[Skip to Content]
[Skip to Content Landing]

Cardiovascular Adverse Events With Intravitreal Anti–Vascular Endothelial Growth Factor DrugsA Systematic Review and Meta-analysis of Randomized Clinical Trials

Educational Objective
To evaluate systemic adverse events associated with intravitreal anti–vascular endothelial growth factor (anti-VEGF) drugs compared with non–anti-VEGF treatments in patients with ocular diseases.
1 Credit CME
Key Points

Question  What is the systemic safety of intravitreal anti-vascular endothelial growth factor (anti-VEGF) drugs?

Findings  In a systematic review with meta-analysis of 74 randomized clinical trials of adult patients with retinal diseases who received intravitreal anti-VEGF drugs, anti-VEGF drugs were not associated with increased arterial or venous thromboembolic events. Small increases in total mortality were noted in patients with diabetes and nonocular hemorrhagic events were apparent in patients with age-related macular degeneration.

Meaning  The findings of this systematic review with meta-analysis suggest that intravitreal anti-VEGF drugs were not associated with an increase in major cardiovascular events.

Abstract

Importance  Systemic safety of intravitreal anti-vascular endothelial growth factor (anti-VEGF) is a matter of debate and regular updates are necessary.

Objective  To evaluate systemic adverse events (SAEs) associated with intravitreal anti-VEGF drugs compared with non–anti-VEGF treatments in patients with ocular diseases.

Data Sources  Electronic searches were conducted in MEDLINE, Embase, and Cochrane Central Register of Controlled Trials databases from inception to July 7, 2020.

Study Selection  Randomized clinical trials conducted in adults with retinal diseases who received intravitreal anti-VEGF drugs.

Data Extraction and Synthesis  Studies and treatment characteristics and outcome data were extracted and analyzed, and study quality was evaluated.

Main Outcomes and Measures  Main outcomes were major cardiovascular events (MACEs) and total mortality. Secondary outcomes included nonocular hemorrhage, components of MACEs, other cardiovascular outcomes, serious SAEs, and all SAEs.

Results  A total of 74 randomized clinical trials were analyzed: 32 trials (43%) included 14 190 patients with age-related macular degeneration (AMD), 24 (32%) included 5424 patients with diabetic retinopathy (diabetic macular edema or proliferative diabetic retinopathy), 17 trials (23%) included 3757 patients with retinal vein occlusion, and 1 trial (1%) included 122 patients with myopic choroidal neovascularization. Anti-VEGF drug administration did not increase MACEs compared with control agents (odds ratio [OR], 1.16; 95% CI, 0.85-1.58) or total mortality (OR, 1.27; 95% CI, 0.82-1.96). There was an interaction (subgroup difference, P = .04) in mortality risk depending on the underlying disease with an increase (OR, 1.80; 95% CI, 1.03-3.16; P = .04) in the risk of death in patients with diabetic retinopathy; however, no increase was observed in patients with AMD or retinal vein occlusion. Administration of anti-VEGF drugs increased the risk of nonocular hemorrhage (OR, 1.46; 95% CI, 1.01-2.10), mainly in patients with AMD.

Conclusions and Relevance  Intravitreal anti-VEGF was not associated with an increase in MACEs in the trials examined herein. Increased mortality in patients with diabetes and nonocular hemorrhages, especially in those with AMD, could represent a safety signal, but the evidence was not strong. However, continued surveillance of SAEs remains warranted.

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 Credit(s)™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

CME Disclosure Statement: Unless noted, all individuals in control of content reported no relevant financial relationships. If applicable, all relevant financial relationships have been mitigated.

Article Information

Accepted for Publication: February 15, 2021.

Published Online: April 15, 2021. doi:10.1001/jamaophthalmol.2021.0640

Corresponding Author: Theodora Bejan-Angoulvant, MD, PhD, Medical Pharmacology Department, CHRU de Tours, 2 Bd Tonnellé, 37000 Tours, France (theodora.angoulvant@univ-tours.fr).

Author Contributions: Ms Ngo Ntjam and Dr Bejan-Angoulvant had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: Ngo Ntjam, Thulliez, Paintaud, Salvo, Pisella, Bejan-Angoulvant.

Acquisition, analysis, or interpretation of data: Ngo Ntjam, Thulliez, Angoulvant, Bejan-Angoulvant.

Drafting of the manuscript: Ngo Ntjam, Bejan-Angoulvant.

Critical revision of the manuscript for important intellectual content: All authors.

Statistical analysis: Ngo Ntjam, Bejan-Angoulvant.

Administrative, technical, or material support: Thulliez, Bejan-Angoulvant.

Supervision: Salvo, Angoulvant, Pisella, Bejan-Angoulvant.

Conflict of Interest Disclosures: Dr Paintaud reported receiving grants from Roche, Sanofi Genzyme, Novartis, Amgen, Shire Takeda, and Merck outside the submitted work. Dr Angoulvant reported receiving personal fees from Amgen, Sanofi, Novartis, BMS, Pfizer, MSD, Bayer, Servier, and Novo Nordisk outside the submitted work. Dr Bejan-Angoulvant reported receiving speaker fees from Amgen and Sanofi paid to the Université des Tours, nonfinancial support from Amgen (congress inscription and travel fees), nonfinancial support from Servier (congress inscription and travel fees), nonfinancial support from MSD (congress inscription and travel fees), and nonfinancial support from BMS (congress inscription and travel fees) outside the submitted work. No other disclosures were reported.

Additional Contributions: Catherine Weill (Paris Descartes University) assisted with the Embase data search; no financial compensation was provided.

References
1.
Pascolini  D , Mariotti  SP .  Global estimates of visual impairment: 2010.   Br J Ophthalmol. 2012;96(5):614-618. doi:10.1136/bjophthalmol-2011-300539 PubMedGoogle ScholarCrossref
2.
Bourne  RRA , Stevens  GA , White  RA ,  et al; Vision Loss Expert Group.  Causes of vision loss worldwide, 1990-2010: a systematic analysis.   Lancet Glob Health. 2013;1(6):e339-e349. doi:10.1016/S2214-109X(13)70113-X PubMedGoogle ScholarCrossref
3.
Pe’er  J , Shweiki  D , Itin  A , Hemo  I , Gnessin  H , Keshet  E .  Hypoxia-induced expression of vascular endothelial growth factor by retinal cells is a common factor in neovascularizing ocular diseases.   Lab Invest. 1995;72(6):638-645.PubMedGoogle Scholar
4.
Nguyen  QD , Tatlipinar  S , Shah  SM ,  et al.  Vascular endothelial growth factor is a critical stimulus for diabetic macular edema.   Am J Ophthalmol. 2006;142(6):961-969. doi:10.1016/j.ajo.2006.06.068 PubMedGoogle ScholarCrossref
5.
Wells  JA , Glassman  AR , Ayala  AR ,  et al; Diabetic Retinopathy Clinical Research Network.  Aflibercept, bevacizumab, or ranibizumab for diabetic macular edema: two-year results from a comparative effectiveness randomized clinical trial.   Ophthalmology. 2016;123(6):1351-1359. doi:10.1016/j.ophtha.2016.02.022 PubMedGoogle ScholarCrossref
6.
Ip  MS , Scott  IU , Brown  GC ,  et al; American Academy of Ophthalmology.  Anti-vascular endothelial growth factor pharmacotherapy for age-related macular degeneration: a report by the American Academy of Ophthalmology.   Ophthalmology. 2008;115(10):1837-1846. doi:10.1016/j.ophtha.2008.08.012 PubMedGoogle ScholarCrossref
7.
Nalluri  SR , Chu  D , Keresztes  R , Zhu  X , Wu  S .  Risk of venous thromboembolism with the angiogenesis inhibitor bevacizumab in cancer patients: a meta-analysis.   JAMA. 2008;300(19):2277-2285. doi:10.1001/jama.2008.656 PubMedGoogle ScholarCrossref
8.
Ranpura  V , Hapani  S , Wu  S .  Treatment-related mortality with bevacizumab in cancer patients: a meta-analysis.   JAMA. 2011;305(5):487-494. doi:10.1001/jama.2011.51 PubMedGoogle ScholarCrossref
9.
Zhang  X , Ran  Y , Shao  Y , Wang  K , Zhu  Y .  Incidence and risk of severe infections associated with aflibercept in cancer patients: a systematic review and meta-analysis.   Br J Clin Pharmacol. 2016;81(1):33-40. doi:10.1111/bcp.12758 PubMedGoogle ScholarCrossref
10.
Totzeck  M , Mincu  RI , Rassaf  T .  Cardiovascular adverse events in patients with cancer treated with bevacizumab: a meta-analysis of more than 20 000 patients.   J Am Heart Assoc. 2017;6(8):e006278. doi:10.1161/JAHA.117.006278 PubMedGoogle Scholar
11.
Avery  RL , Castellarin  AA , Steinle  NC ,  et al.  Systemic pharmacokinetics and pharmacodynamics of intravitrealaflibercept, bevacizumab, and ranibizumab.   Retina. 2017;37(10):1847-1858. doi:10.1097/IAE.0000000000001493 PubMedGoogle ScholarCrossref
12.
Hirano  T , Toriyama  Y , Iesato  Y , Imai  A , Murata  T .  Changes in plasma vascular endothelial growth factor level after intravitreal injection of bevacizumab, aflibercept, or ranibizumab for diabetic macular edema.   Retina. 2018;38(9):1801-1808. doi:10.1097/IAE.0000000000002004 PubMedGoogle ScholarCrossref
13.
Korobelnik  J-F , Kleijnen  J , Lang  SH ,  et al.  Systematic review and mixed treatment comparison of intravitreal aflibercept with other therapies for diabetic macular edema (DME).   BMC Ophthalmol. 2015;15:52. doi:10.1186/s12886-015-0035-x PubMedGoogle ScholarCrossref
14.
Sarwar  S , Clearfield  E , Soliman  MK ,  et al.  Aflibercept for neovascular age-related macular degeneration.   Cochrane Database Syst Rev. 2016;2:CD011346.PubMedGoogle Scholar
15.
Song  WT , Xia  XB .  Ranibizumab for macular edema secondary to retinal vein occlusion: a meta-analysis of dose effects and comparison with no anti-VEGF treatment.   BMC Ophthalmol. 2015;15:31. doi:10.1186/s12886-015-0017-z PubMedGoogle ScholarCrossref
16.
Thulliez  M , Angoulvant  D , Pisella  P-J , Bejan-Angoulvant  T .  Overview of systematic reviews and meta-analyses on systemic adverse events associated with intravitreal anti-vascular endothelial growth factor medication use.   JAMA Ophthalmol. 2018;136(5):557-566. doi:10.1001/jamaophthalmol.2018.0002 PubMedGoogle ScholarCrossref
17.
Thulliez  M , Angoulvant  D , Le Lez  ML ,  et al.  Cardiovascular events and bleeding risk associated with intravitreal antivascular endothelial growth factor monoclonal antibodies: systematic review and meta-analysis.   JAMA Ophthalmol. 2014;132(11):1317-1326. doi:10.1001/jamaophthalmol.2014.2333 PubMedGoogle ScholarCrossref
18.
Moher  D , Shamseer  L , Clarke  M ,  et al; PRISMA-P Group.  Preferred Reporting Items for Systematic Review and Meta-analysis Protocols (PRISMA-P) 2015 statement.   Syst Rev. 2015;4:1. doi:10.1186/2046-4053-4-1 PubMedGoogle ScholarCrossref
19.
Zorzela  L , Loke  YK , Ioannidis  JP ,  et al; PRISMAHarms Group.  PRISMA Harms checklist: improving harms reporting in systematic reviews.   BMJ. 2016;352:i157. doi:10.1136/bmj.i157 PubMedGoogle ScholarCrossref
20.
Sterne  JAC , Savović  J , Page  MJ ,  et al.  RoB 2: a revised tool for assessing risk of bias in randomised trials.   BMJ. 2019;366:l4898. doi:10.1136/bmj.l4898 PubMedGoogle ScholarCrossref
21.
 Collaborative overview of randomised trials of antiplatelet therapy—I: prevention of death, myocardial infarction, and stroke by prolonged antiplatelet therapy in various categories of patients. Antiplatelet Trialists’ Collaboration.   BMJ. 1994;308(6921):81-106. doi:10.1136/bmj.308.6921.81 PubMedGoogle ScholarCrossref
22.
Ikuno  Y , Ohno-Matsui  K , Wong  TY ,  et al; MYRROR Investigators.  Intravitreal aflibercept injection in patients with myopic choroidal neovascularization: the MYRROR Study.   Ophthalmology. 2015;122(6):1220-1227. doi:10.1016/j.ophtha.2015.01.025 PubMedGoogle ScholarCrossref
23.
Schmidt-Erfurth  U , Kaiser  PK , Korobelnik  J-F ,  et al.  Intravitreal aflibercept injection for neovascular age-related macular degeneration: ninety-six-week results of the VIEW studies.   Ophthalmology. 2014;121(1):193-201. doi:10.1016/j.ophtha.2013.08.011 PubMedGoogle ScholarCrossref
24.
Brown  DM , Kaiser  PK , Michels  M ,  et al; ANCHOR Study Group.  Ranibizumab versus verteporfin for neovascular age-related macular degeneration.   N Engl J Med. 2006;355(14):1432-1444. doi:10.1056/NEJMoa062655PubMedGoogle ScholarCrossref
25.
Campochiaro  PA , Heier  JS , Feiner  L ,  et al; BRAVO Investigators.  Ranibizumab for macular edema following branch retinal vein occlusion: six-month primary end point results of a phase III study.   Ophthalmology. 2010;117(6):1102-1112.e1. doi:10.1016/j.ophtha.2010.02.021PubMedGoogle ScholarCrossref
26.
Callanan  DG , Loewenstein  A , Patel  SS ,  et al.  A multicenter, 12-month randomized study comparing dexamethasone intravitreal implant with ranibizumab in patients with diabetic macular edema.   Graefes Arch Clin Exp Ophthalmol. 2017;255(3):463-473. doi:10.1007/s00417-016-3472-1PubMedGoogle ScholarCrossref
27.
Bandello  F , Augustin  A , Tufail  A , Leaback  R .  A 12-month, multicenter, parallel group comparison of dexamethasone intravitreal implant versus ranibizumab in branch retinal vein occlusion.   Eur J Ophthalmol. 2018;28(6):697-705. doi:10.1177/1120672117750058PubMedGoogle ScholarCrossref
28.
Brown  DM , Campochiaro  PA , Singh  RP ,  et al; CRUISE Investigators.  Ranibizumab for macular edema following central retinal vein occlusion: six-month primary end point results of a phase III study.   Ophthalmology. 2010;117(6):1124-1133.e1. doi:10.1016/j.ophtha.2010.02.022PubMedGoogle ScholarCrossref
29.
Elman  MJ , Aiello  LP , Beck  RW ,  et al; Diabetic Retinopathy Clinical Research Network.  Randomized trial evaluating ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema.   Ophthalmology. 2010;117(6):1064-1077.e35. doi:10.1016/j.ophtha.2010.02.031PubMedGoogle ScholarCrossref
30.
Antoszyk  AN , Tuomi  L , Chung  CY , Singh  A ; FOCUS Study Group.  Ranibizumab combined with verteporfin photodynamic therapy in neovascular age-related macular degeneration (FOCUS): year 2 results.   Am J Ophthalmol. 2008;145(5):862-874. doi:10.1016/j.ajo.2007.12.029PubMedGoogle ScholarCrossref
31.
Graber  M , Glacet-Bernard  A , Fardeau  C ,  et al.  [Comparison of early management of central retinal vein occlusion with ranibizumab versus hemodilution].   J Fr Ophtalmol. 2015;38(9):815-821. doi:10.1016/j.jfo.2015.03.016PubMedGoogle ScholarCrossref
32.
Rosenfeld  PJ , Brown  DM , Heier  JS ,  et al; MARINA Study Group.  Ranibizumab for neovascular age-related macular degeneration.   N Engl J Med. 2006;355(14):1419-1431. doi:10.1056/NEJMoa054481PubMedGoogle ScholarCrossref
33.
Regillo  CD , Brown  DM , Abraham  P ,  et al.  Randomized, double-masked, sham-controlled trial of ranibizumab for neovascular age-related macular degeneration: PIER Study year 1.   Am J Ophthalmol. 2008;145(2):239-248. doi:10.1016/j.ajo.2007.10.004PubMedGoogle ScholarCrossref
34.
Figueira  J , Fletcher  E , Massin  P ,  et al; EVICR.net Study Group.  ranibizumab plus panretinal photocoagulation versus panretinal photocoagulation alone for high-risk proliferative diabetic retinopathy (PROTEUS Study).   Ophthalmology. 2018;125(5):691-700. doi:10.1016/j.ophtha.2017.12.008PubMedGoogle ScholarCrossref
35.
Pielen  A , Mirshahi  A , Feltgen  N ,  et al; RABAMES Study Group.  Ranibizumab for Branch Retinal Vein Occlusion Associated Macular Edema Study (RABAMES): six-month results of a prospective randomized clinical trial.   Acta Ophthalmol. 2015;93(1):e29-e37. doi:10.1111/aos.12488PubMedGoogle ScholarCrossref
36.
Li  X , Dai  H , Li  X ,  et al; REFINE study group.  Efficacy and safety of ranibizumab 0.5 mg in Chinese patients with visual impairment due to diabetic macular edema: results from the 12-month REFINE study.   Graefes Arch Clin Exp Ophthalmol. 2019;257(3):529-541. doi:10.1007/s00417-018-04213-xPubMedGoogle ScholarCrossref
37.
Lang  GE , Liakopoulos  S , Vögeler  J ,  et al.  The RELATION study: efficacy and safety of ranibizumab combined with laser photocoagulation treatment versus laser monotherapy in NPDR and PDR patients with diabetic macular oedema.   Acta Ophthalmol. 2018;96(3):e377-e385. doi:10.1111/aos.13574PubMedGoogle ScholarCrossref
38.
Massin  P , Bandello  F , Garweg  JG ,  et al.  Safety and efficacy of ranibizumab in diabetic macular edema (RESOLVE Study): a 12-month, randomized, controlled, double-masked, multicenter phase II study.   Diabetes Care. 2010;33(11):2399-2405. doi:10.2337/dc10-0493PubMedGoogle ScholarCrossref
39.
Berger  A , Sheidow  T , Cruess  AF , Arbour  JD , Courseau  A-S , de Takacsy  F .  Efficacy/safety of ranibizumab monotherapy or with laser versus laser monotherapy in DME.   Can J Ophthalmol. 2015;50(3):209-216. doi:10.1016/j.jcjo.2014.12.014PubMedGoogle ScholarCrossref
40.
Mitchell  P , Bandello  F , Schmidt-Erfurth  U ,  et al; RESTORE study group.  The RESTORE study: ranibizumab monotherapy or combined with laser versus laser monotherapy for diabetic macular edema.   Ophthalmology. 2011;118(4):615-625. doi:10.1016/j.ophtha.2011.01.031PubMedGoogle ScholarCrossref
41.
Ishibashi  T , Li  X , Koh  A ,  et al; REVEAL Study Group.  The REVEAL Study.   Ophthalmology. 2015;122(7):1402-1415. doi:10.1016/j.ophtha.2015.02.006PubMedGoogle ScholarCrossref
42.
Nguyen  QD , Brown  DM , Marcus  DM ,  et al; RISE and RIDE Research Group.  Ranibizumab for diabetic macular edema: results from 2 phase III randomized trials: RISE and RIDE.   Ophthalmology. 2012;119(4):789-801. doi:10.1016/j.ophtha.2011.12.039PubMedGoogle ScholarCrossref
43.
Tan  MH , McAllister  IL , Gillies  ME ,  et al.  Randomized controlled trial of intravitreal ranibizumab versus standard grid laser for macular edema following branch retinal vein occlusion.   Am J Ophthalmol. 2014;157(1):237-247.e1. doi:10.1016/j.ajo.2013.08.013PubMedGoogle ScholarCrossref
44.
Tufail  A , Patel  PJ , Egan  C ,  et al Bevacizumab for neovascular age related macular degeneration (ABC Trial): multicentre randomised double masked study. BMJ. 2010;340(jun09 4):c2459-c2459.
45.
Gillies  MC , Lim  LL , Campain  A ,  et al.  A randomized clinical trial of intravitreal bevacizumab versus intravitreal dexamethasone for diabetic macular edema: the BEVORDEX study.   Ophthalmology. 2014;121(12):2473-2481. doi:10.1016/j.ophtha.2014.07.002PubMedGoogle ScholarCrossref
46.
Michaelides  M , Kaines  A , Hamilton  RD ,  et al.  A prospective randomized trial of intravitreal bevacizumab or laser therapy in the management of diabetic macular edema (BOLT study) 12-month data: report 2.   Ophthalmology. 2010;117(6):1078-1086.e2. doi:10.1016/j.ophtha.2010.03.045PubMedGoogle ScholarCrossref
47.
Sivaprasad  S , Prevost  AT , Vasconcelos  JC ,  et al; CLARITY Study Group.  Clinical efficacy of intravitreal aflibercept versus panretinal photocoagulation for best corrected visual acuity in patients with proliferative diabetic retinopathy at 52 weeks (CLARITY): a multicentre, single-blinded, randomised, controlled, phase 2b, non-inferiority trial.   Lancet. 2017;389(10085):2193-2203. doi:10.1016/S0140-6736(17)31193-5PubMedGoogle ScholarCrossref
48.
Boyer  D , Heier  J , Brown  DM ,  et al.  Vascular endothelial growth factor Trap-Eye for macular edema secondary to central retinal vein occlusion: six-month results of the phase 3 COPERNICUS study.   Ophthalmology. 2012;119(5):1024-1032. doi:10.1016/j.ophtha.2012.01.042PubMedGoogle ScholarCrossref
49.
Do  DV , Schmidt-Erfurth  U , Gonzalez  VH ,  et al.  The DA VINCI Study: phase 2 primary results of VEGF Trap-Eye in patients with diabetic macular edema.   Ophthalmology. 2011;118(9):1819-1826. doi:10.1016/j.ophtha.2011.02.018PubMedGoogle ScholarCrossref
50.
Campochiaro  PA , Clark  WL , Boyer  DS ,  et al.  Intravitreal aflibercept for macular edema following branch retinal vein occlusion: the 24-week results of the VIBRANT study.   Ophthalmology. 2015;122(3):538-544. doi:10.1016/j.ophtha.2014.08.031PubMedGoogle ScholarCrossref
51.
Wei  W , Weisberger  A , Zhu  L , Cheng  Y , Liu  C ; BLOSSOM Study Group.  Efficacy and safety of ranibizumab in Asian patients with branch retinal vein occlusion: results from the randomized BLOSSOM Study.   Ophthalmol Retina. 2020;4(1):57-66. doi:10.1016/j.oret.2019.08.001PubMedGoogle ScholarCrossref
52.
Hattenbach  L-O , Feltgen  N , Bertelmann  T ,  et al; COMRADE-B Study Group.  Head-to-head comparison of ranibizumab PRN versus single-dose dexamethasone for branch retinal vein occlusion (COMRADE-B).   Acta Ophthalmol. 2018;96(1):e10-e18. doi:10.1111/aos.13381PubMedGoogle ScholarCrossref
53.
Hoerauf  H , Feltgen  N , Weiss  C ,  et al; COMRADE-C Study Group.  Clinical Efficacy and Safety of Ranibizumab Versus Dexamethasone for Central Retinal Vein Occlusion (COMRADE C): A European Label Study.   Am J Ophthalmol. 2016;169:258-267. doi:10.1016/j.ajo.2016.04.020PubMedGoogle ScholarCrossref
54.
Filho  JAR , Messias  A , Almeida  FPP ,  et al.  Panretinal photocoagulation (PRP) versus PRP plus intravitreal ranibizumab for high-risk proliferative diabetic retinopathy.   Acta Ophthalmol. 2011;89(7):e567-e572. doi:10.1111/j.1755-3768.2011.02184.xPubMedGoogle ScholarCrossref
55.
Comyn  O , Sivaprasad  S , Peto  T ,  et al.  A randomized trial to assess functional and structural effects of ranibizumab versus laser in diabetic macular edema (the LUCIDATE study).   Am J Ophthalmol. 2014;157(5):960-970. doi:10.1016/j.ajo.2014.02.019PubMedGoogle ScholarCrossref
56.
Nguyen  QD , Shah  SM , Heier  JS ,  et al; READ-2 Study Group.  Primary End Point (Six Months) Results of the Ranibizumab for Edema of the mAcula in diabetes (READ-2) study.   Ophthalmology. 2009;116(11):2175-81.e1. doi:10.1016/j.ophtha.2009.04.023PubMedGoogle ScholarCrossref
57.
Holz  FG , Roider  J , Ogura  Y ,  et al.  VEGF Trap-Eye for macular oedema secondary to central retinal vein occlusion: 6-month results of the phase III GALILEO study.   Br J Ophthalmol. 2013;97(3):278-284. doi:10.1136/bjophthalmol-2012-301504PubMedGoogle ScholarCrossref
58.
Xu  Y , Tan  CS .  Safety and complications of intravitreal injections performed in an Asian population in Singapore.   Int Ophthalmol. 2017;37(2):325-332. doi:10.1007/s10792-016-0241-4 PubMedGoogle ScholarCrossref
59.
Sangroongruangsri  S , Chaikledkaew  U , Kumluang  S ,  et al.  Real-world safety of intravitreal bevacizumab and ranibizumab treatments for retinal diseases in Thailand: a prospective observational study.   Clin Drug Investig. 2018;38(9):853-865. doi:10.1007/s40261-018-0678-5 PubMedGoogle ScholarCrossref
60.
Hanhart  J , Comaneshter  DS , Freier-Dror  Y , Vinker  S .  Mortality associated with bevacizumab intravitreal injections in age-related macular degeneration patients after acute myocardial infarct: a retrospective population-based survival analysis.   Graefes Arch Clin Exp Ophthalmol. 2018;256(4):651-663. doi:10.1007/s00417-018-3917-9 PubMedGoogle ScholarCrossref
61.
Reibaldi  M , Fallico  M , Avitabile  T ,  et al.  Risk of death associated with intravitreal anti–vascular endothelial growth factor therapy: a systematic review and meta-analysis.   JAMA Ophthalmol. 2019;138(1):50-57. doi:10.1001/jamaophthalmol.2019.4636PubMedGoogle ScholarCrossref
62.
Schmucker  C , Ehlken  C , Agostini  HT ,  et al.  A safety review and meta-analyses of bevacizumab and ranibizumab: off-label versus gold standard.   PLoS One. 2012;7(8):e42701. doi:10.1371/journal.pone.0042701 PubMedGoogle Scholar
63.
Christoforidis  JB , Briley  K , Binzel  K ,  et al.  Systemic biodistribution and intravitreal pharmacokinetic properties of bevacizumab, ranibizumab, and aflibercept in a nonhuman primate model.   Invest Ophthalmol Vis Sci. 2017;58(13):5636-5645. doi:10.1167/iovs.17-22431PubMedGoogle ScholarCrossref
64.
Maguire  MG , Shaffer  J , Ying  G ,  et al; Bevacizumab-Ranibizumab International Trials Group.  Serious adverse events with bevacizumab or ranibizumab for age-related macular degeneration: meta-analysis of individual patient data.   Ophthalmol Retina. 2017;1(5):375-381. doi:10.1016/j.oret.2016.12.015 PubMedGoogle ScholarCrossref
65.
Maloney  MH , Payne  SR , Herrin  J , Sangaralingham  LR , Shah  ND , Barkmeier  AJ .  Risk of systemic adverse events after intravitreal bevacizumab, ranibizumab, and aflibercept in routine clinical practice.   Ophthalmology. 2021;128(3):417-424. doi:10.1016/j.ophtha.2020.07.062PubMedGoogle ScholarCrossref
66.
Pham  B , Thomas  SM , Lillie  E ,  et al.  Anti-vascular endothelial growth factor treatment for retinal conditions: a systematic review and meta-analysis.   BMJ Open. 2019;9(5):e022031. doi:10.1136/bmjopen-2018-022031 PubMedGoogle Scholar
67.
Boyer  DS , Heier  JS , Brown  DM , Francom  SF , Ianchulev  T , Rubio  RG .  A phase IIIb study to evaluate the safety of ranibizumab in subjects with neovascular age-related macular degeneration.   Ophthalmology. 2009;116(9):1731-1739. doi:10.1016/j.ophtha.2009.05.024 PubMedGoogle ScholarCrossref
68.
Brown  DM , Nguyen  QD , Marcus  DM ,  et al; RIDE and RISE Research Group.  Long-term outcomes of ranibizumab therapy for diabetic macular edema: the 36-month results from two phase III trials: RISE and RIDE.   Ophthalmology. 2013;120(10):2013-2022. doi:10.1016/j.ophtha.2013.02.034 PubMedGoogle ScholarCrossref
69.
Zarbin  MA , Francom  S , Grzeschik  S ,  et al.  Systemic safety in ranibizumab-treated patients with neovascular age-related macular degeneration: a patient-level pooled analysis.   Ophthalmol Retina. 2018;2(11):1087-1096. doi:10.1016/j.oret.2018.04.018 PubMedGoogle ScholarCrossref
70.
Zarbin  MA , Dunger-Baldauf  C , Haskova  Z ,  et al.  Vascular safety of ranibizumab in patients with diabetic macular edema: a pooled analysis of patient-level data from randomized clinical trials.   JAMA Ophthalmol. 2017;135(5):424-431. doi:10.1001/jamaophthalmol.2017.0455 PubMedGoogle ScholarCrossref
71.
Wong  TY , Larsen  EK , Klein  R ,  et al.  Cardiovascular risk factors for retinal vein occlusion and arteriolar emboli: the Atherosclerosis Risk in Communities & Cardiovascular Health studies.   Ophthalmology. 2005;112(4):540-547. doi:10.1016/j.ophtha.2004.10.039 PubMedGoogle ScholarCrossref
AMA CME Accreditation Information

Credit Designation Statement: The American Medical Association designates this Journal-based CME activity activity for a maximum of 1.00  AMA PRA Category 1 Credit(s)™. Physicians should claim only the credit commensurate with the extent of their participation in the activity.

Successful completion of this CME activity, which includes participation in the evaluation component, enables the participant to earn up to:

  • 1.00 Medical Knowledge MOC points in the American Board of Internal Medicine's (ABIM) Maintenance of Certification (MOC) program;;
  • 1.00 Self-Assessment points in the American Board of Otolaryngology – Head and Neck Surgery’s (ABOHNS) Continuing Certification program;
  • 1.00 MOC points in the American Board of Pediatrics’ (ABP) Maintenance of Certification (MOC) program;
  • 1.00 Lifelong Learning points in the American Board of Pathology’s (ABPath) Continuing Certification program; and
  • 1.00 CME points in the American Board of Surgery’s (ABS) Continuing Certification program

It is the CME activity provider's responsibility to submit participant completion information to ACCME for the purpose of granting MOC credit.

Close
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
Close
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close

Name Your Search

Save Search
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Close
Close

Lookup An Activity

or

My Saved Searches

You currently have no searches saved.

Close

My Saved Courses

You currently have no courses saved.

Close