Comparison of Symptoms and RNA Levels in Children and Adults With SARS-CoV-2 Infection in the Community Setting | Pediatrics | JN Learning | AMA Ed Hub [Skip to Content]
[Skip to Content Landing]

Comparison of Symptoms and RNA Levels in Children and Adults With SARS-CoV-2 Infection in the Community Setting

Educational Objective
To identify the key insights or developments described in this article
1 Credit CME
Key Points

Question  How is the presence of symptoms associated with SARS-CoV-2 RNA levels in children vs adults in the community?

Findings  In this cross-sectional study of 555 children and adults with SARS-CoV-2 confirmed by reverse transcription–polymerase chain reaction, symptomatic individuals had higher SARS-CoV-2 RNA levels (as indicated by lower mean cycle threshold values) compared with asymptomatic individuals. No significant differences in RNA levels were found between asymptomatic children and asymptomatic adults or between symptomatic children and symptomatic adults.

Meaning  Regardless of age, in this community-based study, SARS-CoV-2 RNA levels were higher in symptomatic individuals.

Abstract

Importance  The association between COVID-19 symptoms and SARS-CoV-2 viral levels in children living in the community is not well understood.

Objective  To characterize symptoms of pediatric COVID-19 in the community and analyze the association between symptoms and SARS-CoV-2 RNA levels, as approximated by cycle threshold (Ct) values, in children and adults.

Design, Setting, and Participants  This cross-sectional study used a respiratory virus surveillance platform in persons of all ages to detect community COVID-19 cases from March 23 to November 9, 2020. A population-based convenience sample of children younger than 18 years and adults in King County, Washington, who enrolled online for home self-collection of upper respiratory samples for SARS-CoV-2 testing were included.

Exposures  Detection of SARS-CoV-2 RNA by reverse transcription–polymerase chain reaction (RT-PCR) from participant-collected samples.

Main Outcomes and Measures  RT-PCR–confirmed SARS-CoV-2 infection, with Ct values stratified by age and symptoms.

Results  Among 555 SARS-CoV-2–positive participants (mean [SD] age, 33.7 [20.1] years; 320 were female [57.7%]), 47 of 123 children (38.2%) were asymptomatic compared with 31 of 432 adults (7.2%). When symptomatic, fewer symptoms were reported in children compared with adults (mean [SD], 1.6 [2.0] vs 4.5 [3.1]). Symptomatic individuals had lower Ct values (which corresponded to higher viral RNA levels) than asymptomatic individuals (adjusted estimate for children, −3.0; 95% CI, −5.5 to −0.6; P = .02; adjusted estimate for adults, −2.9; 95% CI, −5.2 to −0.6; P = .01). The difference in mean Ct values was neither statistically significant between symptomatic children and symptomatic adults (adjusted estimate, −0.7; 95% CI, −2.2 to 0.9; P = .41) nor between asymptomatic children and asymptomatic adults (adjusted estimate, −0.6; 95% CI, −4.0 to 2.8; P = .74).

Conclusions and Relevance  In this community-based cross-sectional study, SARS-CoV-2 RNA levels, as determined by Ct values, were significantly higher in symptomatic individuals than in asymptomatic individuals and no significant age-related differences were found. Further research is needed to understand the role of SARS-CoV-2 RNA levels and viral transmission.

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 CME Credit™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

Article Information

Accepted for Publication: May 10, 2021.

Corresponding Author: Erin Chung, MD, University of Washington School of Medicine, Box 358061, 750 Republican St, Room E691, Seattle, WA 98109 (ec72@uw.edu).

Published Online: June 11, 2021. doi:10.1001/jamapediatrics.2021.2025

Author Contributions: Dr Chung had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: Chung, Chow, Wilcox, Brandstetter, Adler, Lacombe, Rieder, Starita, Bedford, Englund, Chu.

Acquisition, analysis, or interpretation of data: Chung, Chow, Wilcox, Burstein, Brandstetter, Han, Fay, Pfau, Adler, Lacombe, Lockwood, Uyeki, Shendure, Duchin, Nickerson, Boeckh, Famulare, Hughes, Starita, Bedford, Englund, Chu.

Drafting of the manuscript: Chung, Chow, Wilcox, Brandstetter, Rieder, Englund, Chu.

Critical revision of the manuscript for important intellectual content: Chung, Chow, Wilcox, Burstein, Brandstetter, Han, Fay, Pfau, Adler, Lacombe, Lockwood, Uyeki, Shendure, Duchin, Nickerson, Boeckh, Famulare, Hughes, Starita, Bedford, Englund, Chu.

Statistical analysis: Wilcox, Pfau, Famulare, Hughes, Starita.

Obtained funding: Lacombe, Nickerson, Famulare, Starita, Bedford, Englund, Chu.

Administrative, technical, or material support: Burstein, Han, Fay, Adler, Lacombe, Lockwood, Shendure, Duchin, Rieder, Nickerson, Starita, Englund, Chu.

Supervision: Brandstetter, Lacombe, Boeckh, Starita, Bedford, Englund, Chu.

Conflict of Interest Disclosures: Drs Adler and Lockwood and Ms Lacombe report grants from the Bill and Melinda Gates Foundation during the conduct of the study. Dr Shendure is a consultant with Guardant Health, Maze Therapeutics, Camp4 Therapeutics, Nanostring, Phase Genomics, Adaptive Biotechnologies, and Stratos Genomics; and has a research collaboration with Illumina. Dr Boeckh is a consultant for Moderna, VirBio, and Merck; has received research support from Regeneron, Ridgeback, Merck, and VirBio outside the submitted work; and has received research support from the Bill and Melinda Gates Foundation during the conduct of the study. Dr Hughes reports grants from the Bill and Melinda Gates Foundation during the conduct of the study and National Institutes of Health outside the submitted work. Dr Bedford reports grants from the Bill and Melinda Gates Foundation, The Pew Charitable Trusts, and the National Institute of General Medical Sciences during the conduct of the study. Dr Englund receives research support paid to her institution from AstraZeneca, the Bill and Melinda Gates Foundation, Chimerix, GlaxoSmithKline, Novavax, Merck, and Pfizer; and is a consultant for Sanofi Pasteur and Meissa Vaccines. Dr Chu has served as a consultant with Ellume, Pfizer, the Bill and Melinda Gates Foundation, GlaxoSmithKline, and Merck; and has received research funding from Sanofi Pasteur and support and reagents from Ellume and Cepheid outside of the submitted work. No other disclosures were reported.

Funding/Support: This work was funded by the Bill and Melinda Gates Foundation. This work was supported in part by the National Institutes of Health (grant T32HD007233 to Dr Chung). Dr Bedford is a Pew Biomedical Scholar and is supported by National Institutes of Health grant R35 GM119774-01.

Role of the Funder/Sponsor: The funders had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Disclaimer: The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention or the funder.

Additional Contributions: We thank the study participants for their contribution of samples.

References
1.
He  J , Guo  Y , Mao  R , Zhang  J .  Proportion of asymptomatic coronavirus disease 2019: a systematic review and meta-analysis.   J Med Virol. 2021;93(2):820-830. doi:10.1002/jmv.26326 PubMedGoogle ScholarCrossref
2.
Dong  Y , Mo  X , Hu  Y ,  et al.  Epidemiology of COVID-19 among children in China.   Pediatrics. 2020;145(6):e20200702. doi:10.1542/peds.2020-0702 PubMedGoogle Scholar
3.
Ludvigsson  JF .  Systematic review of COVID-19 in children shows milder cases and a better prognosis than adults.   Acta Paediatr. 2020;109(6):1088-1095. doi:10.1111/apa.15270 PubMedGoogle ScholarCrossref
4.
Shane  AL , Sato  AI , Kao  C ,  et al.  A pediatric infectious diseases perspective of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and novel coronavirus disease 2019 (COVID-19) in children.   J Pediatric Infect Dis Soc. 2020;9(5):596-608. doi:10.1093/jpids/piaa099PubMedGoogle ScholarCrossref
5.
Wölfel  R , Corman  VM , Guggemos  W ,  et al.  Virological assessment of hospitalized patients with COVID-2019.   Nature. 2020;581(7809):465-469. doi:10.1038/s41586-020-2196-xPubMedGoogle ScholarCrossref
6.
Bullard  J , Dust  K , Funk  D ,  et al.  Predicting infectious severe acute respiratory syndrome coronavirus 2 from diagnostic samples.   Clin Infect Dis. 2020;71(10):2663-2666. doi:10.1093/cid/ciaa638 PubMedGoogle ScholarCrossref
7.
L’Huillier  AG , Torriani  G , Pigny  F , Kaiser  L , Eckerle  I .  Culture-competent SARS-CoV-2 in nasopharynx of symptomatic neonates, children, and adolescents.   Emerg Infect Dis. 2020;26(10):2494-2497. doi:10.3201/eid2610.202403PubMedGoogle ScholarCrossref
8.
Singanayagam  A , Patel  M , Charlett  A ,  et al.  Duration of infectiousness and correlation with RT-PCR cycle threshold values in cases of COVID-19, England, January to May 2020.   Euro Surveill. 2020;25(32). doi:10.2807/1560-7917.ES.2020.25.32.2001483PubMedGoogle Scholar
9.
Arons  MM , Hatfield  KM , Reddy  SC ,  et al; Public Health–Seattle and King County and CDC COVID-19 Investigation Team.  Presymptomatic SARS-CoV-2 infections and transmission in a skilled nursing facility.   N Engl J Med. 2020;382(22):2081-2090. doi:10.1056/NEJMoa2008457 PubMedGoogle ScholarCrossref
10.
Zou  L , Ruan  F , Huang  M ,  et al.  SARS-CoV-2 viral load in upper respiratory specimens of infected patients.   N Engl J Med. 2020;382(12):1177-1179. doi:10.1056/NEJMc2001737 PubMedGoogle ScholarCrossref
11.
Lavezzo  E , Franchin  E , Ciavarella  C ,  et al; Imperial College COVID-19 Response Team; Imperial College COVID-19 Response Team.  Suppression of a SARS-CoV-2 outbreak in the Italian municipality of Vo’.   Nature. 2020;584(7821):425-429. doi:10.1038/s41586-020-2488-1 PubMedGoogle ScholarCrossref
12.
Lee  S , Kim  T , Lee  E ,  et al.  Clinical course and molecular viral shedding among asymptomatic and symptomatic patients with SARS-CoV-2 infection in a community treatment center in the Republic of Korea.   JAMA Intern Med. 2020;180(11):1447-1452. doi:10.1001/jamainternmed.2020.3862PubMedGoogle ScholarCrossref
13.
Cereda  D , Tirani  M , Rovida  F ,  et al. The early phase of the COVID-19 outbreak in Lombardy, Italy. arXiv. Preprint posted online March 2020. https://ui.adsabs.harvard.edu/abs/2020arXiv200309320C
14.
Salvatore  PP , Dawson  P , Wadhwa  A ,  et al.  Epidemiological correlates of PCR cycle threshold values in the detection of SARS-CoV-2.   Clin Infect Dis. 2020;ciaa1469. doi:10.1093/cid/ciaa1469PubMedGoogle Scholar
15.
Kociolek  LK , Muller  WJ , Yee  R ,  et al.  Comparison of upper respiratory viral load distributions in asymptomatic and symptomatic children diagnosed with SARS-CoV-2 infection in pediatric hospital testing programs.   J Clin Microbiol. 2020;59(1):e02593-20. doi:10.1128/JCM.02593-20 PubMedGoogle Scholar
16.
Han  MS , Seong  MW , Kim  N ,  et al.  Viral RNA load in mildly symptomatic and asymptomatic children with COVID-19, Seoul, South Korea.   Emerg Infect Dis. 2020;26(10):2497-2499. doi:10.3201/eid2610.202449PubMedGoogle ScholarCrossref
17.
Hurst  JH , Heston  SM , Chambers  HN ,  et al.  SARS-CoV-2 infections among children in the Biospecimens from Respiratory Virus-Exposed Kids (BRAVE Kids) study.   Clin Infect Dis. 2020;ciaa1693. doi:10.1093/cid/ciaa1693PubMedGoogle Scholar
18.
Maltezou  HC , Magaziotou  I , Dedoukou  X ,  et al; Greek Study Group on SARS-CoV-2 Infections in Children.  Children and adolescents with SARS-CoV-2 infection: epidemiology, clinical course and viral loads.   Pediatr Infect Dis J. 2020;39(12):e388-e392. doi:10.1097/INF.0000000000002899 PubMedGoogle ScholarCrossref
19.
Madera  S , Crawford  E , Langelier  C ,  et al.  Nasopharyngeal SARS-CoV-2 viral loads in young children do not differ significantly from those in older children and adults.   Sci Rep. 2021;11(1):3044. doi:10.1038/s41598-021-81934-w PubMedGoogle ScholarCrossref
20.
Greater Seattle Coronavirus Assessment Network Study. Helping researchers and public health leaders track the spread of coronavirus. Accessed December 22, 2020. http://www.scanpublichealth.org
21.
Chu  HY , Englund  JA , Starita  LM ,  et al; Seattle Flu Study Investigators.  Early detection of COVID-19 through a citywide pandemic surveillance platform.   N Engl J Med. 2020;383(2):185-187. doi:10.1056/NEJMc2008646 PubMedGoogle ScholarCrossref
22.
Revisions to the Standards for the Classification of Federal Data on Race and Ethnicity. Office of Management and Budget. Accessed May 26, 2021. https://obamawhitehouse.archives.gov/omb/fedreg_1997standards
23.
Harris  PA , Taylor  R , Thielke  R , Payne  J , Gonzalez  N , Conde  JG .  Research Electronic Data Capture (REDCap)—a metadata-driven methodology and workflow process for providing translational research informatics support.   J Biomed Inform. 2009;42(2):377-381. doi:10.1016/j.jbi.2008.08.010PubMedGoogle ScholarCrossref
24.
Harris  PA , Taylor  R , Minor  BL ,  et al; REDCap Consortium.  The REDCap consortium: building an international community of software platform partners.   J Biomed Inform. 2019;95:103208. doi:10.1016/j.jbi.2019.103208 PubMedGoogle Scholar
25.
McCulloch  DJ , Kim  AE , Wilcox  NC ,  et al.  Comparison of unsupervised home self-collected midnasal swabs with clinician-collected nasopharyngeal swabs for detection of SARS-CoV-2 infection.   JAMA Netw Open. 2020;3(7):e2016382. doi:10.1001/jamanetworkopen.2020.16382 PubMedGoogle Scholar
26.
Kim  AE , Brandstetter  E , Wilcox  N ,  et al.  Evaluating specimen quality and results from a community-wide, home-based respiratory surveillance study.   J Clin Microbiol. 2021;59(5):e02934-20. doi:10.1128/JCM.02934-20PubMedGoogle Scholar
27.
Greater Seattle Coronavirus Assessment Network. How to use a SCAN kit. Accessed April 28, 2021. https://scanpublichealth.org/how-to-use-a-scan-kit
28.
Padgett  LR , Kennington  LA , Ahls  CL ,  et al.  Polyester nasal swabs collected in a dry tube are a robust and inexpensive, minimal self-collection kit for SARS-CoV-2 testing.   PLoS One. 2021;16(4):e0245423. doi:10.1371/journal.pone.0245423PubMedGoogle Scholar
29.
von Elm  E , Altman  DG , Egger  M , Pocock  SJ , Gøtzsche  PC , Vandenbroucke  JP ; STROBE Initiative.  The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies.   Ann Intern Med. 2007;147(8):573-577. doi:10.7326/0003-4819-147-8-200710160-00010PubMedGoogle ScholarCrossref
30.
US Census Bureau. American community survey 1-year estimates. Accessed May 1, 2021. http://censusreporter.org/profiles/05000US53033-king-county-wa/
31.
CDC COVID-19 Response Team.  Coronavirus disease 2019 in children—United States, February 12-April 2, 2020.   MMWR Morb Mortal Wkly Rep. 2020;69(14):422-426. doi:10.15585/mmwr.mm6914e4PubMedGoogle ScholarCrossref
32.
Assaker  R , Colas  AE , Julien-Marsollier  F ,  et al.  Presenting symptoms of COVID-19 in children: a meta-analysis of published studies.   Br J Anaesth. 2020;125(3):e330-e332. doi:10.1016/j.bja.2020.05.026 PubMedGoogle ScholarCrossref
33.
Poline  J , Gaschignard  J , Leblanc  C ,  et al.  Systematic SARS-CoV-2 screening at hospital admission in children: a French prospective multicenter study.   Clin Infect Dis. 2020;ciaa1044. doi:10.1093/cid/ciaa1044PubMedGoogle Scholar
34.
Oran  DP , Topol  EJ .  Prevalence of asymptomatic SARS-CoV-2 infection: a narrative review.   Ann Intern Med. 2020;173(5):362-367. doi:10.7326/M20-3012 PubMedGoogle ScholarCrossref
35.
Byambasuren  O , Cardona  M , Bell  K , Clark  J , McLaws  M-L , Glasziou  P .  Estimating the extent of asymptomatic COVID-19 and its potential for community transmission: systematic review and meta-analysis.   JAMMI. 2020;5(4):223-234. doi:10.3138/jammi-2020-0030Google Scholar
36.
Hoang  A , Chorath  K , Moreira  A ,  et al.  COVID-19 in 7780 pediatric patients: a systematic review.   EClinicalMedicine. 2020;24:100433. doi:10.1016/j.eclinm.2020.100433PubMedGoogle Scholar
37.
Heald-Sargent  T , Muller  WJ , Zheng  X , Rippe  J , Patel  AB , Kociolek  LK .  Age-related differences in nasopharyngeal severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) levels in patients with mild to moderate coronavirus disease 2019 (COVID-19).   JAMA Pediatr. 2020;174(9):902-903. doi:10.1001/jamapediatrics.2020.3651 PubMedGoogle ScholarCrossref
38.
Yonker  LM , Neilan  AM , Bartsch  Y ,  et al.  Pediatric severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): clinical presentation, infectivity, and immune responses.   J Pediatr. 2020;227:45-52.e5. doi:10.1016/j.jpeds.2020.08.037 PubMedGoogle ScholarCrossref
39.
Baggio  S , L’Huillier  AG , Yerly  S ,  et al.  SARS-CoV-2 viral load in the upper respiratory tract of children and adults with early acute COVID-19.   Clin Infect Dis. 2020;ciaa1157. doi:10.1093/cid/ciaa1157PubMedGoogle Scholar
40.
Jones  TC , Mühlemann  B , Veith  T ,  et al.  An analysis of SARS-CoV-2 viral load by patient age.   medRxiv. Preprint posted online June 9, 2020. doi:10.1101/2020.06.08.20125484Google Scholar
41.
Li  F , Li  Y-Y , Liu  M-J ,  et al.  Household transmission of SARS-CoV-2 and risk factors for susceptibility and infectivity in Wuhan: a retrospective observational study.   Lancet Infect Dis. 2021;21(5):617-628. doi:10.1016/S1473-3099(20)30981-6PubMedGoogle ScholarCrossref
42.
Li  X , Xu  W , Dozier  M , He  Y , Kirolos  A , Theodoratou  E ; Usher Network for COVID-19 Evidence Reviews (UNCOVER).  The role of children in transmission of SARS-CoV-2: a rapid review.   J Glob Health. 2020;10(1):011101. doi:10.7189/jogh.10.011101PubMedGoogle Scholar
43.
Lee  B , Raszka  WV  Jr .  COVID-19 transmission and children: the child is not to blame.   Pediatrics. 2020;146(2):e2020004879. doi:10.1542/peds.2020-004879 PubMedGoogle Scholar
44.
Zhu  Y , Bloxham  CJ , Hulme  KD ,  et al.  A meta-analysis on the role of children in SARS-CoV-2 in household transmission clusters.   Clin Infect Dis. 2020;ciaa1825. doi:10.1093/cid/ciaa1825PubMedGoogle Scholar
45.
Madewell  ZJ , Yang  Y , Longini  IM  Jr , Halloran  ME , Dean  NE .  Household transmission of SARS-CoV-2: a systematic review and meta-analysis.   JAMA Netw Open. 2020;3(12):e2031756. doi:10.1001/jamanetworkopen.2020.31756 PubMedGoogle Scholar
46.
Sayampanathan  AA , Heng  CS , Pin  PH , Pang  J , Leong  TY , Lee  VJ .  Infectivity of asymptomatic versus symptomatic COVID-19.   Lancet. 2021;397(10269):93-94. doi:10.1016/S0140-6736(20)32651-9PubMedGoogle ScholarCrossref
47.
Kissler  SM , Fauver  JR , Mack  C ,  et al.  SARS-CoV-2 viral dynamics in acute infections.   medRxiv. Preprint posted online December 1, 2020. doi:10.1101/2020.10.21.20217042Google Scholar
48.
Cevik  M , Tate  M , Lloyd  O , Maraolo  AE , Schafers  J , Ho  A .  SARS-CoV-2, SARS-CoV, and MERS-CoV viral load dynamics, duration of viral shedding, and infectiousness: a systematic review and meta-analysis.   Lancet Microbe. 2021;2(1):e13-e22. doi:10.1016/S2666-5247(20)30172-5PubMedGoogle ScholarCrossref
49.
Viner  RM , Mytton  OT , Bonell  C ,  et al.  Susceptibility to SARS-CoV-2 infection among children and adolescents compared with adults: a systematic review and meta-analysis.   JAMA Pediatr. 2021;175(2):143-156. doi:10.1001/jamapediatrics.2020.4573PubMedGoogle ScholarCrossref
50.
Brotons  P , Launes  C , Buetas  E ,  et al.  Susceptibility to Sars-COV-2 infection among children and adults: a seroprevalence study of family households in the Barcelona Metropolitan Region, Spain.   Clin Infect Dis. 2020;ciaa1721. doi:10.1093/cid/ciaa1721PubMedGoogle Scholar
51.
Lewis  NM , Chu  VT , Ye  D ,  et al.  Household transmission of SARS-CoV-2 in the United States.   Clin Infect Dis. 2020;ciaa1166. doi:10.1093/cid/ciaa1166PubMedGoogle Scholar
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_Multimedia_LoginSubscribe_Purchase
Close
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_Multimedia_LoginSubscribe_Purchase
Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close

Name Your Search

Save Search
Close
With a personal account, you can:
  • Track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
jn-learning_Modal_SaveSearch_NoAccess_Purchase
Close

Lookup An Activity

or

Close

My Saved Searches

You currently have no searches saved.

Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close