[Skip to Content]
[Skip to Content Landing]

Comparative Effectiveness of Sodium-Glucose Cotransporter 2 Inhibitors vs Sulfonylureas in Patients With Type 2 Diabetes

Educational Objective
To evaluate the comparative effectiveness of SGLT2 and sulfonylureas associated with the risk of all-cause mortality among patients with type 2 diabetes using metformin.
1 Credit CME
Key Points

Question  What is the comparative effectiveness of sodium-glucose cotransporter 2 inhibitors vs sulfonylureas associated with the risk of all-cause mortality among individuals using metformin for treatment of type 2 diabetes?

Findings  In this comparative effectiveness study analyzing data from the US Department of Veterans Affairs and including 128 293 individuals with type 2 diabetes receiving metformin, use of sodium-glucose cotransporter 2 inhibitors was associated with reduced risk of all-cause mortality compared with sulfonylureas, regardless of cardiovascular disease status, estimated glomerular filtration rate category, and albuminuria status. Use of sodium-glucose cotransporter 2 inhibitors with metformin therapy was associated with a reduced risk of all-cause mortality compared with sodium-glucose cotransporter 2 inhibitors without metformin therapy.

Meaning  The results of this cohort study provide real-world data on the risk of all-cause mortality associated with sodium-glucose cotransporter 2 inhibitors vs sulfonylureas, which may help guide the choice of antihyperglycemic therapy in people with type 2 diabetes.

Abstract

Importance  In the treatment of type 2 diabetes, evidence of the comparative effectiveness of sodium-glucose cotransporter 2 (SGLT2) inhibitors vs sulfonylureas—the second most widely used antihyperglycemic class after metformin—is lacking.

Objective  To evaluate the comparative effectiveness of SGLT2 inhibitors and sulfonylureas associated with the risk of all-cause mortality among patients with type 2 diabetes using metformin.

Design, Setting, and Participants  A cohort study used data from the US Department of Veterans Affairs compared the use of SGLT2 inhibitors vs sulfonylureas in individuals receiving metformin for treatment of type 2 diabetes. A total of 23 870 individuals with new use of SGLT2 inhibitors and 104 423 individuals with new use of sulfonylureas were enrolled between October 1, 2016, and February 29, 2020, and followed up until January 31, 2021.

Exposures  New use of SGLT2 inhibitors or sulfonylureas.

Main Outcomes and Measures  This study examined the outcome of all-cause mortality. Predefined variables and covariates identified by a high-dimensional variable selection algorithm were used to build propensity scores. The overlap weighting method based on the propensity scores was used to estimate the intention-to-treat effect sizes of SGLT2 inhibitor compared with sulfonylurea therapy. The inverse probability of the treatment adherence weighting method was used to estimate the per-protocol effect sizes.

Results  Among the 128 293 participants (mean [SD] age, 64.60 [9.84] years; 122 096 [95.17%] men), 23 870 received an SGLT2 inhibitor and 104 423 received a sulfonylurea. Compared with sulfonylureas, SGLT2 inhibitors were associated with reduced risk of all-cause mortality (hazard ratio [HR], 0.81; 95% CI, 0.75-0.87), yielding an event rate difference of −5.15 (95% CI, −7.16 to −3.02) deaths per 1000 person-years. Compared with sulfonylureas, SGLT2 inhibitors were associated with a reduced risk of death, regardless of cardiovascular disease status, in several categories of estimated glomerular filtration rate (including rates from >90 to ≤30 mL/min/1.73 m2) and in participants with no albuminuria (albumin to creatinine ratio [ACR] ≤30 mg/g), microalbuminuria (ACR >30 to ≤300 mg/g), and macroalbuminuria (ACR >300 mg/g). In per-protocol analyses, continued use of SGLT2 inhibitors was associated with a reduced risk of death compared with continued use of sulfonylureas (HR, 0.66; 95% CI, 0.60-0.74; event rate difference, −10.10; 95% CI, −12.97 to −7.24 deaths per 1000 person-years). In additional per-protocol analyses, continued use of SGLT2 inhibitors with metformin was associated with a reduced risk of death compared with SGLT2 inhibitor treatment without metformin (HR, 0.70; 95% CI, 0.50-0.97; event rate difference, −7.62; 95% CI, −17.12 to −0.48 deaths per 1000 person-years).

Conclusions and Relevance  In this comparative effectiveness study analyzing data from the US Department of Veterans Affairs, among patients with type 2 diabetes receiving metformin therapy, SGLT2 inhibitor treatment was associated with a reduced risk of all-cause mortality compared with sulfonylureas. The results provide data from a real-world setting that might help guide the choice of antihyperglycemic therapy.

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 Credit(s)™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

CME Disclosure Statement: Unless noted, all individuals in control of content reported no relevant financial relationships. If applicable, all relevant financial relationships have been mitigated.

Article Information

Accepted for Publication: April 14, 2021.

Published Online: June 28, 2021. doi:10.1001/jamainternmed.2021.2488

Correction: This article was corrected on September 13, 2021, to fix errors in Figure 2 and the Supplement.

Open Access: This is an open access article distributed under the terms of the CC-BY License. © 2021 Xie Y et al. JAMA Internal Medicine.

Corresponding Author: Ziyad Al-Aly, MD, Clinical Epidemiology Center, Research and Development Service, VA St Louis Health Care System, 915 N Grand Blvd, 151-JC, St Louis, MO 63106 (zalaly@gmail.com).

Author Contributions: Dr Al-Aly had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: Xie, Bowe, Maddukuri, McGill, Al-Aly.

Acquisition, analysis, or interpretation of data: Xie, Bowe, Gibson, Al-Aly.

Drafting of the manuscript: Xie, Al-Aly.

Critical revision of the manuscript for important intellectual content: All authors.

Statistical analysis: Xie, Bowe, Al-Aly.

Obtained funding: Al-Aly.

Administrative, technical, or material support: Al-Aly.

Supervision: Al-Aly.

Conflict of Interest Disclosures: Dr McGill reported receiving grants from Dexcom, Medtronic, and Novo Nordisk, and personal fees from Bayer, Boehringer Ingelheim, Lilly, Metavant, and Salix outside the submitted work. No other disclosures were reported.

Funding/Support: Support for Veterans Affairs/Centers for Medicare & Medicaid Services data was provided by the US Department of Veterans Affairs, Veterans Health Administration, Office of Research and Development, Health Services Research and Development, VA Information Resource Center (project number/data use agreement ID Al-Aly-01-A-1). This research was funded by the United States Department of Veterans Affairs and the Institute for Public Health at Washington University, St Louis, Missouri (Dr Al-Aly), an American Society of Nephrology and KidneyCure predoctoral fellowship award (Mr Xie), and an American Society of Nephrology and KidneyCure predoctoral fellowship award (Mr Bowe).

Role of the Funder/Sponsor: The funders had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Disclaimer: The contents do not represent the views of the US Department of Veterans Affairs or the US government.

Additional Contributions: Miguel Hernan, MD, PhD (Harvard T. H. Chan School of Public Health), provided input on this manuscript without financial compensation.

References
1.
Neal  B , Perkovic  V , Mahaffey  KW ,  et al; CANVAS Program Collaborative Group.  Canagliflozin and cardiovascular and renal events in type 2 diabetes.   N Engl J Med. 2017;377(7):644-657. doi:10.1056/NEJMoa1611925 PubMedGoogle ScholarCrossref
2.
Wiviott  SD , Raz  I , Bonaca  MP ,  et al; DECLARE–TIMI 58 Investigators.  Dapagliflozin and cardiovascular outcomes in type 2 diabetes.   N Engl J Med. 2019;380(4):347-357. doi:10.1056/NEJMoa1812389 PubMedGoogle ScholarCrossref
3.
Zinman  B , Wanner  C , Lachin  JM ,  et al; EMPA-REG OUTCOME Investigators.  Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes.   N Engl J Med. 2015;373(22):2117-2128. doi:10.1056/NEJMoa1504720 PubMedGoogle ScholarCrossref
4.
Perkovic  V , Jardine  MJ , Neal  B ,  et al; CREDENCE Trial Investigators.  Canagliflozin and renal outcomes in type 2 diabetes and nephropathy.   N Engl J Med. 2019;380(24):2295-2306. doi:10.1056/NEJMoa1811744 PubMedGoogle ScholarCrossref
5.
Mosenzon  O , Wiviott  SD , Cahn  A ,  et al.  Effects of dapagliflozin on development and progression of kidney disease in patients with type 2 diabetes: an analysis from the DECLARE-TIMI 58 randomised trial.   Lancet Diabetes Endocrinol. 2019;7(8):606-617. doi:10.1016/S2213-8587(19)30180-9 PubMedGoogle ScholarCrossref
6.
Wanner  C , Inzucchi  SE , Lachin  JM ,  et al; EMPA-REG OUTCOME Investigators.  Empagliflozin and progression of kidney disease in type 2 diabetes.   N Engl J Med. 2016;375(4):323-334. doi:10.1056/NEJMoa1515920 PubMedGoogle ScholarCrossref
7.
Heerspink  HJ , Desai  M , Jardine  M , Balis  D , Meininger  G , Perkovic  V .  Canagliflozin slows progression of renal function decline independently of glycemic effects.   J Am Soc Nephrol. 2017;28(1):368-375. doi:10.1681/ASN.2016030278 PubMedGoogle ScholarCrossref
8.
McMurray  JJV , Solomon  SD , Inzucchi  SE ,  et al; DAPA-HF Trial Committees and Investigators.  Dapagliflozin in patients with heart failure and reduced ejection fraction.   N Engl J Med. 2019;381(21):1995-2008. doi:10.1056/NEJMoa1911303 PubMedGoogle ScholarCrossref
9.
Packer  M , Anker  SD , Butler  J ,  et al; EMPEROR-Reduced Trial Investigators.  Cardiovascular and renal outcomes with empagliflozin in heart failure.   N Engl J Med. 2020;383(15):1413-1424. doi:10.1056/NEJMoa2022190 PubMedGoogle ScholarCrossref
10.
Petrie  MC , Verma  S , Docherty  KF ,  et al.  Effect of dapagliflozin on worsening heart failure and cardiovascular death in patients with heart failure with and without diabetes.   JAMA. 2020;323(14):1353-1368. doi:10.1001/jama.2020.1906 PubMedGoogle ScholarCrossref
11.
Xie  Y , Bowe  B , Gibson  AK ,  et al.  Comparative effectiveness of SGLT2 inhibitors, GLP-1 receptor agonists, DPP-4 inhibitors, and sulfonylureas on risk of kidney outcomes: emulation of a target trial using health care databases.   Diabetes Care. 2020;43(11):2859-2869. doi:10.2337/dc20-1890 PubMedGoogle ScholarCrossref
12.
Xie  Y , Bowe  B , Gibson  AK ,  et al.  Comparative effectiveness of the sodium-glucose cotransporter 2 inhibitor empagliflozin versus other antihyperglycemics on risk of major adverse kidney events.   Diabetes Care. 2020;43(11):2785-2795. doi:10.2337/dc20-1231 PubMedGoogle ScholarCrossref
13.
Heerspink  HJL , Karasik  A , Thuresson  M ,  et al.  Kidney outcomes associated with use of SGLT2 inhibitors in real-world clinical practice (CVD-REAL 3): a multinational observational cohort study.   Lancet Diabetes Endocrinol. 2020;8(1):27-35. doi:10.1016/S2213-8587(19)30384-5 PubMedGoogle ScholarCrossref
14.
Kohsaka  S , Lam  CSP , Kim  DJ ,  et al; CVD-REAL 2 Investigators and Study Group.  Risk of cardiovascular events and death associated with initiation of SGLT2 inhibitors compared with DPP-4 inhibitors: an analysis from the CVD-REAL 2 multinational cohort study.   Lancet Diabetes Endocrinol. 2020;8(7):606-615. doi:10.1016/S2213-8587(20)30130-3 PubMedGoogle ScholarCrossref
15.
Pasternak  B , Wintzell  V , Melbye  M ,  et al.  Use of sodium-glucose co-transporter 2 inhibitors and risk of serious renal events: Scandinavian cohort study.   BMJ. 2020;369:m1186. doi:10.1136/bmj.m1186 PubMedGoogle Scholar
16.
Pasternak  B , Ueda  P , Eliasson  B ,  et al.  Use of sodium glucose cotransporter 2 inhibitors and risk of major cardiovascular events and heart failure: Scandinavian register based cohort study.   BMJ. 2019;366:l4772. doi:10.1136/bmj.l4772 PubMedGoogle Scholar
17.
Filion  KB , Lix  LM , Yu  OH ,  et al; Canadian Network for Observational Drug Effect Studies (CNODES) Investigators.  Sodium glucose cotransporter 2 inhibitors and risk of major adverse cardiovascular events: multi-database retrospective cohort study.   BMJ. 2020;370:m3342. doi:10.1136/bmj.m3342 PubMedGoogle Scholar
18.
Kosiborod  M , Lam  CSP , Kohsaka  S ,  et al; CVD-REAL Investigators and Study Group.  Cardiovascular events associated with SGLT-2 inhibitors versus other glucose-lowering drugs: the CVD-REAL 2 Study.   J Am Coll Cardiol. 2018;71(23):2628-2639. doi:10.1016/j.jacc.2018.03.009 PubMedGoogle ScholarCrossref
19.
Cavender  MA , Norhammar  A , Birkeland  KI ,  et al; CVD-REAL Investigators and Study Group.  SGLT-2 inhibitors and cardiovascular risk: an analysis of CVD-REAL.   J Am Coll Cardiol. 2018;71(22):2497-2506. doi:10.1016/j.jacc.2018.01.085 PubMedGoogle ScholarCrossref
20.
Birkeland  KI , Jørgensen  ME , Carstensen  B ,  et al.  Cardiovascular mortality and morbidity in patients with type 2 diabetes following initiation of sodium-glucose co-transporter-2 inhibitors versus other glucose-lowering drugs (CVD-REAL Nordic): a multinational observational analysis.   Lancet Diabetes Endocrinol. 2017;5(9):709-717. doi:10.1016/S2213-8587(17)30258-9 PubMedGoogle ScholarCrossref
21.
Persson  F , Nyström  T , Jørgensen  ME ,  et al.  Dapagliflozin is associated with lower risk of cardiovascular events and all-cause mortality in people with type 2 diabetes (CVD-REAL Nordic) when compared with dipeptidyl peptidase-4 inhibitor therapy: a multinational observational study.   Diabetes Obes Metab. 2018;20(2):344-351. doi:10.1111/dom.13077 PubMedGoogle ScholarCrossref
22.
Xie  Y , Bowe  B , Gibson  AK , McGill  JB , Maddukuri  G , Al-Aly  Z .  Clinical implications of estimated glomerular filtration rate dip following sodium-glucose cotransporter-2 inhibitor initiation on cardiovascular and kidney outcomes.   J Am Heart Assoc. Published online May 20, 2021 doi:10.1161/JAHA.120.020237Google Scholar
23.
Xie  Y , Bowe  B , Li  T , Xian  H , Balasubramanian  S , Al-Aly  Z .  Proton pump inhibitors and risk of incident CKD and progression to ESRD.   J Am Soc Nephrol. 2016;27(10):3153-3163. doi:10.1681/ASN.2015121377 PubMedGoogle ScholarCrossref
24.
Xie  Y , Bowe  B , Li  T , Xian  H , Yan  Y , Al-Aly  Z .  Risk of death among users of proton pump inhibitors: a longitudinal observational cohort study of United States veterans.   BMJ Open. 2017;7(6):e015735. doi:10.1136/bmjopen-2016-015735 PubMedGoogle Scholar
25.
Xie  Y , Bowe  B , Li  T , Xian  H , Yan  Y , Al-Aly  Z .  Long-term kidney outcomes among users of proton pump inhibitors without intervening acute kidney injury.   Kidney Int. 2017;91(6):1482-1494. doi:10.1016/j.kint.2016.12.021 PubMedGoogle ScholarCrossref
26.
Xie  Y , Bowe  B , Li  T , Xian  H , Yan  Y , Al-Aly  Z .  Higher blood urea nitrogen is associated with increased risk of incident diabetes mellitus.   Kidney Int. 2018;93(3):741-752. doi:10.1016/j.kint.2017.08.033 PubMedGoogle ScholarCrossref
27.
Bowe  B , Cai  M , Xie  Y , Gibson  AK , Maddukuri  G , Al-Aly  Z .  Acute kidney injury in a national cohort of hospitalized US veterans with COVID-19.   Clin J Am Soc Nephrol. 2020;16(1):14-25. doi:10.2215/CJN.09610620 PubMedGoogle ScholarCrossref
28.
Vincent  BM , Wiitala  W. L., , Burns  J. A., , Iwashyna  T. J., , Prescott  H. C.,   Using Veterans Affairs corporate data warehouse to identify 30-day hospital readmissions.   Health Servs Outcomes Res Methodology. 2018;18(3):143-154. doi:10.1007/s10742-018-0178-3Google ScholarCrossref
29.
Bowe  B , Artimovich  E , Xie  Y , Yan  Y , Cai  M , Al-Aly  Z .  The global and national burden of chronic kidney disease attributable to ambient fine particulate matter air pollution: a modelling study.   BMJ Glob Health. 2020;5(3):e002063. doi:10.1136/bmjgh-2019-002063 PubMedGoogle Scholar
30.
Bowe  B , Xie  Y , Li  T ,  et al.  Changes in the US burden of chronic kidney disease from 2002 to 2016: an analysis of the global burden of disease study.   JAMA Netw Open. 2018;1(7):e184412. doi:10.1001/jamanetworkopen.2018.4412 PubMedGoogle Scholar
31.
Bowe  B , Xie  Y , Li  T , Yan  Y , Xian  H , Al-Aly  Z .  Associations of ambient coarse particulate matter, nitrogen dioxide, and carbon monoxide with the risk of kidney disease: a cohort study.   Lancet Planet Health. 2017;1(7):e267-e276. doi:10.1016/S2542-5196(17)30117-1 PubMedGoogle ScholarCrossref
32.
Bowe  B , Xie  Y , Li  T , Yan  Y , Xian  H , Al-Aly  Z .  Estimates of the 2016 global burden of kidney disease attributable to ambient fine particulate matter air pollution.   BMJ Open. 2019;9(5):e022450. doi:10.1136/bmjopen-2018-022450 PubMedGoogle Scholar
33.
Bowe  B , Xie  Y , Yan  Y , Al-Aly  Z .  Burden of cause-specific mortality associated with PM2.5 air pollution in the United States.   JAMA Netw Open. 2019;2(11):e1915834. doi:10.1001/jamanetworkopen.2019.15834 PubMedGoogle Scholar
34.
VIReC Research. Veterans Health Administration Decision Support System Clinical National Data Extracts H, IL. US Department of Veterans Affairs. VA Information Resource Center; 2009.
35.
Maynard  C.   Ascertaining Veterans' Vital Status: VA Data Sources for Mortality Ascertainment and Cause of Death. Database & Methods Cyberseminar Series; 2017.
36.
Hernán  M.   Antihyperglycemic Therapy and Cardiovascular Risk: Design and Emulation of a Target Trial Using Healthcare Databases. Patient-Centered Outcomes Research Institute; 2019.
37.
Schneeweiss  S , Rassen  JA , Glynn  RJ , Avorn  J , Mogun  H , Brookhart  MA .  High-dimensional propensity score adjustment in studies of treatment effects using health care claims data.   Epidemiology. 2009;20(4):512-522. doi:10.1097/EDE.0b013e3181a663cc PubMedGoogle ScholarCrossref
38.
Xie  Y , Bowe  B , Yan  Y , Xian  H , Li  T , Al-Aly  Z .  Estimates of all cause mortality and cause specific mortality associated with proton pump inhibitors among US veterans: cohort study.   BMJ. 2019;365:l1580. doi:10.1136/bmj.l1580 PubMedGoogle Scholar
39.
Neugebauer  R , Schmittdiel  JA , Zhu  Z , Rassen  JA , Seeger  JD , Schneeweiss  S .  High-dimensional propensity score algorithm in comparative effectiveness research with time-varying interventions.   Stat Med. 2015;34(5):753-781. doi:10.1002/sim.6377 PubMedGoogle ScholarCrossref
40.
Li  F , Thomas  LE , Li  F .  Addressing extreme propensity scores via the overlap weights.   Am J Epidemiol. 2019;188(1):250-257.PubMedGoogle Scholar
41.
Thomas  LE , Li  F , Pencina  MJ .  Overlap weighting: a propensity score method that mimics attributes of a randomized clinical trial.   JAMA. 2020;323(23):2417-2418. doi:10.1001/jama.2020.7819 PubMedGoogle ScholarCrossref
42.
Lin  DY .  On the Breslow estimator.   Lifetime Data Anal. 2007;13(4):471-480. doi:10.1007/s10985-007-9048-y PubMedGoogle ScholarCrossref
43.
Hernán  MA , Hernández-Díaz  S .  Beyond the intention-to-treat in comparative effectiveness research.   Clin Trials. 2012;9(1):48-55. doi:10.1177/1740774511420743 PubMedGoogle ScholarCrossref
44.
Murray  EJ , Hernán  MA .  Improved adherence adjustment in the Coronary Drug Project.   Trials. 2018;19(1):158. doi:10.1186/s13063-018-2519-5 PubMedGoogle ScholarCrossref
45.
Hernán  MARJ , Robins  JM .  Per-protocol analyses of pragmatic trials.   N Engl J Med. 2017;377(14):1391-1398. doi:10.1056/NEJMsm1605385 PubMedGoogle ScholarCrossref
46.
Hernán  MA , Robins  JM .  Causal Inference: What If. Chapman & Hall/CRC; 2020.
47.
Estruch  R , Ros  E , Salas-Salvadó  J ,  et al; PREDIMED Study Investigators.  Primary prevention of cardiovascular disease with a Mediterranean diet supplemented with extra-virgin olive oil or nuts.   N Engl J Med. 2018;378(25):e34. doi:10.1056/NEJMoa1800389 PubMedGoogle Scholar
48.
Lipsitch  M , Tchetgen Tchetgen  E , Cohen  T .  Negative controls: a tool for detecting confounding and bias in observational studies.   Epidemiology. 2010;21(3):383-388. doi:10.1097/EDE.0b013e3181d61eeb PubMedGoogle ScholarCrossref
49.
Hampp  C , Borders-Hemphill  V , Moeny  DG , Wysowski  DK .  Use of antidiabetic drugs in the U.S., 2003-2012.   Diabetes Care. 2014;37(5):1367-1374. doi:10.2337/dc13-2289 PubMedGoogle ScholarCrossref
50.
Zion Market Research.  Oral Antidiabetic Drugs Market by Drugs Class Category for Type 2 Diabetes Mellitus: Global Industry Perspective, Comprehensive Analysis and Forecast, 2016-2022. Zion Market Research; 2017.
51.
Davies  MJ , D’Alessio  DA , Fradkin  J ,  et al.  Management of hyperglycemia in type 2 diabetes, 2018: a consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD).   Diabetes Care. 2018;41(12):2669-2701. doi:10.2337/dci18-0033 PubMedGoogle ScholarCrossref
52.
Buse  JB , Wexler  DJ , Tsapas  A ,  et al.  2019 Update to: management of hyperglycemia in type 2 diabetes, 2018: a consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD).   Diabetes Care. 2020;43(2):487-493. doi:10.2337/dci19-0066 PubMedGoogle ScholarCrossref
53.
Cosentino  F , Grant  PJ , Aboyans  V ,  et al; ESC Scientific Document Group.  2019 ESC guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD.   Eur Heart J. 2020;41(2):255-323. doi:10.1093/eurheartj/ehz486 PubMedGoogle ScholarCrossref
54.
de Boer  IH , Caramori  ML , Chan  JCN ,  et al.  Executive summary of the 2020 KDIGO Diabetes Management in CKD Guideline: evidence-based advances in monitoring and treatment.   Kidney Int. 2020;98(4):839-848. doi:10.1016/j.kint.2020.06.024 PubMedGoogle ScholarCrossref
55.
Tseng  YJ , Steinberg  G , Fox  KP , Armstrong  J , Mandl  KD .  Antihyperglycemic medications: a claims-based estimate of first-line therapy use prior to initialization of second-line medications.   Diabetes Care. 2017;40(11):1500-1505. doi:10.2337/dc17-0213 PubMedGoogle ScholarCrossref
56.
Neuen  BL , Arnott  C , Perkovic  V ,  et al.  Sodium-glucose co-transporter-2 inhibitors with and without metformin: a meta-analysis of cardiovascular, kidney and mortality outcomes.   Diabetes Obes Metab. 2021;23(2):382-390. doi:10.1111/dom.14226 PubMedGoogle ScholarCrossref
57.
DeJong  C , Masuda  C , Chen  R , Kazi  DS , Dudley  RA , Tseng  C-W .  Out-of-pocket costs for novel guideline-directed diabetes therapies under Medicare Part D.   JAMA Intern Med. 2020;180(12):1696-1699. doi:10.1001/jamainternmed.2020.2922 PubMedGoogle ScholarCrossref
58.
McEwan  P , Bennett  H , Khunti  K ,  et al.  Assessing the cost-effectiveness of sodium-glucose cotransporter-2 inhibitors in type 2 diabetes mellitus: a comprehensive economic evaluation using clinical trial and real-world evidence.   Diabetes Obes Metab. 2020;22(12):2364-2374. doi:10.1111/dom.14162 PubMedGoogle ScholarCrossref
59.
Lopaschuk  GD , Verma  S .  Mechanisms of cardiovascular benefits of sodium glucose Co-transporter 2 (SGLT2) inhibitors: a state-of-the-art review.   JACC Basic Transl Sci. 2020;5(6):632-644. doi:10.1016/j.jacbts.2020.02.004 PubMedGoogle ScholarCrossref
60.
Verma  S .  Potential mechanisms of sodium-glucose co-transporter 2 inhibitor–related cardiovascular benefits.   Am J Cardiol. 2019;124(suppl 1):S36-S44. doi:10.1016/j.amjcard.2019.10.028 PubMedGoogle ScholarCrossref
AMA CME Accreditation Information

Credit Designation Statement: The American Medical Association designates this Journal-based CME activity activity for a maximum of 1.00  AMA PRA Category 1 Credit(s)™. Physicians should claim only the credit commensurate with the extent of their participation in the activity.

Successful completion of this CME activity, which includes participation in the evaluation component, enables the participant to earn up to:

  • 1.00 Medical Knowledge MOC points in the American Board of Internal Medicine's (ABIM) Maintenance of Certification (MOC) program;;
  • 1.00 Self-Assessment points in the American Board of Otolaryngology – Head and Neck Surgery’s (ABOHNS) Continuing Certification program;
  • 1.00 MOC points in the American Board of Pediatrics’ (ABP) Maintenance of Certification (MOC) program;
  • 1.00 Lifelong Learning points in the American Board of Pathology’s (ABPath) Continuing Certification program; and
  • 1.00 credit toward the CME [and Self-Assessment requirements] of the American Board of Surgery’s Continuous Certification program

It is the CME activity provider's responsibility to submit participant completion information to ACCME for the purpose of granting MOC credit.

Close
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
Close
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close

Name Your Search

Save Search
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Close
Close

Lookup An Activity

or

My Saved Searches

You currently have no searches saved.

Close

My Saved Courses

You currently have no courses saved.

Close