Accepted for Publication: March 3, 2021.
Published Online: May 19, 2021. doi:10.1001/jamasurg.2021.1642
Corresponding Author: Ignace H. J. T. de Hingh, PhD, Department of Surgery, Catharina Cancer Institute, PO Box 1350, 5602 ZA, Eindhoven, the Netherlands (ignace.d.hingh@catharinaziekenhuis.nl).
Author Contributions: Drs Rovers and de Hingh had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. Drs Rovers and Bakkers are co–first authors.
Concept and design: Rovers, Bakkers, Nienhuijs, Burger, Creemers, Thijs, Madsen, van Meerten, Tuynman, Versteeg, Aalbers, Kok, Buffart, Wiezer, Los, Kruijff, de Groot, Witkamp, van Grevenstein, Nederend, Fijneman, Snaebjornsson, Hemmer, Dijkgraaf, Punt, Tanis, de Hingh.
Acquisition, analysis, or interpretation of data: Rovers, Bakkers, Brandt-Kerkhof, Kusters, Aalbers, Boerma, de Reuver, Bremers, Verheul, van Grevenstein, Koopman, Nederend, Lahaye, Kranenburg, van 't Erve, Snaebjornsson, Punt, Tanis, de Hingh.
Drafting of the manuscript: Rovers, Bakkers, Creemers, van 't Erve, de Hingh.
Critical revision of the manuscript for important intellectual content: Nienhuijs, Burger, Thijs, Brandt-Kerkhof, Madsen, van Meerten, Tuynman, Kusters, Versteeg, Aalbers, Kok, Buffart, Wiezer, Boerma, Los, de Reuver, Bremers, Verheul, Kruijff, de Groot, Witkamp, van Grevenstein, Koopman, Nederend, Lahaye, Kranenburg, Fijneman, van 't Erve, Snaebjornsson, Hemmer, Dijkgraaf, Punt, Tanis.
Statistical analysis: Rovers, Bakkers, van 't Erve, Dijkgraaf.
Administrative, technical, or material support: Burger, Kusters, Bremers, Nederend, van 't Erve, Snaebjornsson.
Supervision: Brandt-Kerkhof, Tuynman, Kusters, Aalbers, Wiezer, Boerma, Bremers, Verheul, Lahaye, Dijkgraaf, Punt, Tanis, de Hingh.
Conflict of Interest Disclosures: Dr Koopman reported serving as a paid advisor for Nordic Farma Merck-Serono, Pierre Fabre, and Servier, and receiving institutional scientific grants from Bayer, Bristol Myers Squibb, Merck, Roche, and Servier outside the submitted work. Dr Punt reported serving as a paid advisor for Nordic Pharma and Servier. Dr Tanis reported receiving unrestricted research grants from Allergan (LifeCell) outside the submitted work. Dr de Hingh reported receiving grants from Roche, QP&S, and RanD Biotech outside the submitted work. No other disclosures were reported.
Funding/Support: This work was funded by Dutch Cancer Society grant 10795 and F. Hoffmann-La Roche grant ML39718.
Role of the Funder/Sponsor: The funding organizations had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.
Group Information: The members of the Dutch Peritoneal Oncology Group and the Dutch Colorectal Cancer Group appear in Supplement 4.
Meeting Presentation: The present work was presented at the virtual European Society for Medical Oncology (ESMO) World Conference on Gastrointestinal Cancer; July 3, 2020; https://esmoworldgivirtual2020.com/.
Data Sharing Statement: See Supplement 3.
Additional Contributions: The Netherlands Comprehensive Cancer Organization provided data management and trial monitoring.
3.Klaver
CEL , Groenen
H , Morton
DG , Laurberg
S , Bemelman
WA , Tanis
PJ ; research committee of the European Society of Coloproctology. Recommendations and consensus on the treatment of peritoneal metastases of colorectal origin: a systematic review of national and international guidelines.
Colorectal Dis. 2017;19(3):224-236. doi:
10.1111/codi.13593
PubMedGoogle ScholarCrossref 4.Eveno
C , Passot
G , Goéré
D ,
et al. Bevacizumab doubles the early postoperative complication rate after cytoreductive surgery with hyperthermic intraperitoneal chemotherapy (HIPEC) for peritoneal carcinomatosis of colorectal origin.
Ann Surg Oncol. 2014;21(6):1792-1800. doi:
10.1245/s10434-013-3442-3
PubMedGoogle ScholarCrossref 5.Franko
J , Shi
Q , Meyers
JP ,
et al; Analysis and Research in Cancers of the Digestive System (ARCAD) Group. Prognosis of patients with peritoneal metastatic colorectal cancer given systemic therapy: an analysis of individual patient data from prospective randomised trials from the Analysis and Research in Cancers of the Digestive System (ARCAD) database.
Lancet Oncol. 2016;17(12):1709-1719. doi:
10.1016/S1470-2045(16)30500-9
PubMedGoogle ScholarCrossref 6.Rovers
KP , Simkens
GA , Punt
CJ , van Dieren
S , Tanis
PJ , de Hingh
IH . Perioperative systemic therapy for resectable colorectal peritoneal metastases: sufficient evidence for its widespread use? a critical systematic review.
Crit Rev Oncol Hematol. 2017;114:53-62. doi:
10.1016/j.critrevonc.2017.03.028
PubMedGoogle ScholarCrossref 8.Bushati
M , Rovers
KP , Sommariva
A ,
et al. The current practice of cytoreductive surgery and HIPEC for colorectal peritoneal metastases: results of a worldwide web-based survey of the Peritoneal Surface Oncology Group International (PSOGI).
Eur J Surg Oncol. 2018;44(12):1942-1948. doi:
10.1016/j.ejso.2018.07.003
PubMedGoogle ScholarCrossref 9.Rovers
KP , Bakkers
C , van Erning
FN ,
et al. Adjuvant systemic chemotherapy vs active surveillance following up-front resection of isolated synchronous colorectal peritoneal metastases.
JAMA Oncol. 2020;6(8):e202701. doi:
10.1001/jamaoncol.2020.2701
PubMedGoogle Scholar 11.Rovers
KP , Bakkers
C , Simkens
GAAM ,
et al; Dutch Peritoneal Oncology Group (DPOG); Dutch Colorectal Cancer Group (DCCG). Perioperative systemic therapy and cytoreductive surgery with HIPEC versus upfront cytoreductive surgery with HIPEC alone for isolated resectable colorectal peritoneal metastases: protocol of a multicentre, open-label, parallel-group, phase II-III, randomised, superiority study (CAIRO6).
BMC Cancer. 2019;19(1):390. doi:
10.1186/s12885-019-5545-0
PubMedGoogle ScholarCrossref 14.Schmoll
HJ , Van Cutsem
E , Stein
A ,
et al. ESMO Consensus guidelines for management of patients with colon and rectal cancer. a personalized approach to clinical decision making.
Ann Oncol. 2012;23(10):2479-2516. doi:
10.1093/annonc/mds236
PubMedGoogle ScholarCrossref 16.Verwaal
VJ , Bruin
S , Boot
H , van Slooten
G , van Tinteren
H . 8-Year follow-up of randomized trial: cytoreduction and hyperthermic intraperitoneal chemotherapy versus systemic chemotherapy in patients with peritoneal carcinomatosis of colorectal cancer.
Ann Surg Oncol. 2008;15(9):2426-2432. doi:
10.1245/s10434-008-9966-2
PubMedGoogle ScholarCrossref 17.Wisselink
DD , Braakhuis
LLF , Gallo
G ,
et al. Systematic review of published literature on oxaliplatin and mitomycin C as chemotherapeutic agents for hyperthermic intraperitoneal chemotherapy in patients with peritoneal metastases from colorectal cancer.
Crit Rev Oncol Hematol. 2019;142:119-129. doi:
10.1016/j.critrevonc.2019.06.014
PubMedGoogle ScholarCrossref 21.Solass
W , Sempoux
C , Detlefsen
S , Carr
NJ , Bibeau
F . Peritoneal sampling and histological assessment of therapeutic response in peritoneal metastasis: proposal of the Peritoneal Regression Grading Score (PRGS).
Pleura Peritoneum. 2016;1(2):99-107. doi:
10.1515/pp-2016-0011
PubMedGoogle ScholarCrossref 23.Leimkühler
M , Hemmer
PHJ , Reyners
AKL ,
et al. Neoadjuvant chemotherapy followed by cytoreductive surgery and hyperthermic intraperitoneal chemotherapy for colorectal cancer: a feasibility and safety study.
World J Surg Oncol. 2019;17(1):14. doi:
10.1186/s12957-018-1554-8
PubMedGoogle ScholarCrossref 24.Glockzin
G , Zeman
F , Croner
RS ,
et al. Perioperative systemic chemotherapy, cytoreductive surgery, and hyperthermic intraperitoneal chemotherapy in patients with colorectal peritoneal metastasis: results of the prospective multicenter phase 2 COMBATAC trial.
Clin Colorectal Cancer. 2018;17(4):285-296. doi:
10.1016/j.clcc.2018.07.011
PubMedGoogle ScholarCrossref 27.Passot
G , You
B , Boschetti
G ,
et al. Pathological response to neoadjuvant chemotherapy: a new prognosis tool for the curative management of peritoneal colorectal carcinomatosis.
Ann Surg Oncol. 2014;21(8):2608-2614. doi:
10.1245/s10434-014-3647-0
PubMedGoogle ScholarCrossref 29.Beal
EW , Suarez-Kelly
LP , Kimbrough
CW ,
et al. Impact of neoadjuvant chemotherapy on the outcomes of cytoreductive surgery and hyperthermic intraperitoneal chemotherapy for colorectal peritoneal metastases: a multi-institutional retrospective review.
J Clin Med. 2020;9(3):748. doi:
10.3390/jcm9030748
PubMedGoogle ScholarCrossref 30.Hallam
S , Tyler
R , Price
M , Beggs
A , Youssef
H . Meta-analysis of prognostic factors for patients with colorectal peritoneal metastasis undergoing cytoreductive surgery and heated intraperitoneal chemotherapy.
BJS Open. 2019;3(5):585-594. doi:
10.1002/bjs5.50179
PubMedGoogle ScholarCrossref 31.Quénet
F , Elias
D , Roca
L ,
et al; UNICANCER-GI Group and BIG Renape Group. Cytoreductive surgery plus hyperthermic intraperitoneal chemotherapy versus cytoreductive surgery alone for colorectal peritoneal metastases (PRODIGE 7): a multicentre, randomised, open-label, phase 3 trial.
Lancet Oncol. 2021;22(2):256-266. doi:
10.1016/S1470-2045(20)30599-4
PubMedGoogle ScholarCrossref 32.Hentzen
JEKR , Constansia
RDN , Been
LB ,
et al. Diagnostic laparoscopy as a selection tool for patients with colorectal peritoneal metastases to prevent a non-therapeutic laparotomy during cytoreductive surgery.
Ann Surg Oncol. 2020;27(4):1084-1093. doi:
10.1245/s10434-019-07957-w
PubMedGoogle ScholarCrossref 33.van Oudheusden
TR , Braam
HJ , Luyer
MDP ,
et al. Peritoneal cancer patients not suitable for cytoreductive surgery and HIPEC during explorative surgery: risk factors, treatment options, and prognosis.
Ann Surg Oncol. 2015;22(4):1236-1242. doi:
10.1245/s10434-014-4148-x
PubMedGoogle ScholarCrossref