general public.

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 CME Credit™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

Article Information

Accepted for Publication: March 12, 2021.

Published Online: April 6, 2021. doi:10.1001/jamainternmed.2021.1644

Corresponding Author: Hsien-Ho Lin, MD, ScD, Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, 17 Xuzhou Rd, Rm 706, Taipei 10055, Taiwan (hsienho@ntu.edu.tw).

Open Access: This is an open access article distributed under the terms of the CC-BY License. © 2021 Ng T-C et al. JAMA Internal Medicine.

Author Contributions: Mr Ng and Dr Cheng contributed equally. Dr Lin had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: Ng, Cheng, Jian, Lin.

Acquisition, analysis, or interpretation of data: Ng, Cheng, Chang, C. Liu, Yang, D. Liu, Cohen, Lin.

Drafting of the manuscript: Ng, Cheng, Jian, Lin.

Critical revision of the manuscript for important intellectual content: Ng, Cheng, Chang, C. Liu, Yang, D. Liu, Cohen, Lin.

Statistical analysis: Ng, Cheng, Chang, C. Liu, Yang, Jian.

Obtained funding: Lin.

Administrative, technical, or material support: Ng, Jian, D. Liu, Lin.

Supervision: D. Liu, Lin.

Conflict of Interest Disclosures: Dr Cohen reported grants from the National Institutes of Health outside the submitted work. No other disclosures were reported.

Funding/Support: This research was supported by Taiwan Ministry of Science and Technology (MOST 109-2327-B-002-009).

Role of the Funder/Sponsor: The funding organization had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Additional Contributions: We thank Hung Hung, PhD, National Taiwan University, for the statistical consultation without compensation.

Data Sharing Statement: The data sets generated and analyzed during the current study are available from the corresponding author on request. Codes are available on GitHub at https://github.com/dachuwu/Taiwan_CovidDTQ.

References
1.
Lai  S , Ruktanonchai  NW , Zhou  L ,  et al.  Effect of non-pharmaceutical interventions to contain COVID-19 in China.   Nature. 2020;585(7825):410-413. doi:10.1038/s41586-020-2293-x PubMedGoogle ScholarCrossref
2.
Flaxman  S , Mishra  S , Gandy  A ,  et al; Imperial College COVID-19 Response Team.  Estimating the effects of non-pharmaceutical interventions on COVID-19 in Europe.   Nature. 2020;584(7820):257-261. doi:10.1038/s41586-020-2405-7 PubMedGoogle ScholarCrossref
3.
Davies  NG , Kucharski  AJ , Eggo  RM , Gimma  A , Edmunds  WJ ; Centre for the Mathematical Modelling of Infectious Diseases COVID-19 working group.  Effects of non-pharmaceutical interventions on COVID-19 cases, deaths, and demand for hospital services in the UK: a modelling study.   Lancet Public Health. 2020;5(7):e375-e385. doi:10.1016/S2468-2667(20)30133-X PubMedGoogle ScholarCrossref
4.
Hao  X , Cheng  S , Wu  D , Wu  T , Lin  X , Wang  C .  Reconstruction of the full transmission dynamics of COVID-19 in Wuhan.   Nature. 2020;584(7821):420-424. doi:10.1038/s41586-020-2554-8 PubMedGoogle ScholarCrossref
5.
Chinazzi  M , Davis  JT , Ajelli  M ,  et al.  The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak.   Science. 2020;368(6489):395-400. doi:10.1126/science.aba9757 PubMedGoogle ScholarCrossref
6.
Baker  MG , Wilson  N , Anglemyer  A .  Successful elimination of Covid-19 transmission in New Zealand.   N Engl J Med. 2020;383(8):e56. doi:10.1056/NEJMc2025203 PubMedGoogle Scholar
7.
Cowling  BJ , Ali  ST , Ng  TWY ,  et al.  Impact assessment of non-pharmaceutical interventions against coronavirus disease 2019 and influenza in Hong Kong: an observational study.   Lancet Public Health. 2020;5(5):e279-e288. doi:10.1016/S2468-2667(20)30090-6 PubMedGoogle ScholarCrossref
8.
Cheng  H-Y , Chueh  Y-N , Chen  C-M , Jian  S-W , Lai  S-K , Liu  D-P .  Taiwan’s COVID-19 response: Timely case detection and quarantine, January to June 2020.   J Formos Med Assoc. 2020;S0929-6646(20)30502-7. doi:10.1016/j.jfma.2020.10.023PubMedGoogle Scholar
9.
Summers  DJ , Cheng  DH-Y , Lin  PH-H ,  et al.  Potential lessons from the Taiwan and New Zealand health responses to the COVID-19 pandemic.   Lancet Regional Heal—West Pac. 2020;4:100044. doi:10.1016/j.lanwpc.2020.100044Google Scholar
10.
Cheng  H-Y , Li  S-Y , Yang  C-H .  Initial rapid and proactive response for the COVID-19 outbreak—Taiwan’s experience.   J Formos Med Assoc. 2020;119(4):771-773. doi:10.1016/j.jfma.2020.03.007 PubMedGoogle ScholarCrossref
11.
Cheng  H-Y , Huang  AS-E .  Proactive and blended approach for COVID-19 control in Taiwan.   Biochem Biophys Res Commun. 2021;538:238-243. doi:10.1016/j.bbrc.2020.10.100 PubMedGoogle ScholarCrossref
12.
Jian  S-W , Cheng  H-Y , Huang  X-T , Liu  D-P .  Contact tracing with digital assistance in Taiwan’s COVID-19 outbreak response.   Int J Infect Dis. 2020;101:348-352. doi:10.1016/j.ijid.2020.09.1483 PubMedGoogle ScholarCrossref
13.
Wang  CJ , Ng  CY , Brook  RH .  Response to COVID-19 in Taiwan: big analytics, new technology, and proactive testing.   JAMA. 2020;323(14):1341-1342. doi:10.1001/jama.2020.3151 PubMedGoogle ScholarCrossref
14.
Kucharski  AJ , Klepac  P , Conlan  AJK ,  et al; CMMID COVID-19 working group.  Effectiveness of isolation, testing, contact tracing, and physical distancing on reducing transmission of SARS-CoV-2 in different settings: a mathematical modelling study.   Lancet Infect Dis. 2020;20(10):1151-1160. doi:10.1016/S1473-3099(20)30457-6 PubMedGoogle ScholarCrossref
15.
Peak  CM , Kahn  R , Grad  YH ,  et al.  Individual quarantine versus active monitoring of contacts for the mitigation of COVID-19: a modelling study.   Lancet Infect Dis. 2020;20(9):1025-1033. doi:10.1016/S1473-3099(20)30361-3 PubMedGoogle ScholarCrossref
16.
Kretzschmar  ME , Rozhnova  G , Bootsma  MCJ ,  et al.  Impact of delays on effectiveness of contact tracing strategies for COVID-19: a modelling study.   Lancet Public Health. 2020;5(8):e452-e459. doi:10.1016/S2468-2667(20)30157-2 PubMedGoogle ScholarCrossref
17.
Hellewell  J , Abbott  S , Gimma  A ,  et al; Centre for the Mathematical Modelling of Infectious Diseases COVID-19 Working Group.  Feasibility of controlling COVID-19 outbreaks by isolation of cases and contacts.   Lancet Glob Health. 2020;8(4):e488-e496. doi:10.1016/S2214-109X(20)30074-7 PubMedGoogle ScholarCrossref
18.
Stutt  ROJH , Retkute  R , Bradley  M , Gilligan  CA , Colvin  J .  A modelling framework to assess the likely effectiveness of facemasks in combination with ‘lock-down’ in managing the COVID-19 pandemic.   Proc Math Phys Eng Sci. 2020;476(2238):20200376. doi:10.1098/rspa.2020.0376PubMedGoogle Scholar
19.
Taiwan Legislative Yuan. The Communicable Disease Control Act. Accessed March 3, 2021. https://law.moj.gov.tw/ENG/LawClass/LawAll.aspx?pcode=L0050001
20.
Taiwan CDC. Press Releases. Accessed August 10, 2021. https://www.cdc.gov.tw/En/Bulletin/List/7tUXjTBf6paRvrhEl-mrPg
21.
Cheng  H-Y , Jian  S-W , Liu  D-P , Ng  TC , Huang  WT , Lin  HH ; Taiwan COVID-19 Outbreak Investigation Team.  Contact tracing assessment of COVID-19 transmission dynamics in Taiwan and risk at different exposure periods before and after symptom onset.   JAMA Intern Med. 2020;180(9):1156-1163. doi:10.1001/jamainternmed.2020.2020 PubMedGoogle ScholarCrossref
22.
Oran  DP , Topol  EJ .  The proportion of SARS-CoV-2 infections that are asymptomatic : a systematic review.   Ann Intern Med. 2021. doi:10.7326/L20-1285 PubMedGoogle Scholar
23.
Liu  Y , Gayle  AA , Wilder-Smith  A , Rocklöv  J .  The reproductive number of COVID-19 is higher compared to SARS coronavirus.   J Travel Med. 2020;27(2):taaa021. doi:10.1093/jtm/taaa021 PubMedGoogle Scholar
24.
Kissler  SM , Tedijanto  C , Goldstein  E , Grad  YH , Lipsitch  M .  Projecting the transmission dynamics of SARS-CoV-2 through the postpandemic period.   Science. 2020;368(6493):860-868. doi:10.1126/science.abb5793 PubMedGoogle ScholarCrossref
25.
Oran  DP , Topol  EJ .  Prevalence of asymptomatic SARS-CoV-2 infection: a narrative review.   Ann Intern Med. 2020;173(5):362-367. doi:10.7326/M20-3012 PubMedGoogle ScholarCrossref
26.
Peak  CM , Childs  LM , Grad  YH , Buckee  CO .  Comparing nonpharmaceutical interventions for containing emerging epidemics.   Proc Natl Acad Sci U S A. 2017;114(15):4023-4028. doi:10.1073/pnas.1616438114 PubMedGoogle ScholarCrossref
27.
Kuo  S-C , Shih  S-M , Chien  L-H , Hsiung  CA .  Collateral benefit of COVID-19 control measures on influenza activity, Taiwan.   Emerg Infect Dis. 2020;26(8):1928-1930. doi:10.3201/eid2608.201192 PubMedGoogle ScholarCrossref
28.
Jian  S-W , Chen  C-M , Lee  C-Y , Liu  D-P .  Real-time surveillance of infectious diseases: Taiwan’s experience.   Health Secur. 2017;15(2):144-153. doi:10.1089/hs.2016.0107 PubMedGoogle ScholarCrossref
29.
Taiwan CDC. Taiwan National Infectious Disease Statistics System. Accessed August 10, 2020. https://nidss.cdc.gov.tw/en/Home/Index
30.
Blumberg  S , Lloyd-Smith  JO .  Inference of R(0) and transmission heterogeneity from the size distribution of stuttering chains.   PLoS Comput Biol. 2013;9(5):e1002993. doi:10.1371/journal.pcbi.1002993 PubMedGoogle Scholar
31.
Ferretti  L , Ledda  A , Wymant  C ,  et al  The timing of COVID-19 transmission.   medRxiv. Published online September 16, 2020. doi:10.1101/2020.09.04.20188516Google Scholar
32.
Ng  Y , Li  Z , Chua  YX ,  et al.  Evaluation of the effectiveness of surveillance and containment measures for the first 100 patients with COVID-19 in Singapore—January 2-February 29, 2020.   MMWR Morb Mortal Wkly Rep. 2020;69(11):307-311. doi:10.15585/mmwr.mm6911e1 PubMedGoogle ScholarCrossref
33.
Grassly  NC , Pons-Salort  M , Parker  EPK , White  PJ , Ferguson  NM ; Imperial College COVID-19 Response Team.  Comparison of molecular testing strategies for COVID-19 control: a mathematical modelling study.   Lancet Infect Dis. 2020;20(12):1381-1389. doi:10.1016/S1473-3099(20)30630-7 PubMedGoogle ScholarCrossref
34.
Day  M .  Covid-19: eight day quarantine is as good as 14 for returning travelers, study finds.   BMJ. 2020;370:m3047. doi:10.1136/bmj.m3047 PubMedGoogle ScholarCrossref
35.
Quilty  BJ , Clifford  S , Hellewell  J ,  et al; Centre for the Mathematical Modelling of Infectious Diseases COVID-19 working group.  Quarantine and testing strategies in contact tracing for SARS-CoV-2: a modelling study.   Lancet Public Health. 2021;6(3):e175-e183. doi:10.1016/S2468-2667(20)30308-X PubMedGoogle ScholarCrossref
36.
Clifford  S , Quilty  BJ , Russell  TW ,  et al  Strategies to reduce the risk of SARS-CoV-2 re-introduction from international travelers.   medRxiv. Published online July 25, 2021. doi:10.1101/2020.07.24.20161281 Google Scholar
37.
Chu  DK , Akl  EA , Duda  S , Solo  K , Yaacoub  S , Schünemann  HJ ; COVID-19 Systematic Urgent Review Group Effort (SURGE) Study Authors.  Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: a systematic review and meta-analysis.   Lancet. 2020;395(10242):1973-1987. doi:10.1016/S0140-6736(20)31142-9 PubMedGoogle ScholarCrossref
38.
Olsen  SJ , Azziz-Baumgartner  E , Budd  AP ,  et al.  Decreased influenza activity during the COVID-19 pandemic—United States, Australia, Chile, and South Africa, 2020.   MMWR Morb Mortal Wkly Rep. 2020;69(37):1305-1309. doi:10.15585/mmwr.mm6937a6 PubMedGoogle ScholarCrossref
39.
Jha  P . Coronavirus Vietnam: the mysterious resurgence of Covid-19. Published August 8, 2020. Accessed August 12, 2020. https://www.bbc.com/news/world-asia-53690711
40.
Ministry of Health. Four cases of COVID-19 with unknown source. Published August 11, 2020. Accessed August 12, 2020. https://www.health.govt.nz/news-media/media-releases/4-cases-covid-19-unknown-source
41.
Abueg  M , Hinch  R , Wu  N ,  et al  Modeling the combined effect of digital exposure notification and non-pharmaceutical interventions on the COVID-19 epidemic in Washington state.   medRxiv. Published online September 2, 2020. doi:10.1101/2020.08.29.20184135Google Scholar
42.
Johansson  MA , Quandelacy  TM , Kada  S ,  et al.  SARS-CoV-2 transmission from people without COVID-19 symptoms.   JAMA Netw Open. 2021;4(1):e2035057. doi:10.1001/jamanetworkopen.2020.35057 PubMedGoogle Scholar
43.
Crane  MA , Shermock  KM , Omer  SB , Romley  JA .  Change in reported adherence to nonpharmaceutical interventions during the COVID-19 pandemic, April-November 2020.   JAMA. 2021;325(9):883-885. doi:10.1001/jama.2021.0286 PubMedGoogle ScholarCrossref
44.
Chu  IY , Alam  P , Larson  HJ , Lin  L .  Social consequences of mass quarantine during epidemics: a systematic review with implications for the COVID-19 response.   J Travel Med. 2020;27(7):taaa192. doi:10.1093/jtm/taaa192PubMedGoogle Scholar
45.
Mack  CD , Wasserman  EB , Perrine  CG ,  et al; NFL COVID-19 Advisory and Operational Team.  Implementation and evolution of mitigation measures, testing, and contact tracing in the National Football League, August 9-November 21, 2020.   MMWR Morb Mortal Wkly Rep. 2021;70(4):130-135. doi:10.15585/mmwr.mm7004e2 PubMedGoogle ScholarCrossref
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_Multimedia_LoginSubscribe_Purchase
Close
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_Multimedia_LoginSubscribe_Purchase
Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close

Name Your Search

Save Search
Close
With a personal account, you can:
  • Track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
jn-learning_Modal_SaveSearch_NoAccess_Purchase
Close

Lookup An Activity

or

Close

My Saved Searches

You currently have no searches saved.

Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close