Lower Extremity Peripheral Artery Disease Without Chronic Limb-Threatening Ischemia | Cardiology | JN Learning | AMA Ed Hub [Skip to Content]
[Skip to Content Landing]

Lower Extremity Peripheral Artery Disease Without Chronic Limb-Threatening IschemiaA Review

Educational Objective
To review the clinical management of patients with lower extremity peripheral artery disease.
1 Credit CME
Abstract

Importance  Lower extremity peripheral artery disease (PAD) affects approximately 8.5 million people in the US and approximately 230 million worldwide.

Observations  Peripheral artery disease is uncommon before aged 50 years but affects up to 20% of people aged 80 years and older. It can be noninvasively diagnosed with the ankle-brachial index (ABI), a ratio of Doppler-recorded pressures in the dorsalis pedis and/or posterior tibial artery in each leg to brachial artery pressures. An ABI value less than 0.90 is 57% to 79% sensitive and 83% to 99% specific for arterial stenosis of at least 50%. Intermittent claudication, consisting of exertional calf pain that does not begin at rest and that resolves within 10 minutes of rest, is considered the classic symptom of PAD. However, 70% to 90% of people with an ABI value less than 0.90 either report no exertional leg symptoms (ie, asymptomatic) or report leg symptoms with walking that are not consistent with classic claudication. Over time, people with PAD restrict walking activity or slow walking speed to avoid leg symptoms. Thus, although approximately 75% of people with PAD report no change in leg symptoms over time, those with PAD have significantly greater annual declines in 6-minute walk performance compared with those without it. Approximately 11% of people with PAD develop chronic limb-threatening ischemia, the most severe form of PAD. Compared with people without PAD, those with the disease have approximately twice the rate of all-cause mortality, cardiovascular mortality, and major coronary events at 10-year follow-up. High-dose statins and antiplatelet therapy with or without antithrombotic therapy reduced rates of coronary events and stroke in people with PAD. Supervised treadmill exercise improved 6-minute walk distance by 30 to 35 m, consistent with a clinically meaningful change, whereas effective home-based walking exercise interventions improved 6-minute walk by 42 to 53 m. Effective home-based exercise programs require behavioral methods, including monitoring by a coach.

Conclusions and Relevance  Peripheral artery disease affects approximately 230 million people worldwide and is associated with increased rates of cardiovascular events, lower extremity events, and functional decline compared with that of people without PAD. People with PAD should be treated with the highest dose of statin tolerated, antithrombotic and/or antiplatelet therapy, and exercise.

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 CME Credit™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

Article Information

Corresponding Author: Mary M. McDermott, MD, 750 N Lake Shore Dr, 10th Floor, Chicago, IL 60611 (mdm608@northwestern.edu).

Accepted for Publication: February 8, 2021.

Author Contributions: Dr McDermott had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Conflict of Interest Disclosures: Dr McDermott reports receiving grant funding from Regeneron and research support from Mars Inc, Helixmith, Hershey, ArtAssist, ChromaDex, and ReserveAge consisting of interventions or measurement of biomarkers in ongoing randomized clinical trials. No other disclosures were reported.

Disclaimer: Dr McDermott, a Deputy Editor at JAMA, was not involved in any of the decisions regarding review of the manuscript or its acceptance.

Additional Contributions: We thank Corinne H. Miller, MLIS, clinical informationist at Galter Health Science Library, Northwestern University Feinberg School of Medicine, for her assistance performing literature searches for this article.

References
1.
Virani  SS , Alonso  A , Benjamin  EJ ,  et al; American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee.  Heart disease and stroke statistics: 2020 update: a report from the American Heart Association.   Circulation. 2020;141(9):e139-e596. doi:10.1161/CIR.0000000000000757 PubMedGoogle ScholarCrossref
2.
Song  P , Rudan  D , Zhu  Y ,  et al.  Global, regional, and national prevalence and risk factors for peripheral artery disease in 2015: an updated systematic review and analysis.   Lancet Glob Health. 2019;7(8):e1020-e1030. doi:10.1016/S2214-109X(19)30255-4 PubMedGoogle ScholarCrossref
3.
Roth  GA , Mensah  GA , Johnson  CO ,  et al; GBD-NHLBI-JACC Global Burden of Cardiovascular Diseases Writing Group.  Global burden of cardiovascular diseases and risk factors, 1990-2019: Update from the GBD 2019 study.   J Am Coll Cardiol. 2020;76(25):2982-3021. doi:10.1016/j.jacc.2020.11.010 PubMedGoogle ScholarCrossref
4.
Unkart  JT , Allison  MA , Araneta  MRG , Ix  JH , Matsushita  K , Criqui  MH .  Burden of peripheral artery disease on mortality and incident cardiovascular events.   Am J Epidemiol. 2020;189(9):951-962. doi:10.1093/aje/kwaa051 PubMedGoogle ScholarCrossref
5.
McDermott  MM , Guralnik  JM , Tian  L ,  et al.  Associations of borderline and low normal ankle-brachial index values with functional decline at 5-year follow-up: the WALCS (Walking and Leg Circulation Study).   J Am Coll Cardiol. 2009;53(12):1056-1062. doi:10.1016/j.jacc.2008.09.063 PubMedGoogle ScholarCrossref
6.
McDermott  MM , Applegate  WB , Bonds  DE ,  et al.  Ankle brachial index values, leg symptoms, and functional performance among community-dwelling older men and women in the Lifestyle Interventions and Independence for Elders study.   J Am Heart Assoc. 2013;2(6):e000257. doi:10.1161/JAHA.113.000257 PubMedGoogle Scholar
7.
Criqui  MH , Aboyans  V .  Epidemiology of peripheral artery disease.   Circ Res. 2015;116(9):1509-1526. doi:10.1161/CIRCRESAHA.116.303849 PubMedGoogle ScholarCrossref
8.
Matsushita  K , Sang  Y , Ning  H ,  et al.  Lifetime risk of lower-extremity peripheral artery disease defined by ankle-brachial index in the United States.   J Am Heart Assoc. 2019;8(18):e012177. doi:10.1161/JAHA.119.012177 PubMedGoogle Scholar
9.
Gerhard-Herman  MD , Gornik  HL , Barrett  C ,  et al.  2016 AHA/ACC guideline on the management of patients with lower extremity peripheral artery disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines.   Circulation. 2017;135(12):e726-e779. doi:10.1161/CIR.0000000000000471PubMedGoogle Scholar
10.
Ding  N , Sang  Y , Chen  J ,  et al.  Cigarette smoking, smoking cessation, and long-term risk of 3 major atherosclerotic diseases.   J Am Coll Cardiol. 2019;74(4):498-507. doi:10.1016/j.jacc.2019.05.049 PubMedGoogle ScholarCrossref
11.
Joosten  MM , Pai  JK , Bertoia  ML ,  et al.  Associations between conventional cardiovascular risk factors and risk of peripheral artery disease in men.   JAMA. 2012;308(16):1660-1667. doi:10.1001/jama.2012.13415 PubMedGoogle ScholarCrossref
12.
Fowkes  FG , Housley  E , Riemersma  RA ,  et al.  Smoking, lipids, glucose intolerance, and blood pressure as risk factors for peripheral atherosclerosis compared with ischemic heart disease in the Edinburgh Artery Study.   Am J Epidemiol. 1992;135(4):331-340. doi:10.1093/oxfordjournals.aje.a116294 PubMedGoogle ScholarCrossref
13.
Klarin  D , Lynch  J , Aragam  K ,  et al; VA Million Veteran Program.  Genome-wide association study of peripheral artery disease in the Million Veteran Program.   Nat Med. 2019;25(8):1274-1279. doi:10.1038/s41591-019-0492-5 PubMedGoogle ScholarCrossref
14.
Forbang  NI , Criqui  MH , Allison  MA ,  et al.  Sex and ethnic differences in the associations between lipoprotein(a) and peripheral arterial disease in the Multi-Ethnic Study of Atherosclerosis.   J Vasc Surg. 2016;63(2):453-458. doi:10.1016/j.jvs.2015.08.114 PubMedGoogle ScholarCrossref
15.
Szarek  M , Bittner  VA , Aylward  P ,  et al; ODYSSEY OUTCOMES Investigators.  Lipoprotein(a) lowering by alirocumab reduces the total burden of cardiovascular events independent of low-density lipoprotein cholesterol lowering: ODYSSEY OUTCOMES trial.   Eur Heart J. 2020;41(44):4245-4255. doi:10.1093/eurheartj/ehaa649 PubMedGoogle ScholarCrossref
16.
Aboyans  V , Criqui  MH , Abraham  P ,  et al; American Heart Association Council on Peripheral Vascular Disease; Council on Epidemiology and Prevention; Council on Clinical Cardiology; Council on Cardiovascular Nursing; Council on Cardiovascular Radiology and Intervention, and Council on Cardiovascular Surgery and Anesthesia.  Measurement and interpretation of the ankle-brachial index: a scientific statement from the American Heart Association.   Circulation. 2012;126(24):2890-2909. doi:10.1161/CIR.0b013e318276fbcb PubMedGoogle ScholarCrossref
17.
AbuRahma  AF , Adams  E , AbuRahma  J ,  et al.  Critical analysis and limitations of resting ankle-brachial index in the diagnosis of symptomatic peripheral arterial disease patients and the role of diabetes mellitus and chronic kidney disease.   J Vasc Surg. 2020;71(3):937-945. doi:10.1016/j.jvs.2019.05.050 PubMedGoogle ScholarCrossref
18.
Lijmer  JG , Hunink  MG , van den Dungen  JJ , Loonstra  J , Smit  AJ .  ROC analysis of noninvasive tests for peripheral arterial disease.   Ultrasound Med Biol. 1996;22(4):391-398. doi:10.1016/0301-5629(96)00036-1PubMedGoogle ScholarCrossref
19.
Amirhamzeh  MM , Chant  HJ , Rees  JL , Hands  LJ , Powell  RJ , Campbell  WB .  A comparative study of treadmill tests and heel raising exercise for peripheral arterial disease.   Eur J Vasc Endovasc Surg. 1997;13(3):301-305. doi:10.1016/S1078-5884(97)80102-5PubMedGoogle ScholarCrossref
20.
McDermott  MM , Greenland  P , Liu  K ,  et al.  The ankle brachial index is associated with leg function and physical activity: the Walking and Leg Circulation Study.   Ann Intern Med. 2002;136(12):873-883. doi:10.7326/0003-4819-136-12-200206180-00008 PubMedGoogle ScholarCrossref
21.
Fowkes  FG , Murray  GD , Butcher  I ,  et al; Ankle Brachial Index Collaboration.  Ankle brachial index combined with Framingham Risk Score to predict cardiovascular events and mortality: a meta-analysis.   JAMA. 2008;300(2):197-208. doi:10.1001/jama.300.2.197 PubMedGoogle ScholarCrossref
22.
McDermott  MM .  Lower extremity manifestations of peripheral artery disease: the pathophysiologic and functional implications of leg ischemia.   Circ Res. 2015;116(9):1540-1550. doi:10.1161/CIRCRESAHA.114.303517 PubMedGoogle ScholarCrossref
23.
McDermott  MM , Greenland  P , Liu  K ,  et al.  Leg symptoms in peripheral arterial disease: associated clinical characteristics and functional impairment.   JAMA. 2001;286(13):1599-1606. doi:10.1001/jama.286.13.1599 PubMedGoogle ScholarCrossref
24.
Hirsch  AT , Criqui  MH , Treat-Jacobson  D ,  et al.  Peripheral arterial disease detection, awareness, and treatment in primary care.   JAMA. 2001;286(11):1317-1324. doi:10.1001/jama.286.11.1317 PubMedGoogle ScholarCrossref
25.
Curry  SJ , Krist  AH , Owens  DK ,  et al; US Preventive Services Task Force.  Screening for peripheral artery disease and cardiovascular disease risk assessment with the ankle-brachial index: US Preventive Services Task Force recommendation statement.   JAMA. 2018;320(2):177-183. doi:10.1001/jama.2018.8357 PubMedGoogle ScholarCrossref
26.
Hopley  CW , Kavanagh  S , Patel  MR ,  et al.  Chronic kidney disease and risk for cardiovascular and limb outcomes in patients with symptomatic peripheral artery disease: the EUCLID trial.   Vasc Med. 2019;24(5):422-430. doi:10.1177/1358863X19864172 PubMedGoogle ScholarCrossref
27.
Low Wang  CC , Blomster  JI , Heizer  G ,  et al; EUCLID Trial Executive Committee and Investigators.  Cardiovascular and limb outcomes in patients with diabetes and peripheral artery disease: the EUCLID trial.   J Am Coll Cardiol. 2018;72(25):3274-3284. doi:10.1016/j.jacc.2018.09.078 PubMedGoogle ScholarCrossref
28.
Gutierrez  JA , Mulder  H , Jones  WS ,  et al.  Polyvascular disease and risk of major adverse cardiovascular events in peripheral artery disease: a secondary analysis of the EUCLID trial.   JAMA Netw Open. 2018;1(7):e185239. doi:10.1001/jamanetworkopen.2018.5239 PubMedGoogle Scholar
29.
Dolan  NC , Liu  K , Criqui  MH ,  et al.  Peripheral artery disease, diabetes, and reduced lower extremity functioning.   Diabetes Care. 2002;25(1):113-120. doi:10.2337/diacare.25.1.113 PubMedGoogle ScholarCrossref
30.
Rucker-Whitaker  C , Greenland  P , Liu  K ,  et al.  Peripheral arterial disease in African Americans: clinical characteristics, leg symptoms, and lower extremity functioning.   J Am Geriatr Soc. 2004;52(6):922-930. doi:10.1111/j.1532-5415.2004.52259.x PubMedGoogle ScholarCrossref
31.
Gardner  AW , Montgomery  PS , Killewich  LA .  Natural history of physical function in older men with intermittent claudication.   J Vasc Surg. 2004;40(1):73-78. doi:10.1016/j.jvs.2004.02.010 PubMedGoogle ScholarCrossref
32.
McDermott  MM , Liu  K , Greenland  P ,  et al.  Functional decline in peripheral arterial disease: associations with the ankle brachial index and leg symptoms.   JAMA. 2004;292(4):453-461. doi:10.1001/jama.292.4.453 PubMedGoogle ScholarCrossref
33.
Leng  GC , Lee  AJ , Fowkes  FG ,  et al.  Incidence, natural history and cardiovascular events in symptomatic and asymptomatic peripheral arterial disease in the general population.   Int J Epidemiol. 1996;25(6):1172-1181. doi:10.1093/ije/25.6.1172 PubMedGoogle ScholarCrossref
34.
Braunwald  E , Fauci  AS , Kasper  DL ,  et al, eds.  Harrison’s Principles of Internal Medicine. 15th ed. McGraw-Hill Medical Publishing Division; 2001.
35.
McDermott  MM , Guralnik  JM , Ferrucci  L ,  et al.  Asymptomatic peripheral arterial disease is associated with more adverse lower extremity characteristics than intermittent claudication.   Circulation. 2008;117(19):2484-2491. doi:10.1161/CIRCULATIONAHA.107.736108 PubMedGoogle ScholarCrossref
36.
Morley  RL , Sharma  A , Horsch  AD , Hinchliffe  RJ .  Peripheral artery disease.   BMJ. 2018;360:j5842. doi:10.1136/bmj.j5842 PubMedGoogle ScholarCrossref
37.
Barnes  JA , Eid  MA , Creager  MA , Goodney  PP .  Epidemiology and risk of amputation in patients with diabetes mellitus and peripheral artery disease.   Arterioscler Thromb Vasc Biol. 2020;40(8):1808-1817. doi:10.1161/ATVBAHA.120.314595 PubMedGoogle ScholarCrossref
38.
Newhall  K , Spangler  E , Dzebisashvili  N , Goodman  DC , Goodney  P .  Amputation rates for patients with diabetes and peripheral arterial disease: the effects of race and region.   Ann Vasc Surg. 2016;30:292-298.e1. doi:10.1016/j.avsg.2015.07.040 PubMedGoogle ScholarCrossref
39.
Hess  CN , Huang  Z , Patel  MR ,  et al.  Acute limb ischemia in peripheral artery disease.   Circulation. 2019;140(7):556-565. doi:10.1161/CIRCULATIONAHA.119.039773 PubMedGoogle ScholarCrossref
40.
Heart Protection Study Collaborative Group.  Randomized trial of the effects of cholesterol-lowering with simvastatin on peripheral vascular and other major vascular outcomes in 20,536 people with peripheral arterial disease and other high-risk conditions.   J Vasc Surg. 2007;45(4):645-654. doi:10.1016/j.jvs.2006.12.054 PubMedGoogle ScholarCrossref
41.
Bonaca  MP , Gutierrez  JA , Cannon  C ,  et al.  Polyvascular disease, type 2 diabetes, and long-term vascular risk: a secondary analysis of the IMPROVE-IT trial.   Lancet Diabetes Endocrinol. 2018;6(12):934-943. doi:10.1016/S2213-8587(18)30290-0PubMedGoogle ScholarCrossref
42.
Bonaca  MP , Nault  P , Giugliano  RP ,  et al.  Low-density lipoprotein cholesterol lowering with evolocumab and outcomes in patients with peripheral artery disease: insights from the FOURIER trial (Further Cardiovascular Outcomes Research With PCSK9 Inhibition in Subjects With Elevated Risk).   Circulation. 2018;137(4):338-350. doi:10.1161/CIRCULATIONAHA.117.032235 PubMedGoogle ScholarCrossref
43.
Grundy  SM , Stone  NJ , Bailey  AL ,  et al.  2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines.   Circulation. 2019;139(25):e1082-e1143.PubMedGoogle Scholar
44.
Mach  F , Baigent  C , Catapano  AL ,  et al; ESC Scientific Document Group.  2019 ESC/EAS guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk.   Eur Heart J. 2020;41(1):111-188. doi:10.1093/eurheartj/ehz455 PubMedGoogle ScholarCrossref
45.
Berger  JS , Krantz  MJ , Kittelson  JM , Hiatt  WR .  Aspirin for the prevention of cardiovascular events in patients with peripheral artery disease: a meta-analysis of randomized trials.   JAMA. 2009;301(18):1909-1919. doi:10.1001/jama.2009.623 PubMedGoogle ScholarCrossref
46.
CAPRIE Steering Committee.  A randomised, blinded, trial of clopidogrel versus aspirin in patients at risk of ischaemic events (CAPRIE).   Lancet. 1996;348(9038):1329-1339. doi:10.1016/S0140-6736(96)09457-3 PubMedGoogle ScholarCrossref
47.
Cacoub  PP , Bhatt  DL , Steg  PG , Topol  EJ , Creager  MA ; CHARISMA Investigators.  Patients with peripheral arterial disease in the CHARISMA trial.   Eur Heart J. 2009;30(2):192-201. doi:10.1093/eurheartj/ehn534 PubMedGoogle ScholarCrossref
48.
Hiatt  WR , Fowkes  FG , Heizer  G ,  et al; EUCLID Trial Steering Committee and Investigators.  Ticagrelor versus clopidogrel in symptomatic peripheral artery disease.   N Engl J Med. 2017;376(1):32-40. doi:10.1056/NEJMoa1611688 PubMedGoogle ScholarCrossref
49.
Bonaca  MP , Bhatt  DL , Storey  RF ,  et al.  Ticagrelor for prevention of ischemic events after myocardial infarction in patients with peripheral artery disease.   J Am Coll Cardiol. 2016;67(23):2719-2728. doi:10.1016/j.jacc.2016.03.524 PubMedGoogle ScholarCrossref
50.
Bonaca  MP , Scirica  BM , Creager  MA ,  et al.  Vorapaxar in patients with peripheral artery disease: results from TRA2oP-TIMI50.   Circulation. 2013;127(14):1522-1529, 1529e1-6. doi:10.1161/CIRCULATIONAHA.112.000679 PubMedGoogle ScholarCrossref
51.
Anand  SS , Caron  F , Eikelboom  JW ,  et al.  Major adverse limb events and mortality in patients with peripheral artery disease: the COMPASS trial.   J Am Coll Cardiol. 2018;71(20):2306-2315. doi:10.1016/j.jacc.2018.03.008 PubMedGoogle ScholarCrossref
52.
Bonaca  MP , Bauersachs  RM , Anand  SS ,  et al.  Rivaroxaban in peripheral artery disease after revascularization.   N Engl J Med. 2020;382(21):1994-2004. doi:10.1056/NEJMoa2000052 PubMedGoogle ScholarCrossref
53.
Hess  CN , Hiatt  WR .  Antithrombotic therapy for peripheral artery disease in 2018.   JAMA. 2018;319(22):2329-2330. doi:10.1001/jama.2018.5422 PubMedGoogle ScholarCrossref
54.
Eikelboom  JW , Connolly  SJ , Bosch  J ,  et al; COMPASS Investigators.  Rivaroxaban with or without aspirin in stable cardiovascular disease.   N Engl J Med. 2017;377(14):1319-1330. doi:10.1056/NEJMoa1709118 PubMedGoogle ScholarCrossref
55.
Narula  N , Dannenberg  AJ , Olin  JW ,  et al.  Pathology of peripheral artery disease in patients with critical ischemia.   J Am Coll Cardiol. 2018;72(18):2152-2163. doi:10.1016/j.jacc.2018.08.002 PubMedGoogle ScholarCrossref
56.
Whelton  PK , Carey  RM , Aronow  WS ,  et al.  2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines.   Hypertension. 2018;71(6):1269-1324. doi:10.1161/HYP.0000000000000066 PubMedGoogle ScholarCrossref
57.
Mehler  PS , Coll  JR , Estacio  R , Esler  A , Schrier  RW , Hiatt  WR .  Intensive blood pressure control reduces the risk of cardiovascular events in patients with peripheral arterial disease and type 2 diabetes.   Circulation. 2003;107(5):753-756. doi:10.1161/01.CIR.0000049640.46039.52 PubMedGoogle ScholarCrossref
58.
Yusuf  S , Sleight  P , Pogue  J , Bosch  J , Davies  R , Dagenais  G ; Heart Outcomes Prevention Evaluation Study Investigators.  Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients.   N Engl J Med. 2000;342(3):145-153. doi:10.1056/NEJM200001203420301 PubMedGoogle ScholarCrossref
59.
Mahaffey  KW , Neal  B , Perkovic  V ,  et al; CANVAS Program Collaborative Group.  Canagliflozin for primary and secondary prevention of cardiovascular events: results from the CANVAS program (Canagliflozin Cardiovascular Assessment Study).   Circulation. 2018;137(4):323-334. doi:10.1161/CIRCULATIONAHA.117.032038 PubMedGoogle ScholarCrossref
60.
Chang  HY , Singh  S , Mansour  O , Baksh  S , Alexander  GC .  Association between sodium-glucose cotransporter 2 inhibitors and lower extremity amputation among patients with type 2 diabetes.   JAMA Intern Med. 2018;178(9):1190-1198. doi:10.1001/jamainternmed.2018.3034 PubMedGoogle ScholarCrossref
61.
Dhatariya  K , Bain  SC , Buse  JB ,  et al; LEADER Publication Committee on behalf of the LEADER Trial Investigators.  The impact of liraglutide on diabetes-related foot ulceration and associated complications in patients with type 2 diabetes at high risk for cardiovascular events: results from the LEADER trial.   Diabetes Care. 2018;41(10):2229-2235. doi:10.2337/dc18-1094 PubMedGoogle ScholarCrossref
62.
Jonason  T , Bergström  R .  Cessation of smoking in patients with intermittent claudication: effects on the risk of peripheral vascular complications, myocardial infarction and mortality.   Acta Med Scand. 1987;221(3):253-260. doi:10.1111/j.0954-6820.1987.tb00891.x PubMedGoogle ScholarCrossref
63.
Armstrong  EJ , Wu  J , Singh  GD ,  et al.  Smoking cessation is associated with decreased mortality and improved amputation-free survival among patients with symptomatic peripheral artery disease.   J Vasc Surg. 2014;60(6):1565-1571. doi:10.1016/j.jvs.2014.08.064 PubMedGoogle ScholarCrossref
64.
Seiffge  D , Kiesewetter  H .  Effect of pentoxifylline on single red cell deformability.   Klin Wochenschr. 1981;59(22):1271-1272. doi:10.1007/BF01747760 PubMedGoogle ScholarCrossref
65.
Salhiyyah  K , Forster  R , Senanayake  E , Abdel-Hadi  M , Booth  A , Michaels  JA .  Pentoxifylline for intermittent claudication.   Cochrane Database Syst Rev. 2015;9(9):CD005262.PubMedGoogle Scholar
66.
Bedenis  R , Stewart  M , Cleanthis  M , Robless  P , Mikhailidis  DP , Stansby  G .  Cilostazol for intermittent claudication.   Cochrane Database Syst Rev. 2014;10(10):CD003748.PubMedGoogle Scholar
67.
Fakhry  F , van de Luijtgaarden  KM , Bax  L ,  et al.  Supervised walking therapy in patients with intermittent claudication.   J Vasc Surg. 2012;56(4):1132-1142. doi:10.1016/j.jvs.2012.04.046 PubMedGoogle ScholarCrossref
68.
Lee  C , Nelson  PR .  Effect of cilostazol prescribed in a pragmatic treatment program for intermittent claudication.   Vasc Endovascular Surg. 2014;48(3):224-229. doi:10.1177/1538574413518121 PubMedGoogle ScholarCrossref
69.
McDermott  MM , Ferrucci  L , Tian  L ,  et al.  Effect of granulocyte-macrophage colony-stimulating factor with or without supervised exercise on walking performance in patients with peripheral artery disease: the PROPEL randomized clinical trial.   JAMA. 2017;318(21):2089-2098. doi:10.1001/jama.2017.17437 PubMedGoogle ScholarCrossref
70.
McDermott  MM , Ades  P , Guralnik  JM ,  et al.  Treadmill exercise and resistance training in patients with peripheral arterial disease with and without intermittent claudication: a randomized controlled trial.   JAMA. 2009;301(2):165-174. doi:10.1001/jama.2008.962 PubMedGoogle ScholarCrossref
71.
Gommans  LN , Fokkenrood  HJ , van Dalen  HC , Scheltinga  MR , Teijink  JA , Peters  RJ .  Safety of supervised exercise therapy in patients with intermittent claudication.   J Vasc Surg. 2015;61(2):512-518.e2. doi:10.1016/j.jvs.2014.08.070 PubMedGoogle ScholarCrossref
72.
Gardner  AW , Parker  DE , Montgomery  PS , Blevins  SM .  Step-monitored home exercise improves ambulation, vascular function, and inflammation in symptomatic patients with peripheral artery disease: a randomized controlled trial.   J Am Heart Assoc. 2014;3(5):e001107. doi:10.1161/JAHA.114.001107 PubMedGoogle Scholar
73.
McDermott  MM , Liu  K , Guralnik  JM ,  et al.  Home-based walking exercise intervention in peripheral artery disease: a randomized clinical trial.   JAMA. 2013;310(1):57-65. doi:10.1001/jama.2013.7231 PubMedGoogle ScholarCrossref
74.
McDermott  MM , Spring  B , Tian  L ,  et al.  Effect of low-intensity vs high-intensity home-based walking exercise on walk distance in patients with peripheral artery disease: the LITE randomized clinical trial.   JAMA. 2021;325(13):1266-1276. doi:10.1001/jama.2021.2536 PubMedGoogle ScholarCrossref
75.
Zwierska  I , Walker  RD , Choksy  SA , Male  JS , Pockley  AG , Saxton  JM .  Upper- vs lower-limb aerobic exercise rehabilitation in patients with symptomatic peripheral arterial disease: a randomized controlled trial.   J Vasc Surg. 2005;42(6):1122-1130. doi:10.1016/j.jvs.2005.08.021 PubMedGoogle ScholarCrossref
76.
Tew  G , Nawaz  S , Zwierska  I , Saxton  JM .  Limb-specific and cross-transfer effects of arm-crank exercise training in patients with symptomatic peripheral arterial disease.   Clin Sci (Lond). 2009;117(12):405-413. doi:10.1042/CS20080688 PubMedGoogle ScholarCrossref
77.
Lane  R , Harwood  A , Watson  L , Leng  GC .  Exercise for intermittent claudication.   Cochrane Database Syst Rev. 2017;12(12):CD000990. doi:10.1002/14651858.CD000990.pub4PubMedGoogle Scholar
78.
McDermott  MM , Guralnik  JM , Tian  L ,  et al.  Comparing 6-minute walk versus treadmill walking distance as outcomes in randomized trials of peripheral artery disease.   J Vasc Surg. 2020;71(3):988-1001. doi:10.1016/j.jvs.2019.05.058 PubMedGoogle ScholarCrossref
79.
McDermott  MM , Guralnik  JM , Criqui  MH , Liu  K , Kibbe  MR , Ferrucci  L .  Six-minute walk is a better outcome measure than treadmill walking tests in therapeutic trials of patients with peripheral artery disease.   Circulation. 2014;130(1):61-68. doi:10.1161/CIRCULATIONAHA.114.007002 PubMedGoogle ScholarCrossref
80.
Vemulapalli  S , Dolor  RJ , Hasselblad  V ,  et al.  Supervised vs unsupervised exercise for intermittent claudication: a systematic review and meta-analysis.   Am Heart J. 2015;169(6):924-937.e3. doi:10.1016/j.ahj.2015.03.009 PubMedGoogle ScholarCrossref
81.
Jensen  TS , Chin  J , Ashby  L , Schafer  J , Dolan  D . National Coverage Determination for Supervised Exercise Therapy (SET) for Symptomatic Peripheral Artery Disease (PAD). Centers for Medicare & Medicaid Services; 2017.
82.
Dua  A , Gologorsky  R , Savage  D ,  et al.  National assessment of availability, awareness, and utilization of supervised exercise therapy for peripheral artery disease patients with intermittent claudication.   J Vasc Surg. 2020;71(5):1702-1707. doi:10.1016/j.jvs.2019.08.238 PubMedGoogle ScholarCrossref
83.
Harwood  AE , Smith  GE , Cayton  T , Broadbent  E , Chetter  IC .  A systematic review of the uptake and adherence rates to supervised exercise programs in patients with intermittent claudication.   Ann Vasc Surg. 2016;34:280-289. doi:10.1016/j.avsg.2016.02.009 PubMedGoogle ScholarCrossref
84.
Gardner  AW , Parker  DE , Montgomery  PS , Scott  KJ , Blevins  SM .  Efficacy of quantified home-based exercise and supervised exercise in patients with intermittent claudication: a randomized controlled trial.   Circulation. 2011;123(5):491-498. doi:10.1161/CIRCULATIONAHA.110.963066 PubMedGoogle ScholarCrossref
85.
Collins  TC , Lunos  S , Carlson  T ,  et al.  Effects of a home-based walking intervention on mobility and quality of life in people with diabetes and peripheral arterial disease: a randomized controlled trial.   Diabetes Care. 2011;34(10):2174-2179. doi:10.2337/dc10-2399 PubMedGoogle ScholarCrossref
86.
Collins  TC , Lu  L , Ahluwalia  JS ,  et al.  Efficacy of community-based exercise therapy among African American patients with peripheral artery disease: a randomized clinical trial.   JAMA Netw Open. 2019;2(2):e187959. doi:10.1001/jamanetworkopen.2018.7959 PubMedGoogle Scholar
87.
McDermott  MM , Spring  B , Berger  JS ,  et al.  Effect of a home-based exercise intervention of wearable technology and telephone coaching on walking performance in peripheral artery disease: the HONOR randomized clinical trial.   JAMA. 2018;319(16):1665-1676. doi:10.1001/jama.2018.3275 PubMedGoogle ScholarCrossref
88.
Conte  MS .  Data, guidelines, and practice of revascularization for claudication.   J Vasc Surg. 2017;66(3):911-915. doi:10.1016/j.jvs.2017.05.105 PubMedGoogle ScholarCrossref
89.
Pandey  A , Banerjee  S , Ngo  C ,  et al.  Comparative efficacy of endovascular revascularization versus supervised exercise training in patients with intermittent claudication: meta-analysis of randomized controlled trials.   JACC Cardiovasc Interv. 2017;10(7):712-724. doi:10.1016/j.jcin.2017.01.027 PubMedGoogle ScholarCrossref
90.
McDermott  MM , Kibbe  MR .  Improving lower extremity functioning in peripheral artery disease: exercise, endovascular revascularization, or both?   JAMA. 2017;317(7):689-690. doi:10.1001/jama.2016.20673 PubMedGoogle ScholarCrossref
91.
Djerf  H , Millinger  J , Falkenberg  M , Jivegård  L , Svensson  M , Nordanstig  J .  Absence of long-term benefit of revascularization in patients with intermittent claudication: five-year results from the IRONIC randomized controlled trial.   Circ Cardiovasc Interv. 2020;13(1):e008450. doi:10.1161/CIRCINTERVENTIONS.119.008450 PubMedGoogle Scholar
92.
Klein  AJ , Ross  CB .  Endovascular treatment of lower extremity peripheral arterial disease.   Trends Cardiovasc Med. 2016;26(6):495-512. doi:10.1016/j.tcm.2016.02.007 PubMedGoogle ScholarCrossref
93.
Fakhry  F , Spronk  S , van der Laan  L ,  et al.  Endovascular revascularization and supervised exercise for peripheral artery disease and intermittent claudication: a randomized clinical trial.   JAMA. 2015;314(18):1936-1944. doi:10.1001/jama.2015.14851 PubMedGoogle ScholarCrossref
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_Multimedia_LoginSubscribe_Purchase
Close
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_Multimedia_LoginSubscribe_Purchase
Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close

Name Your Search

Save Search
Close
With a personal account, you can:
  • Track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
jn-learning_Modal_SaveSearch_NoAccess_Purchase
Close

Lookup An Activity

or

Close

My Saved Searches

You currently have no searches saved.

Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close