[Skip to Content]
[Skip to Content Landing]

Association of Real-time Continuous Glucose Monitoring With Glycemic Control and Acute Metabolic Events Among Patients With Insulin-Treated Diabetes

Educational Objective
To learn the association between initiation of real-time continuous glucose monitoring and diabetes-related clinical outcomes among patients with insulin-treated diabetes.
1 Credit CME
Key Points

Question  Are there clinical benefits associated with real-time continuous glucose monitoring (CGM) among patients with insulin-treated diabetes?

Findings  In this retrospective cohort study in a usual care setting that included 5673 patients with type 1 diabetes and 36 080 patients with type 2 diabetes, use of real-time CGM compared with nonuse was associated with significantly lower hemoglobin A1c (difference, −0.40%) and lower rates of emergency department visits or hospitalizations for hypoglycemia (difference, −2.73%) but no significant difference for rates of emergency department visits or hospitalizations for hyperglycemia or for other reasons.

Meaning  Among patients selected by physicians for real-time continuous glucose monitoring use was associated with better glycemic control and lower rates of hypoglycemia.

Abstract

Importance  Continuous glucose monitoring (CGM) is recommended for patients with type 1 diabetes; observational evidence for CGM in patients with insulin-treated type 2 diabetes is lacking.

Objective  To estimate clinical outcomes of real-time CGM initiation.

Design, Setting, and Participants  Exploratory retrospective cohort study of changes in outcomes associated with real-time CGM initiation, estimated using a difference-in-differences analysis. A total of 41 753 participants with insulin-treated diabetes (5673 type 1; 36 080 type 2) receiving care from a Northern California integrated health care delivery system (2014-2019), being treated with insulin, self-monitoring their blood glucose levels, and having no prior CGM use were included.

Exposures  Initiation vs noninitiation of real-time CGM (reference group).

Main Outcomes and Measures  Ten end points measured during the 12 months before and 12 months after baseline: hemoglobin A1c (HbA1c); hypoglycemia (emergency department or hospital utilization); hyperglycemia (emergency department or hospital utilization); HbA1c levels lower than 7%, lower than 8%, and higher than 9%; 1 emergency department encounter or more for any reason; 1 hospitalization or more for any reason; and number of outpatient visits and telephone visits.

Results  The real-time CGM initiators included 3806 patients (mean age, 42.4 years [SD, 19.9 years]; 51% female; 91% type 1, 9% type 2); the noninitiators included 37 947 patients (mean age, 63.4 years [SD, 13.4 years]; 49% female; 6% type 1, 94% type 2). The prebaseline mean HbA1c was lower among real-time CGM initiators than among noninitiators, but real-time CGM initiators had higher prebaseline rates of hypoglycemia and hyperglycemia. Mean HbA1c declined among real-time CGM initiators from 8.17% to 7.76% and from 8.28% to 8.19% among noninitiators (adjusted difference-in-differences estimate, −0.40%; 95% CI, −0.48% to −0.32%; P < .001). Hypoglycemia rates declined among real-time CGM initiators from 5.1% to 3.0% and increased among noninitiators from 1.9% to 2.3% (difference-in-differences estimate, −2.7%; 95% CI, −4.4% to −1.1%; P = .001). There were also statistically significant differences in the adjusted net changes in the proportion of patients with HbA1c lower than 7% (adjusted difference-in-differences estimate, 9.6%; 95% CI, 7.1% to 12.2%; P < .001), lower than 8% (adjusted difference-in-differences estimate, 13.1%; 95% CI, 10.2% to 16.1%; P < .001), and higher than 9% (adjusted difference-in-differences estimate, −7.1%; 95% CI, −9.5% to −4.6%; P < .001) and in the number of outpatient visits (adjusted difference-in-differences estimate, −0.4; 95% CI, −0.6 to −0.2; P < .001) and telephone visits (adjusted difference-in-differences estimate, 1.1; 95% CI, 0.8 to 1.4; P < .001). Initiation of real-time CGM was not associated with statistically significant changes in rates of hyperglycemia, emergency department visits for any reason, or hospitalizations for any reason.

Conclusions and Relevance  In this retrospective cohort study, insulin-treated patients with diabetes selected by physicians for real-time continuous glucose monitoring compared with noninitiators had significant improvements in hemoglobin A1c and reductions in emergency department visits and hospitalizations for hypoglycemia, but no significant change in emergency department visits or hospitalizations for hyperglycemia or for any reason. Because of the observational study design, findings may have been susceptible to selection bias.

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 Credit(s)™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

CME Disclosure Statement: Unless noted, all individuals in control of content reported no relevant financial relationships. If applicable, all relevant financial relationships have been mitigated.

Article Information

Corresponding Author: Andrew J. Karter, PhD, Division of Research, Kaiser Permanente, 2000 Broadway, Oakland, CA 94612 (andy.j.karter@kp.org).

Accepted for Publication: April 12, 2021.

Published Online: June 2, 2021. doi:10.1001/jama.2021.6530

Author Contributions: Dr Karter and Ms Parker had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: Karter, Parker, Moffet.

Acquisition, analysis, or interpretation of data: All authors.

Drafting of the manuscript: Karter, Parker, Moffet.

Critical revision of the manuscript for important intellectual content: All authors.

Statistical analysis: Parker.

Obtained funding: Karter, Moffet.

Administrative, technical, or material support: Moffet.

Supervision: Karter.

Conflict of Interest Disclosures: Dr Karter reported receiving grants from Dexcom (an independent investigator award), the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), the National Institute on Aging (NIA), the National Library of Medicine, and the Patient-Centered Outcomes Research Institute. Ms Parker reported receiving grants from Dexcom Inc, the NIDDK, and the National Institute on Aging (NIA). Mr Moffet reported receiving grants from Dexcom, the NIDDK, the NIA, Kaiser Permanente Northern California Community Benefits, and the National Library of Medicine. No other disclosures were reported.

Funding/Support: This research was supported by an independent investigator award from Dexcom and funding from grants R01 DK103721 and P30 DK092924 from the NIDDK.

Role of the Funder/Sponsor: The sponsors had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and had no role in the decision to submit the manuscript for publication. The sponsor did not have the right to veto publication or to control the decision regarding to which journal the paper was submitted.

AMA CME Accreditation Information

Credit Designation Statement: The American Medical Association designates this Journal-based CME activity activity for a maximum of 1.00  AMA PRA Category 1 Credit(s)™. Physicians should claim only the credit commensurate with the extent of their participation in the activity.

Successful completion of this CME activity, which includes participation in the evaluation component, enables the participant to earn up to:

  • 1.00 Medical Knowledge MOC points in the American Board of Internal Medicine's (ABIM) Maintenance of Certification (MOC) program;;
  • 1.00 Self-Assessment points in the American Board of Otolaryngology – Head and Neck Surgery’s (ABOHNS) Continuing Certification program;
  • 1.00 MOC points in the American Board of Pediatrics’ (ABP) Maintenance of Certification (MOC) program;
  • 1.00 Lifelong Learning points in the American Board of Pathology’s (ABPath) Continuing Certification program; and
  • 1.00 credit toward the CME of the American Board of Surgery’s Continuous Certification program

It is the CME activity provider's responsibility to submit participant completion information to ACCME for the purpose of granting MOC credit.

Close
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
Close
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close

Name Your Search

Save Search
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Close
Close

Lookup An Activity

or

My Saved Searches

You currently have no searches saved.

Close

My Saved Courses

You currently have no courses saved.

Close