Real-time Continuous Glucose Monitoring and Glycemic Control in Insulin-Treated Patients With Diabetes | Diabetes | JN Learning | AMA Ed Hub [Skip to Content]
[Skip to Content Landing]

Association of Real-time Continuous Glucose Monitoring With Glycemic Control and Acute Metabolic Events Among Patients With Insulin-Treated Diabetes

Educational Objective
To learn the association between initiation of real-time continuous glucose monitoring and diabetes-related clinical outcomes among patients with insulin-treated diabetes.
1 Credit CME
Key Points

Question  Are there clinical benefits associated with real-time continuous glucose monitoring (CGM) among patients with insulin-treated diabetes?

Findings  In this retrospective cohort study in a usual care setting that included 5673 patients with type 1 diabetes and 36 080 patients with type 2 diabetes, use of real-time CGM compared with nonuse was associated with significantly lower hemoglobin A1c (difference, −0.40%) and lower rates of emergency department visits or hospitalizations for hypoglycemia (difference, −2.73%) but no significant difference for rates of emergency department visits or hospitalizations for hyperglycemia or for other reasons.

Meaning  Among patients selected by physicians for real-time continuous glucose monitoring use was associated with better glycemic control and lower rates of hypoglycemia.

Abstract

Importance  Continuous glucose monitoring (CGM) is recommended for patients with type 1 diabetes; observational evidence for CGM in patients with insulin-treated type 2 diabetes is lacking.

Objective  To estimate clinical outcomes of real-time CGM initiation.

Design, Setting, and Participants  Exploratory retrospective cohort study of changes in outcomes associated with real-time CGM initiation, estimated using a difference-in-differences analysis. A total of 41 753 participants with insulin-treated diabetes (5673 type 1; 36 080 type 2) receiving care from a Northern California integrated health care delivery system (2014-2019), being treated with insulin, self-monitoring their blood glucose levels, and having no prior CGM use were included.

Exposures  Initiation vs noninitiation of real-time CGM (reference group).

Main Outcomes and Measures  Ten end points measured during the 12 months before and 12 months after baseline: hemoglobin A1c (HbA1c); hypoglycemia (emergency department or hospital utilization); hyperglycemia (emergency department or hospital utilization); HbA1c levels lower than 7%, lower than 8%, and higher than 9%; 1 emergency department encounter or more for any reason; 1 hospitalization or more for any reason; and number of outpatient visits and telephone visits.

Results  The real-time CGM initiators included 3806 patients (mean age, 42.4 years [SD, 19.9 years]; 51% female; 91% type 1, 9% type 2); the noninitiators included 37 947 patients (mean age, 63.4 years [SD, 13.4 years]; 49% female; 6% type 1, 94% type 2). The prebaseline mean HbA1c was lower among real-time CGM initiators than among noninitiators, but real-time CGM initiators had higher prebaseline rates of hypoglycemia and hyperglycemia. Mean HbA1c declined among real-time CGM initiators from 8.17% to 7.76% and from 8.28% to 8.19% among noninitiators (adjusted difference-in-differences estimate, −0.40%; 95% CI, −0.48% to −0.32%; P < .001). Hypoglycemia rates declined among real-time CGM initiators from 5.1% to 3.0% and increased among noninitiators from 1.9% to 2.3% (difference-in-differences estimate, −2.7%; 95% CI, −4.4% to −1.1%; P = .001). There were also statistically significant differences in the adjusted net changes in the proportion of patients with HbA1c lower than 7% (adjusted difference-in-differences estimate, 9.6%; 95% CI, 7.1% to 12.2%; P < .001), lower than 8% (adjusted difference-in-differences estimate, 13.1%; 95% CI, 10.2% to 16.1%; P < .001), and higher than 9% (adjusted difference-in-differences estimate, −7.1%; 95% CI, −9.5% to −4.6%; P < .001) and in the number of outpatient visits (adjusted difference-in-differences estimate, −0.4; 95% CI, −0.6 to −0.2; P < .001) and telephone visits (adjusted difference-in-differences estimate, 1.1; 95% CI, 0.8 to 1.4; P < .001). Initiation of real-time CGM was not associated with statistically significant changes in rates of hyperglycemia, emergency department visits for any reason, or hospitalizations for any reason.

Conclusions and Relevance  In this retrospective cohort study, insulin-treated patients with diabetes selected by physicians for real-time continuous glucose monitoring compared with noninitiators had significant improvements in hemoglobin A1c and reductions in emergency department visits and hospitalizations for hypoglycemia, but no significant change in emergency department visits or hospitalizations for hyperglycemia or for any reason. Because of the observational study design, findings may have been susceptible to selection bias.

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 CME Credit™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

Article Information

Corresponding Author: Andrew J. Karter, PhD, Division of Research, Kaiser Permanente, 2000 Broadway, Oakland, CA 94612 (andy.j.karter@kp.org).

Accepted for Publication: April 12, 2021.

Published Online: June 2, 2021. doi:10.1001/jama.2021.6530

Author Contributions: Dr Karter and Ms Parker had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: Karter, Parker, Moffet.

Acquisition, analysis, or interpretation of data: All authors.

Drafting of the manuscript: Karter, Parker, Moffet.

Critical revision of the manuscript for important intellectual content: All authors.

Statistical analysis: Parker.

Obtained funding: Karter, Moffet.

Administrative, technical, or material support: Moffet.

Supervision: Karter.

Conflict of Interest Disclosures: Dr Karter reported receiving grants from Dexcom (an independent investigator award), the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), the National Institute on Aging (NIA), the National Library of Medicine, and the Patient-Centered Outcomes Research Institute. Ms Parker reported receiving grants from Dexcom Inc, the NIDDK, and the National Institute on Aging (NIA). Mr Moffet reported receiving grants from Dexcom, the NIDDK, the NIA, Kaiser Permanente Northern California Community Benefits, and the National Library of Medicine. No other disclosures were reported.

Funding/Support: This research was supported by an independent investigator award from Dexcom and funding from grants R01 DK103721 and P30 DK092924 from the NIDDK.

Role of the Funder/Sponsor: The sponsors had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and had no role in the decision to submit the manuscript for publication. The sponsor did not have the right to veto publication or to control the decision regarding to which journal the paper was submitted.

References
1.
Pratley  RE , Kanapka  LG , Rickels  MR ,  et al; Wireless Innovation for Seniors With Diabetes Mellitus (WISDM) Study Group.  Effect of continuous glucose monitoring on hypoglycemia in older adults with type 1 diabetes: a randomized clinical trial.   JAMA. 2020;323(23):2397-2406. doi:10.1001/jama.2020.6928 PubMedGoogle ScholarCrossref
2.
Beck  RW , Riddlesworth  TD , Ruedy  K ,  et al; DIAMOND Study Group.  Continuous glucose monitoring versus usual care in patients with type 2 diabetes receiving multiple daily insulin injections: a randomized trial.   Ann Intern Med. 2017;167(6):365-374. doi:10.7326/M16-2855 PubMedGoogle ScholarCrossref
3.
Huang  ES , O’Grady  M , Basu  A ,  et al; Juvenile Diabetes Research Foundation Continuous Glucose Monitoring Study Group.  The cost-effectiveness of continuous glucose monitoring in type 1 diabetes.   Diabetes Care. 2010;33(6):1269-1274. doi:10.2337/dc09-2042 PubMedGoogle ScholarCrossref
4.
Lind  M , Ólafsdóttir  AF , Hirsch  IB ,  et al.  Sustained Intensive Treatment and Long-term Effects on HbA1c Reduction (SILVER Study) by CGM in people with type 1 diabetes treated with MDI.   Diabetes Care. 2021;44(1):141-149. doi:10.2337/dc20-1468 PubMedGoogle ScholarCrossref
5.
American Diabetes Association.  7. Diabetes Technology: Standards of Medical Care in Diabetes-2021.   Diabetes Care. 2021;44(suppl 1):S85-S99. doi:10.2337/dc21-S007 PubMedGoogle ScholarCrossref
6.
Dicembrini  I , Mannucci  E , Monami  M , Pala  L .  Impact of technology on glycaemic control in type 2 diabetes: a meta-analysis of randomized trials on continuous glucose monitoring and continuous subcutaneous insulin infusion.   Diabetes Obes Metab. 2019;21(12):2619-2625. doi:10.1111/dom.13845 PubMedGoogle ScholarCrossref
7.
Karter  AJ , Ferrara  A , Liu  JY , Moffet  HH , Ackerson  LM , Selby  JV .  Ethnic disparities in diabetic complications in an insured population.   JAMA. 2002;287(19):2519-2527. doi:10.1001/jama.287.19.2519 PubMedGoogle ScholarCrossref
8.
Parker  MM , Fernández  A , Moffet  HH , Grant  RW , Torreblanca  A , Karter  AJ .  Association of patient-physician language concordance and glycemic control for limited-English proficiency Latinos with type 2 diabetes.   JAMA Intern Med. 2017;177(3):380-387. doi:10.1001/jamainternmed.2016.8648 PubMedGoogle ScholarCrossref
9.
Austin  PC .  An introduction to propensity score methods for reducing the effects of confounding in observational studies.   Multivariate Behav Res. 2011;46(3):399-424. doi:10.1080/00273171.2011.568786 PubMedGoogle ScholarCrossref
10.
Laraia  BA , Karter  AJ , Warton  EM , Schillinger  D , Moffet  HH , Adler  N .  Place matters: neighborhood deprivation and cardiometabolic risk factors in the Diabetes Study of Northern California (DISTANCE).   Soc Sci Med. 2012;74(7):1082-1090. doi:10.1016/j.socscimed.2011.11.036 PubMedGoogle ScholarCrossref
11.
Deyo  RA , Cherkin  DC , Ciol  MA .  Adapting a clinical comorbidity index for use with ICD-9-CM administrative databases.   J Clin Epidemiol. 1992;45(6):613-619. doi:10.1016/0895-4356(92)90133-8 PubMedGoogle ScholarCrossref
12.
Karter  AJ , Warton  EM , Lipska  KJ ,  et al.  Development and validation of a tool to identify patients with type 2 diabetes at high risk of hypoglycemia-related emergency department or hospital use.   JAMA Intern Med. 2017;177(10):1461-1470. doi:10.1001/jamainternmed.2017.3844 PubMedGoogle ScholarCrossref
13.
Dimick  JB , Ryan  AM .  Methods for evaluating changes in health care policy: the difference-in-differences approach.   JAMA. 2014;312(22):2401-2402. doi:10.1001/jama.2014.16153 PubMedGoogle ScholarCrossref
14.
Zhou  H , Taber  C , Arcona  S , Li  Y .  Difference-in-differences method in comparative effectiveness research: utility with unbalanced groups.   Appl Health Econ Health Policy. 2016;14(4):419-429. doi:10.1007/s40258-016-0249-y PubMedGoogle ScholarCrossref
15.
Funk  MJ , Westreich  D , Wiesen  C , Stürmer  T , Brookhart  MA , Davidian  M .  Doubly robust estimation of causal effects.   Am J Epidemiol. 2011;173(7):761-767. doi:10.1093/aje/kwq439 PubMedGoogle ScholarCrossref
16.
Thomas  LE , Li  F , Pencina  MJ .  Overlap weighting: a propensity score method that mimics attributes of a randomized clinical trial.   JAMA. 2020;323(23):2417-2418. doi:10.1001/jama.2020.7819 PubMedGoogle ScholarCrossref
17.
Robins  JM , Hernán  MA , Brumback  B .  Marginal structural models and causal inference in epidemiology.   Epidemiology. 2000;11(5):550-560. doi:10.1097/00001648-200009000-00011 PubMedGoogle ScholarCrossref
18.
Psaty  BM , Koepsell  TD , Lin  D ,  et al.  Assessment and control for confounding by indication in observational studies.   J Am Geriatr Soc. 1999;47(6):749-754. doi:10.1111/j.1532-5415.1999.tb01603.x PubMedGoogle ScholarCrossref
19.
Li  F , Morgan  KL , Zaslavsky  AM .  Balancing covariates via propensity score weighting.   J Am Stat Assoc. 2018;113(521):390-400. doi:10.1080/01621459.2016.1260466 PubMedGoogle ScholarCrossref
20.
Kainz  K , Greifer  N , Givens  A ,  et al.  Improving causal inference: recommendations for covariate selection and balance in propensity score methods.   J Soc Social Work Res. 2017;8(2):279-303. doi:10.1086/691464 Google ScholarCrossref
21.
Danaei  G , García Rodríguez  LA , Cantero  OF , Logan  RW , Hernán  MA .  Electronic medical records can be used to emulate target trials of sustained treatment strategies.   J Clin Epidemiol. 2018;96:12-22. doi:10.1016/j.jclinepi.2017.11.021 PubMedGoogle ScholarCrossref
22.
Schneeweiss  S , Rassen  JA , Glynn  RJ , Avorn  J , Mogun  H , Brookhart  MA .  High-dimensional propensity score adjustment in studies of treatment effects using health care claims data.   Epidemiology. 2009;20(4):512-522. doi:10.1097/EDE.0b013e3181a663cc PubMedGoogle ScholarCrossref
23.
Li  F , Thomas  LE , Li  F .  Addressing extreme propensity scores via the overlap weights.   Am J Epidemiol. 2019;188(1):250-257. doi:10.1093/aje/kwy201PubMedGoogle Scholar
24.
Cohen  J .  The statistical power of abnormal-social psychological research: a review.   J Abnorm Soc Psychol. 1962;65:145-153. doi:10.1037/h0045186 PubMedGoogle ScholarCrossref
25.
Greenland  S , Pearl  J , Robins  JM .  Causal diagrams for epidemiologic research.   Epidemiology. 1999;10(1):37-48. doi:10.1097/00001648-199901000-00008 PubMedGoogle ScholarCrossref
26.
Neugebauer  R , van der Laan  M .  Why prefer double robust estimators in causal inference?   J Stat Plan Infer. 2005;129:405-426. doi:10.1016/j.jspi.2004.06.060 Google ScholarCrossref
27.
Wang  Y , Bangsberg  D , Petersen  ML , van der Lann  MJ . Diagnosing bias in the inverse probability of treatment weighted estimator resulting from violation of experimental treatment assignment. UC Berkley Division of Biostatistics working paper series 211:1-25; 2006.
28.
Althouse  AD .  Adjust for multiple comparisons? it’s not that simple.   Ann Thorac Surg. 2016;101(5):1644-1645. doi:10.1016/j.athoracsur.2015.11.024 PubMedGoogle ScholarCrossref
29.
Jansen  JP , Khalid  JM , Smyth  MD , Patel  H .  The number needed to treat and relevant between-trial comparisons of competing interventions.   Clinicoecon Outcomes Res. 2018;10:865-871. doi:10.2147/CEOR.S180491 PubMedGoogle ScholarCrossref
30.
Rubin  DB .  Estimating causal effects from large data sets using propensity scores.   Ann Intern Med. 1997;127(8 pt 2):757-763. doi:10.7326/0003-4819-127-8_Part_2-199710151-00064PubMedGoogle ScholarCrossref
31.
Seyed Ahmadi  S , Westman  K , Pivodic  A ,  et al.  The association between HbA1c and time in hypoglycemia during CGM and self-monitoring of blood glucose in people with type 1 diabetes and multiple daily insulin injections: a randomized clinical trial (GOLD-4).   Diabetes Care. 2020;43(9):2017-2024. doi:10.2337/dc19-2606 PubMedGoogle ScholarCrossref
32.
Roze  S , Isitt  J , Smith-Palmer  J , Javanbakht  M , Lynch  P .  Long-term cost-effectiveness of Dexcom G6 real-time continuous glucose monitoring versus self-monitoring of blood glucose in patients with type 1 diabetes in the UK.   Diabetes Care. 2020;43(10):2411-2417. doi:10.2337/dc19-2213 PubMedGoogle ScholarCrossref
33.
Heinemann  L , Freckmann  G , Ehrmann  D ,  et al.  Real-time continuous glucose monitoring in adults with type 1 diabetes and impaired hypoglycaemia awareness or severe hypoglycaemia treated with multiple daily insulin injections (HypoDE): a multicentre, randomised controlled trial.   Lancet. 2018;391(10128):1367-1377. doi:10.1016/S0140-6736(18)30297-6 PubMedGoogle ScholarCrossref
34.
Charleer  S , De Block  C , Nobels  F ,  et al; RESCUE Trial Investigators.  Sustained impact of real-time continuous glucose monitoring in adults with type 1 diabetes on insulin pump therapy: results after the 24-month RESCUE study.   Diabetes Care. 2020;43(12):3016-3023. doi:10.2337/dc20-1531 PubMedGoogle ScholarCrossref
35.
Maiorino  MI , Signoriello  S , Maio  A ,  et al.  Effects of continuous glucose monitoring on metrics of glycemic control in diabetes: a systematic review with meta-analysis of randomized controlled trials.   Diabetes Care. 2020;43(5):1146-1156. doi:10.2337/dc19-1459 PubMedGoogle ScholarCrossref
36.
Ida  S , Kaneko  R , Murata  K .  Utility of real-time and retrospective continuous glucose monitoring in patients with type 2 diabetes mellitus: a meta-analysis of randomized controlled trials.   J Diabetes Res. 2019;2019(4684815):4684815. doi:10.1155/2019/4684815 PubMedGoogle Scholar
37.
Edelman  SV , Polonsky  WH .  Type 2 diabetes in the real world: the elusive nature of glycemic control.   Diabetes Care. 2017;40(11):1425-1432. doi:10.2337/dc16-1974 PubMedGoogle ScholarCrossref
38.
Lai  CW , Lipman  TH , Willi  SM , Hawkes  CP .  Racial and ethnic disparities in rates of continuous glucose monitor initiation and continued use in children with type 1 diabetes.   Diabetes Care. 2021;44(1):255-257. doi:10.2337/dc20-1663 PubMedGoogle ScholarCrossref
39.
Karter  AJ , Moffet  HH , Liu  JY , Lipska  KJ .  Surveillance of hypoglycemia-limitations of emergency department and hospital utilization data.   JAMA Intern Med. 2018;178(7):987-988. doi:10.1001/jamainternmed.2018.1014 PubMedGoogle ScholarCrossref
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_Multimedia_LoginSubscribe_Purchase
Close
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_Multimedia_LoginSubscribe_Purchase
Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close

Name Your Search

Save Search
Close
With a personal account, you can:
  • Track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
jn-learning_Modal_SaveSearch_NoAccess_Purchase
Close

Lookup An Activity

or

Close

My Saved Searches

You currently have no searches saved.

Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close