Transcatheter Treatments of Valvular Heart Disease 2020 | Valvular Heart Disease | JN Learning | AMA Ed Hub [Skip to Content]
[Skip to Content Landing]

Transcatheter Treatment of Valvular Heart DiseaseA Review

Educational Objective
To review transcatheter treatments of valvular heart disease.
1 Credit CME
Abstract

Importance  More than 40 million people are living with either mitral or aortic valve disease worldwide, and more than 180 000 heart valve replacement surgeries are performed each year in the US. Transcatheter valve repair has emerged as an important therapeutic option for patients who are candidates for heart valve replacement.

Observations  All transcatheter valve therapies involve a multidisciplinary team of interventional cardiologists, cardiothoracic surgeons, radiologists, echocardiographers, nurses, and social workers, termed the heart team, to determine the optimal approach for managing each patient. Transcatheter aortic valve implantation (TAVI) is an aortic valve replacement procedure that is performed percutaneously and is currently approved for patients with severe, symptomatic aortic stenosis in all surgical risk categories. The TAVI procedure can be performed using a balloon-expandable or self-expanding valve. In a low-risk cohort of patients (PARTNER [Placement of Aortic Transcatheter Valves] 3 trial), the rates of death from any cause, stroke, or rehospitalization were 8.5% for patients receiving TAVI and 15.1% for patients undergoing surgical aortic valve replacement. Decision-making regarding therapy choice should be based on individual anatomy (including the number of leaflets, annular size, and peripheral arterial anatomy), comorbidities (including concomitant coronary artery disease and aortopathies), and patient preference guide. A mitral transcatheter edge-to-edge repair device is approved by the US Food and Drug Administration for high-risk patients with degenerative and functional mitral regurgitation that has excellent safety and efficacy in these populations. In the COAPT (Cardiovascular Outcomes Assessment of the MitraClip Percutaneous Therapy for Heart Failure Patients with Functional Mitral Regurgitation) trial, the annualized rate of all hospitalizations for heart failure was 35.8% among patients who underwent transcatheter edge-to-edge repair and received medical therapy compared with 67.9% among patients in the medical therapy alone group. Transcatheter tricuspid valve repair and replacement trials are ongoing and show promise for the treatment of patients with tricuspid regurgitation, which previously had limited therapeutic options. Multimodality imaging, which includes transthoracic echocardiography, transesophageal echocardiography, computed tomography, and intracardiac echocardiography, is important for preprocedural planning, device selection, and optimal outcomes.

Conclusions and Relevance  Approximately 78 000 TAVI procedures and 10 000 transcatheter mitral valve repairs take place yearly in the US to treat patients with severe, symptomatic aortic stenosis and mitral regurgitation, respectively. Transcatheter valve therapies have expanded therapeutic options for patients, including for those who previously had no viable surgical options.

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 CME Credit™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

Article Information

Corresponding Author: Charles J. Davidson, MD, Northwestern University Feinberg School of Medicine, 676 N St Clair St, Ste 2300, Chicago, IL 60611 (cdavidson@nm.org).

Accepted for Publication: February 8, 2021.

Author Contributions: Drs L. Davidson and C. Davidson had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: All authors.

Acquisition, analysis, or interpretation of data: C. Davidson.

Drafting of the manuscript: All authors.

Critical revision of the manuscript for important intellectual content: All authors.

Administrative, technical, or material support: C. Davidson.

Supervision: C. Davidson.

Conflict of Interest Disclosures: Dr L. Davidson reported receiving research support from Edwards Lifesciences. Dr C. Davidson reported receiving research support from Edwards Lifesciences and Abbott Vascular and serving as a consultant to Edwards Lifesciences. No other disclosures were reported.

References
1.
Carroll  JD , Mack  MJ , Vemulapalli  S ,  et al.  STS-ACC TVT registry of transcatheter aortic valve replacement.   J Am Coll Cardiol. 2020;76(21):2492-2516. doi:10.1016/j.jacc.2020.09.595 PubMedGoogle ScholarCrossref
2.
Otto  CM , Nishimura  RA , Bonow  RO ,  et al.  2020 ACC/AHA guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association joint committee on clinical practice guidelines.   Circulation. 2021;143(5):e72-e227.PubMedGoogle Scholar
3.
Ross  J  Jr , Braunwald  E .  Aortic stenosis.   Circulation. 1968;38(1)(suppl):61-67.PubMedGoogle Scholar
4.
Leon  MB , Smith  CR , Mack  M ,  et al; PARTNER Trial Investigators.  Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery.   N Engl J Med. 2010;363(17):1597-1607. doi:10.1056/NEJMoa1008232PubMedGoogle ScholarCrossref
5.
Kelly  TA , Rothbart  RM , Cooper  CM , Kaiser  DL , Smucker  ML , Gibson  RS .  Comparison of outcome of asymptomatic to symptomatic patients older than 20 years of age with valvular aortic stenosis.   Am J Cardiol. 1988;61(1):123-130. doi:10.1016/0002-9149(88)91317-3PubMedGoogle ScholarCrossref
6.
Cribier  A , Eltchaninoff  H , Bash  A ,  et al.  Percutaneous transcatheter implantation of an aortic valve prosthesis for calcific aortic stenosis: first human case description.   Circulation. 2002;106(24):3006-3008. doi:10.1161/01.CIR.0000047200.36165.B8PubMedGoogle ScholarCrossref
7.
Popma  JJ , Adams  DH , Reardon  MJ ,  et al; CoreValve United States Clinical Investigators.  Transcatheter aortic valve replacement using a self-expanding bioprosthesis in patients with severe aortic stenosis at extreme risk for surgery.   J Am Coll Cardiol. 2014;63(19):1972-1981. doi:10.1016/j.jacc.2014.02.556PubMedGoogle ScholarCrossref
8.
Smith  CR , Leon  MB , Mack  MJ ,  et al; PARTNER Trial Investigators.  Transcatheter versus surgical aortic-valve replacement in high-risk patients.   N Engl J Med. 2011;364(23):2187-2198. doi:10.1056/NEJMoa1103510PubMedGoogle ScholarCrossref
9.
Adams  DH , Popma  JJ , Reardon  MJ ,  et al; US CoreValve Clinical Investigators.  Transcatheter aortic-valve replacement with a self-expanding prosthesis.   N Engl J Med. 2014;370(19):1790-1798. doi:10.1056/NEJMoa1400590PubMedGoogle ScholarCrossref
10.
Leon  MB , Smith  CR , Mack  MJ ,  et al; PARTNER 2 Investigators.  Transcatheter or surgical aortic-valve replacement in intermediate-risk patients.   N Engl J Med. 2016;374(17):1609-1620. doi:10.1056/NEJMoa1514616PubMedGoogle ScholarCrossref
11.
Reardon  MJ , Van Mieghem  NM , Popma  JJ ,  et al; SURTAVI Investigators.  Surgical or transcatheter aortic-valve replacement in intermediate-risk patients.   N Engl J Med. 2017;376(14):1321-1331. doi:10.1056/NEJMoa1700456PubMedGoogle ScholarCrossref
12.
Mack  MJ , Leon  MB , Thourani  VH ,  et al; PARTNER 3 Investigators.  Transcatheter aortic-valve replacement with a balloon-expandable valve in low-risk patients.   N Engl J Med. 2019;380(18):1695-1705. doi:10.1056/NEJMoa1814052PubMedGoogle ScholarCrossref
13.
Popma  JJ , Deeb  GM , Yakubov  SJ ,  et al; Evolut Low Risk Trial Investigators.  Transcatheter aortic-valve replacement with a self-expanding valve in low-risk patients.   N Engl J Med. 2019;380(18):1706-1715. doi:10.1056/NEJMoa1816885PubMedGoogle ScholarCrossref
14.
Kapadia  SR , Leon  MB , Makkar  RR ,  et al; PARTNER Trial Investigators.  5-year outcomes of transcatheter aortic valve replacement compared with standard treatment for patients with inoperable aortic stenosis (PARTNER 1): a randomised controlled trial.   Lancet. 2015;385(9986):2485-2491. doi:10.1016/S0140-6736(15)60290-2PubMedGoogle ScholarCrossref
15.
Mack  MJ , Leon  MB , Smith  CR ,  et al; PARTNER 1 Trial Investigators.  5-year outcomes of transcatheter aortic valve replacement or surgical aortic valve replacement for high surgical risk patients with aortic stenosis (PARTNER 1): a randomised controlled trial.   Lancet. 2015;385(9986):2477-2484. doi:10.1016/S0140-6736(15)60308-7PubMedGoogle ScholarCrossref
16.
Gleason  TG , Reardon  MJ , Popma  JJ ,  et al; CoreValve US Pivotal High Risk Trial Clinical Investigators.  5-year outcomes of self-expanding transcatheter versus surgical aortic valve replacement in high-risk patients.   J Am Coll Cardiol. 2018;72(22):2687-2696. doi:10.1016/j.jacc.2018.08.2146PubMedGoogle ScholarCrossref
17.
Makkar  RR , Thourani  VH , Mack  MJ ,  et al; PARTNER 2 Investigators.  Five-year outcomes of transcatheter or surgical aortic-valve replacement.   N Engl J Med. 2020;382(9):799-809. doi:10.1056/NEJMoa1910555PubMedGoogle ScholarCrossref
18.
Rodés-Cabau  J , Dauerman  HL , Cohen  MG ,  et al.  Antithrombotic treatment in transcatheter aortic valve implantation: insights for cerebrovascular and bleeding events.   J Am Coll Cardiol. 2013;62(25):2349-2359. doi:10.1016/j.jacc.2013.03.029PubMedGoogle ScholarCrossref
19.
Stortecky  S , Stefanini  GG , Pilgrim  T ,  et al.  Validation of the valve academic research consortium bleeding definition in patients with severe aortic stenosis undergoing transcatheter aortic valve implantation.   J Am Heart Assoc. 2015;4(10):e002135. doi:10.1161/JAHA.115.002135PubMedGoogle Scholar
20.
Kodali  S , Pibarot  P , Douglas  PS ,  et al.  Paravalvular regurgitation after transcatheter aortic valve replacement with the Edwards SAPIEN valve in the PARTNER trial: characterizing patients and impact on outcomes.   Eur Heart J. 2015;36(7):449-456. doi:10.1093/eurheartj/ehu384PubMedGoogle ScholarCrossref
21.
Kodali  SK , Williams  MR , Smith  CR ,  et al; PARTNER Trial Investigators.  Two-year outcomes after transcatheter or surgical aortic-valve replacement.   N Engl J Med. 2012;366(18):1686-1695. doi:10.1056/NEJMoa1200384PubMedGoogle ScholarCrossref
22.
Mack  MJ , Baron  S . Placement of aortic transcatheter valves 3—PARTNER 3. Published March 29, 2020. Accessed May 14, 2021. https://www.acc.org/latest-in-cardiology/clinical-trials/2019/03/15/18/29/partner-3
23.
Blackman  DJ , Saraf  S , MacCarthy  PA ,  et al.  Long-term durability of transcatheter aortic valve prostheses.   J Am Coll Cardiol. 2019;73(5):537-545. doi:10.1016/j.jacc.2018.10.078PubMedGoogle ScholarCrossref
24.
Roberts  WC , Ko  JM .  Frequency by decades of unicuspid, bicuspid, and tricuspid aortic valves in adults having isolated aortic valve replacement for aortic stenosis, with or without associated aortic regurgitation.   Circulation. 2005;111(7):920-925. doi:10.1161/01.CIR.0000155623.48408.C5PubMedGoogle ScholarCrossref
25.
Nistri  S , Basso  C , Marzari  C , Mormino  P , Thiene  G .  Frequency of bicuspid aortic valve in young male conscripts by echocardiogram.   Am J Cardiol. 2005;96(5):718-721. doi:10.1016/j.amjcard.2005.04.051PubMedGoogle ScholarCrossref
26.
Sievers  HH , Schmidtke  C .  A classification system for the bicuspid aortic valve from 304 surgical specimens.   J Thorac Cardiovasc Surg. 2007;133(5):1226-1233. doi:10.1016/j.jtcvs.2007.01.039PubMedGoogle ScholarCrossref
27.
Makkar  RR , Yoon  SH , Leon  MB ,  et al.  Association between transcatheter aortic valve replacement for bicuspid vs tricuspid aortic stenosis and mortality or stroke.   JAMA. 2019;321(22):2193-2202. doi:10.1001/jama.2019.7108PubMedGoogle ScholarCrossref
28.
Yoon  SH , Bleiziffer  S , De Backer  O ,  et al.  Outcomes in transcatheter aortic valve replacement for bicuspid versus tricuspid aortic valve stenosis.   J Am Coll Cardiol. 2017;69(21):2579-2589. doi:10.1016/j.jacc.2017.03.017PubMedGoogle ScholarCrossref
29.
Dvir  D , Webb  JG , Bleiziffer  S ,  et al; Valve-in-Valve International Data Registry Investigators.  Transcatheter aortic valve implantation in failed bioprosthetic surgical valves.   JAMA. 2014;312(2):162-170. doi:10.1001/jama.2014.7246PubMedGoogle ScholarCrossref
30.
Guerrero  M , Vemulapalli  S , Xiang  Q ,  et al.  Thirty-day outcomes of transcatheter mitral valve replacement for degenerated mitral bioprostheses (valve-in-valve), failed surgical rings (valve-in-ring), and native valve with severe mitral annular calcification (valve-in-mitral annular calcification) in the United States: data from the Society of Thoracic Surgeons/American College of Cardiology/Transcatheter Valve Therapy Registry.   Circ Cardiovasc Interv. 2020;13(3):e008425. doi:10.1161/CIRCINTERVENTIONS.119.008425PubMedGoogle Scholar
31.
Chhatriwalla  AK , Allen  KB , Saxon  JT ,  et al.  Bioprosthetic valve fracture improves the hemodynamic results of valve-in-valve transcatheter aortic valve replacement.   Circ Cardiovasc Interv. 2017;10(7):e005216. doi:10.1161/CIRCINTERVENTIONS.117.005216PubMedGoogle Scholar
32.
Hammermeister  K , Sethi  GK , Henderson  WG , Grover  FL , Oprian  C , Rahimtoola  SH .  Outcomes 15 years after valve replacement with a mechanical versus a bioprosthetic valve: final report of the Veterans Affairs randomized trial.   J Am Coll Cardiol. 2000;36(4):1152-1158. doi:10.1016/S0735-1097(00)00834-2PubMedGoogle ScholarCrossref
33.
Oxenham  H , Bloomfield  P , Wheatley  DJ ,  et al.  Twenty year comparison of a Bjork-Shiley mechanical heart valve with porcine bioprostheses.   Heart. 2003;89(7):715-721. doi:10.1136/heart.89.7.715PubMedGoogle ScholarCrossref
34.
Stone  GW , Adams  DH , Abraham  WT ,  et al; Mitral Valve Academic Research Consortium (MVARC).  Clinical trial design principles and endpoint definitions for transcatheter mitral valve repair and replacement: part 2: endpoint definitions: a consensus document from the Mitral Valve Academic Research Consortium.   J Am Coll Cardiol. 2015;66(3):308-321. doi:10.1016/j.jacc.2015.05.049PubMedGoogle ScholarCrossref
35.
Asgar  AW , Mack  MJ , Stone  GW .  Secondary mitral regurgitation in heart failure: pathophysiology, prognosis, and therapeutic considerations.   J Am Coll Cardiol. 2015;65(12):1231-1248. doi:10.1016/j.jacc.2015.02.009PubMedGoogle ScholarCrossref
36.
Trichon  BH , Felker  GM , Shaw  LK , Cabell  CH , O’Connor  CM .  Relation of frequency and severity of mitral regurgitation to survival among patients with left ventricular systolic dysfunction and heart failure.   Am J Cardiol. 2003;91(5):538-543. doi:10.1016/S0002-9149(02)03301-5PubMedGoogle ScholarCrossref
37.
Feldman  T , Foster  E , Glower  DD ,  et al; EVEREST II Investigators.  Percutaneous repair or surgery for mitral regurgitation.   N Engl J Med. 2011;364(15):1395-1406. Published correction appears in N Engl J Med. 2011;365(2):189. doi:10.1056/NEJMoa1009355PubMedGoogle ScholarCrossref
38.
Stone  GW , Lindenfeld  J , Abraham  WT ,  et al; COAPT Investigators.  Transcatheter mitral-valve repair in patients with heart failure.   N Engl J Med. 2018;379(24):2307-2318. doi:10.1056/NEJMoa1806640PubMedGoogle ScholarCrossref
39.
Obadia  JF , Messika-Zeitoun  D , Leurent  G ,  et al; MITRA-FR Investigators.  Percutaneous repair or medical treatment for secondary mitral regurgitation.   N Engl J Med. 2018;379(24):2297-2306. doi:10.1056/NEJMoa1805374PubMedGoogle ScholarCrossref
40.
Lim  DS , Kar  S , Spargias  K ,  et al.  Transcatheter valve repair for patients with mitral regurgitation: 30-day results of the CLASP study.   JACC Cardiovasc Interv. 2019;12(14):1369-1378. doi:10.1016/j.jcin.2019.04.034PubMedGoogle ScholarCrossref
41.
Grayburn  PA , Sannino  A , Packer  M .  Proportionate and disproportionate functional mitral regurgitation: a new conceptual framework that reconciles the results of the MITRA-FR and COAPT Trials.   JACC Cardiovasc Imaging. 2019;12(2):353-362. doi:10.1016/j.jcmg.2018.11.006PubMedGoogle ScholarCrossref
42.
Testa  L , Popolo Rubbio  A , Casenghi  M , Pero  G , Latib  A , Bedogni  F .  Transcatheter mitral valve replacement in the transcatheter aortic valve replacement era.   J Am Heart Assoc. 2019;8(22):e013352. doi:10.1161/JAHA.119.013352PubMedGoogle Scholar
43.
Nath  J , Foster  E , Heidenreich  PA .  Impact of tricuspid regurgitation on long-term survival.   J Am Coll Cardiol. 2004;43(3):405-409. doi:10.1016/j.jacc.2003.09.036PubMedGoogle ScholarCrossref
44.
Benfari  G , Antoine  C , Miller  WL ,  et al.  Excess mortality associated with functional tricuspid regurgitation complicating heart failure with reduced ejection fraction.   Circulation. 2019;140(3):196-206. doi:10.1161/CIRCULATIONAHA.118.038946PubMedGoogle ScholarCrossref
45.
Zack  CJ , Fender  EA , Chandrashekar  P ,  et al.  National trends and outcomes in isolated tricuspid valve surgery.   J Am Coll Cardiol. 2017;70(24):2953-2960. doi:10.1016/j.jacc.2017.10.039PubMedGoogle ScholarCrossref
46.
Dahou  A , Levin  D , Reisman  M , Hahn  RT .  Anatomy and physiology of the tricuspid valve.   JACC Cardiovasc Imaging. 2019;12(3):458-468. doi:10.1016/j.jcmg.2018.07.032PubMedGoogle ScholarCrossref
47.
Lurz  P , Stephan von Bardeleben  R , Weber  M ,  et al; TRILUMINATE Investigators.  Transcatheter edge-to-edge repair for treatment of tricuspid regurgitation.   J Am Coll Cardiol. 2021;77(3):229-239. doi:10.1016/j.jacc.2020.11.038 PubMedGoogle ScholarCrossref
48.
Kodali  S , Hahn  RT , Eleid  MF ,  et al; CLASP TR EFS Investigators.  Feasibility study of the transcatheter valve repair system for severe tricuspid regurgitation.   J Am Coll Cardiol. 2021;77(4):345-356. doi:10.1016/j.jacc.2020.11.047 PubMedGoogle ScholarCrossref
49.
Nickenig  G , Weber  M , Schueler  R ,  et al.  6-month outcomes of tricuspid valve reconstruction for patients with severe tricuspid regurgitation.   J Am Coll Cardiol. 2019;73(15):1905-1915. doi:10.1016/j.jacc.2019.01.062PubMedGoogle ScholarCrossref
50.
Davidson  CJ , Lim  DS , Smith  R ,  et al; Cardioband TR EFS Investigators.  Early feasibility study of Cardioband tricuspid system for functional tricuspid regurgitation: 30-day outcomes.   JACC Cardiovasc Interv. 2021;14(1):41-50. PubMedGoogle ScholarCrossref
51.
Fam  NP , von Bardeleben  RS , Hensey  M ,  et al.  Transfemoral transcatheter tricuspid valve replacement with the EVOQUE system: a multicenter, observational, first-in-human experience.   JACC Cardiovasc Interv. 2021;14(5):501-511.PubMedGoogle ScholarCrossref
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_Multimedia_LoginSubscribe_Purchase
Close
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_Multimedia_LoginSubscribe_Purchase
Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close

Name Your Search

Save Search
Close
With a personal account, you can:
  • Track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
jn-learning_Modal_SaveSearch_NoAccess_Purchase
Close

Lookup An Activity

or

Close

My Saved Searches

You currently have no searches saved.

Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close