[Skip to Content]
[Skip to Content Landing]

Association of High Screen-Time Use With School-age Cognitive, Executive Function, and Behavior Outcomes in Extremely Preterm Children

Educational Objective
To assess the association of high screen time with cognition, language, executive function, and behavior of extremely preterm children aged 6 to 7 years.
1 Credit CME
Key Points

Question  Is increased screen time at early school age associated with an increase in risk of developmental and behavioral problems for extremely premature infants?

Findings  In this cohort study including 414 children who had been born extremely prematurely, high screen time of 2 hours or more per day was associated with an increase in risk of cognitive, executive function, and behavioral problems at early school age among extremely premature children after adjusting for center, male sex, and gestational age, severe retinopathy of prematurity, and social determinants. The maximum number of hours of screen time reported for these children was 40.3 hours per week.

Meaning  These findings suggest that a high level of screen time contributes further to an increase in risk of cognitive, executive function, and behavior outcomes at age 6 to 7 years in extremely premature children, supporting the need for health care professionals to discuss both the benefits and risks of screen time with families and share the American Academy of Pediatrics recommendations.

Abstract

Importance  Both preterm birth and increased screen time are known to be associated with an increase in risk of developmental and behavioral sequelae. The association between high screen time or a television or computer in the bedroom in early school age and adverse cognitive, executive function, language, and behavior outcomes of extremely preterm children (EPT) is not well understood.

Objective  To assess the association of high screen time with cognition, language, executive function, and behavior of EPT children aged 6 to 7 years; a second objective was to examine the association between high screen time and rates of structured physical activity and weight.

Design, Setting, and Participants  This cohort study was a secondary analysis from the Eunice Kennedy Shriver National Institute of Child Health and Human Development Surfactant Positive Airway Pressure and Pulse Oximetry Randomized Trial Neuroimaging and Neurodevelopmental Outcomes school-aged cohort and includes 414 EPT children born between February 1, 2005, and February 28, 2009, and evaluated in between 2012 and 2016 at ages 6 years 4 months to 7 years 2 months. The study was conducted from July 7, 2012, and August 15, 2016, and data were analyzed between December 10, 2018, and April 1, 2021.

Exposures  Cohorts included children exposed to low (≤2 hours per day) vs high (>2 hours per day) amounts of screen time and by the presence (no vs yes) of a television/computer in the bedroom.

Main Outcomes and Measures  In addition to growth parameters, assessments included the Wechsler Intelligence Scale for Children-IV, the Behavior Rating Inventory of Executive Function, the Developmental Neuropsychological Assessment, the Conners 3rd Edition–Parent Short-Form, and the Social Communication Questionnaire.

Results  Of the 414 children included in the analysis, 227 (55%) were boys; mean (SD) birth weight was 870.6 (191) g. A total of 238 children (57%) had high screen time and 266 (64%) had a television/computer in their bedroom. In multivariable linear regressions adjusted for center, male sex, gestational age, and social determinants of health, high screen time was independently associated with the following mean (SE) test score changes: lower full-scale IQ (−3.92 [1.64]; P = .02); an increase in association with deficits in executive functions, including metacognition (8.18 [3.01]; P = .007), global executive function (7.49 [2.99]; P = .01), inhibition (−0.79 [0.38]; P = .03), and Conners 3rd Edition–Parent Short-Form inattention (3.32 [1.67]; P = .047). A television/computer in the bedroom was associated with an increase in inhibition (−0.80 [0.39]; P = .04) and hyperactivity/impulsivity (3.50 [1.75]; P = .046) problems.

Conclusions and Relevance  The findings of this study suggest that high screen time contributes to adverse cognitive, executive function, and behavior outcomes at ages 6 to 7 years in children born at less than 28 weeks. These findings support the need for clinicians to have heightened awareness of the risks for EPT children and discuss both the benefits and risks of screen time with families.

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 Credit(s)™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

CME Disclosure Statement: Unless noted, all individuals in control of content reported no relevant financial relationships. If applicable, all relevant financial relationships have been mitigated.

Article Information

Accepted for Publication: April 26, 2021.

Published Online: July 12, 2021. doi:10.1001/jamapediatrics.2021.2041

Corresponding Author: Betty R. Vohr, MD, Division of Neonatal Medicine, Department of Pediatrics, Women & Infants Hospital of Rhode Island, 101 Dudley St, Providence, RI 02905 (bvohr@wihri.org).

Author Contributions: Drs Bann and Das full access to all the data in the study and take responsibility for the integrity of the data and accuracy of the data analyses.

Concept and design: Vohr, Higgins, Hintz.

Acquisition, analysis, or interpretation of data: All authors.

Drafting of the manuscript: Vohr, McGowan, Bann.

Critical revision of the manuscript for important intellectual content: Vohr, McGowan, Das, Higgins, Hintz.

Statistical analysis: Bann, Das.

Obtained funding: Das, Hintz.

Administrative, technical, or material support: Higgins, Hintz.

Supervision: Higgins.

Conflict of Interest Disclosures: Dr Vohr reported receiving grants from the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) Neonatal Research Network (NRN) during the conduct of the study. Dr Bann reported receiving grants from the NICHD during the conduct of the study. Dr Das reported receiving grants from the National Institutes of Health cooperative agreement grant during the conduct of the study. Dr Hintz reported receiving grants from the NICHD NRN during the conduct of the study. No other disclosures were reported.

Funding/Support: The National Institutes of Health (M01 RR30, M01 RR32, M01 RR39, M01 RR54, M01 RR59, M01 RR64, M01 RR80, M01 RR70, M01 RR633, M01 RR750, M01 RR997, UL1 RR25008, UL1 RR25744, UL1 TR442), the NICHD (U10 HD21364, U10 HD21385, U10 HD21373, U10 HD27851, U10 HD27856, U10 HD27880, U10 HD27904, U10 HD34216, U10 HD36790, U10 HD40461, U10 HD40492, U10 HD40689, U10 HD53089, U10 HD53109, U10 HD53119, and U10 HD53124) and the National Heart, Lung, and Blood Institute (NHLBI) (via co-funding) provided grant support for the NRN’s Extended Follow-up at School Age for the Surfactant Positive Airway Pressure and Pulse Oximetry Randomized Trial (SUPPORT) Neuroimaging and Neurodevelopmental Outcomes (NEURO) Cohort.

Role of the Funder/Sponsor: Although the NICHD staff had input into the study design, conduct, analysis, and manuscript drafting, the comments and views of the authors do not necessarily represent the views of the NICHD. Data collected at participating sites of the NICHD Neonatal Research Network NRN were transmitted to Research Triangle Institute International, the data coordinating center for the network, which stored, managed, and analyzed the data for this study.

Group Information: The members of the Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network are listed in the Supplement.

Additional Contributions: We thank the children and their parents who participated in this study.

Additional Information: Extended Follow-up at School Age for the SUPPORT NEURO Cohort: NCT00233324.

References
1.
Rideout  V , Robb  MB . The common sense census: media use by kids aged zero to eight. 2020. Accessed June 9, 2021. https://www.commonsensemedia.org/sites/default/files/uploads/research/2020_zero_to_eight_census_final_web.pdf
2.
Shah  DK , Doyle  LW , Anderson  PJ ,  et al.  Adverse neurodevelopment in preterm infants with postnatal sepsis or necrotizing enterocolitis is mediated by white matter abnormalities on magnetic resonance imaging at term.   J Pediatr. 2008;153(2):170-175, 175.e1. doi:10.1016/j.jpeds.2008.02.033PubMedGoogle ScholarCrossref
3.
Madigan  S , Browne  D , Racine  N , Mori  C , Tough  S .  Association between screen time and children’s performance on a developmental screening test.   JAMA Pediatr. 2019;173(3):244-250. doi:10.1001/jamapediatrics.2018.5056 PubMedGoogle ScholarCrossref
4.
Lillard  AS , Drell  MB , Richey  EM , Boguszewski  K , Smith  ED .  Further examination of the immediate impact of television on children’s executive function.   Dev Psychol. 2015;51(6):792-805. doi:10.1037/a0039097 PubMedGoogle ScholarCrossref
5.
van den Heuvel  M , Ma  J , Borkhoff  CM ,  et al; TARGet Kids! Collaboration.  Mobile media device use is associated with expressive language delay in 18-month-old children.   J Dev Behav Pediatr. 2019;40(2):99-104. doi:10.1097/DBP.0000000000000630 PubMedGoogle ScholarCrossref
6.
Madigan  S , McArthur  BA , Anhorn  C , Eirich  R , Christakis  DA .  Associations between screen use and child language skills: a systematic review and meta-analysis.   JAMA Pediatr. 2020;174(7):665-675. doi:10.1001/jamapediatrics.2020.0327 PubMedGoogle ScholarCrossref
7.
Zimmerman  FJ , Christakis  DA , Meltzoff  AN .  Associations between media viewing and language development in children under age 2 years.   J Pediatr. 2007;151(4):364-368. doi:10.1016/j.jpeds.2007.04.071 PubMedGoogle ScholarCrossref
8.
Radesky  JS , Christakis  DA .  Increased screen time: implications for early childhood development and behavior.   Pediatr Clin North Am. 2016;63(5):827-839. doi:10.1016/j.pcl.2016.06.006 PubMedGoogle ScholarCrossref
9.
Adelantado-Renau  M , Moliner-Urdiales  D , Cavero-Redondo  I , Beltran-Valls  MR , Martínez-Vizcaíno  V , Álvarez-Bueno  C .  Association between screen media use and academic performance among children and adolescents: a systematic review and meta-analysis.   JAMA Pediatr. 2019;173(11):1058-1067. doi:10.1001/jamapediatrics.2019.3176 PubMedGoogle ScholarCrossref
10.
Carter  B , Rees  P , Hale  L , Bhattacharjee  D , Paradkar  MS .  Association between portable screen–based media device access or use and sleep outcomes: a systematic review and meta-analysis.   JAMA Pediatr. 2016;170(12):1202-1208. doi:10.1001/jamapediatrics.2016.2341 PubMedGoogle ScholarCrossref
11.
Wilson  PB , Haegele  JA , Zhu  X .  Mobility status as a predictor of obesity, physical activity, and screen time use among children aged 5-11 years in the United States.   J Pediatr. 2016;176:23-29.e1. doi:10.1016/j.jpeds.2016.06.016PubMedGoogle ScholarCrossref
12.
Tahir  MJ , Willett  W , Forman  MR .  The association of television viewing in childhood with overweight and obesity throughout the life course.   Am J Epidemiol. 2019;188(2):282-293. doi:10.1093/aje/kwy236 PubMedGoogle ScholarCrossref
13.
Anderson  DR , Subrahmanyam  K ; Cognitive Impacts of Digital Media Workgroup.  Digital screen media and cognitive development.   Pediatrics. 2017;140(suppl 2):S57-S61. doi:10.1542/peds.2016-1758C PubMedGoogle ScholarCrossref
14.
Huber  B , Yeates  M , Meyer  D , Fleckhammer  L , Kaufman  J .  The effects of screen media content on young children’s executive functioning.   J Exp Child Psychol. 2018;170:72-85. doi:10.1016/j.jecp.2018.01.006 PubMedGoogle ScholarCrossref
15.
Sherman  LE , Hernandez  LM , Greenfield  PM , Dapretto  M .  What the brain “likes”: neural correlates of providing feedback on social media.   Soc Cogn Affect Neurosci. 2018;13(7):699-707. doi:10.1093/scan/nsy051 PubMedGoogle ScholarCrossref
16.
Domingues-Montanari  S .  Clinical and psychological effects of excessive screen time on children.   J Paediatr Child Health. 2017;53(4):333-338. doi:10.1111/jpc.13462 PubMedGoogle ScholarCrossref
17.
Lissak  G .  Adverse physiological and psychological effects of screen time on children and adolescents: literature review and case study.   Environ Res. 2018;164:149-157. doi:10.1016/j.envres.2018.01.015 PubMedGoogle ScholarCrossref
18.
Hale  L , Guan  S .  Screen time and sleep among school-aged children and adolescents: a systematic literature review.   Sleep Med Rev. 2015;21:50-58. doi:10.1016/j.smrv.2014.07.007 PubMedGoogle ScholarCrossref
19.
Christakis  DA , Zimmerman  FJ , DiGiuseppe  DL , McCarty  CA .  Early television exposure and subsequent attentional problems in children.   Pediatrics. 2004;113(4):708-713. doi:10.1542/peds.113.4.708 PubMedGoogle ScholarCrossref
20.
Council on Communications and Media.  Children, adolescents, and the media.   Pediatrics. 2013;132(5):958-961. doi:10.1542/peds.2013-2656 PubMedGoogle ScholarCrossref
21.
AAP.  Council on Communications and Media Policy Statement. Media use in school-aged children and adolescen ts.   Pediatrics. 2016;138(5):e20162592.Google Scholar
22.
Parasuraman  SR , Ghandour  RM , Kogan  MD .  Epidemiological profile of health and behaviors in middle childhood.   Pediatrics. 2020;145(6):e20192244. doi:10.1542/peds.2019-2244 PubMedGoogle Scholar
23.
Community Preventive Services Task Force.  Reducing children’s recreational sedentary screen time: recommendation of the Community Preventive Services Task Force.   Am J Prev Med. 2016;50(3):416-418. doi:10.1016/j.amepre.2015.09.014 PubMedGoogle ScholarCrossref
24.
Hansen  AR , Pritchard  T , Melnic  I , Zhang  J .  Physical activity, screen time, and school absenteeism: self-reports from NHANES 2005-2008.   Curr Med Res Opin. 2016;32(4):651-659. doi:10.1185/03007995.2015.1135112 PubMedGoogle ScholarCrossref
25.
Henderson  M , Benedetti  A , Barnett  TA , Mathieu  ME , Deladoëy  J , Gray-Donald  K .  Influence of adiposity, physical activity, fitness, and screen time on insulin dynamics over 2 years in children.   JAMA Pediatr. 2016;170(3):227-235. doi:10.1001/jamapediatrics.2015.3909 PubMedGoogle ScholarCrossref
26.
Luu  TM , Ment  LR , Schneider  KC , Katz  KH , Allan  WC , Vohr  BR .  Lasting effects of preterm birth and neonatal brain hemorrhage at 12 years of age.   Pediatrics. 2009;123(3):1037-1044. doi:10.1542/peds.2008-1162 PubMedGoogle ScholarCrossref
27.
Anderson  PJ , Treyvaud  K , Neil  JJ ,  et al.  Associations of newborn brain magnetic resonance imaging with long-term neurodevelopmental impairments in very preterm children.   J Pediatr. 2017;187:58-65.e1. doi:10.1016/j.jpeds.2017.04.059PubMedGoogle ScholarCrossref
28.
Kelly  CE , Thompson  DK , Cheong  JL ,  et al.  Brain structure and neurological and behavioural functioning in infants born preterm.   Dev Med Child Neurol. 2019;61(7):820-831. doi:10.1111/dmcn.14084PubMedGoogle ScholarCrossref
29.
Woodward  LJ , Lu  Z , Morris  AR , Healey  DM .  Preschool self regulation predicts later mental health and educational achievement in very preterm and typically developing children.   Clin Neuropsychol. 2017;31(2):404-422. doi:10.1080/13854046.2016.1251614 PubMedGoogle ScholarCrossref
30.
Taylor  HG , Clark  CA .  Executive function in children born preterm: risk factors and implications for outcome.   Semin Perinatol. 2016;40(8):520-529. doi:10.1053/j.semperi.2016.09.004 PubMedGoogle ScholarCrossref
31.
Leviton  A , Hooper  SR , Hunter  SJ ,  et al; ELGAN Study Investigators.  Antecedents of screening positive for attention deficit hyperactivity disorder in ten-year-old children born extremely preterm.   Pediatr Neurol. 2018;81:25-30. doi:10.1016/j.pediatrneurol.2017.12.010 PubMedGoogle ScholarCrossref
32.
Bolk  J , Farooqi  A , Hafström  M , Åden  U , Serenius  F .  Developmental coordination disorder and its association with developmental comorbidities at 6.5 years in apparently healthy children born extremely preterm.   JAMA Pediatr. 2018;172(8):765-774. doi:10.1001/jamapediatrics.2018.1394 PubMedGoogle ScholarCrossref
33.
Spittle  AJ , Orton  J .  Cerebral palsy and developmental coordination disorder in children born preterm.   Semin Fetal Neonatal Med. 2014;19(2):84-89. doi:10.1016/j.siny.2013.11.005 PubMedGoogle ScholarCrossref
34.
Vohr  BR , Heyne  R , Bann  CM , Das  A , Higgins  RD , Hintz  SR ; Eunice Kennedy Shriver National Institute of Child Health, and Development Neonatal Research Network.  Extreme preterm infant rates of overweight and obesity at school age in the SUPPORT Neuroimaging and Neurodevelopmental Outcomes cohort.   J Pediatr. 2018;200:132-139.e3. doi:10.1016/j.jpeds.2018.04.073PubMedGoogle ScholarCrossref
35.
Hintz  SR , Barnes  PD , Bulas  D ,  et al; SUPPORT Study Group of the Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network.  Neuroimaging and neurodevelopmental outcome in extremely preterm infants.   Pediatrics. 2015;135(1):e32-e42. doi:10.1542/peds.2014-0898 PubMedGoogle ScholarCrossref
36.
Finer  NN , Carlo  WA , Walsh  MC ,  et al; SUPPORT Study Group of the Eunice Kennedy Shriver NICHD Neonatal Research Network.  Early CPAP versus surfactant in extremely preterm infants.   N Engl J Med. 2010;362(21):1970-1979. doi:10.1056/NEJMoa0911783 PubMedGoogle Scholar
37.
Carlo  WA , Finer  NN , Walsh  MC ,  et al; SUPPORT Study Group of the Eunice Kennedy Shriver NICHD Neonatal Research Network.  Target ranges of oxygen saturation in extremely preterm infants.   N Engl J Med. 2010;362(21):1959-1969. doi:10.1056/NEJMoa0911781 PubMedGoogle Scholar
38.
Hintz  SR , Vohr  BR , Bann  CM ,  et al; SUPPORT study group of the Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network.  Preterm neuroimaging and school-age cognitive outcomes.   Pediatrics. 2018;142(1):e20174058. doi:10.1542/peds.2017-4058 PubMedGoogle Scholar
39.
Wechsler  D.   The Wechsler Intelligence Scale for Children-Fourth Edition. The Psychological Corporation; 2003.
40.
Gioia  GA IP , Guy  SC , Kenworthy  L. .  Behavior Rating Inventory of Executive Function: BRIEF. Psychological Assessment Resources; 2000.
41.
Korkman  M , Kirk  U , Kemp S.  NEPSY. The Psychological Corporation; 1997.
42.
Goyette  CH , Conners  CK , Ulrich  RF .  Normative data on revised Conners Parent and Teacher rating scales.   J Abnorm Child Psychol. 1978;6(2):221-236. doi:10.1007/BF00919127 PubMedGoogle ScholarCrossref
43.
Chandler  S , Charman  T , Baird  G ,  et al.  Validation of the Social Communication Questionnaire in a population cohort of children with autism spectrum disorders.   J Am Acad Child Adolesc Psychiatry. 2007;46(10):1324-1332. doi:10.1097/chi.0b013e31812f7d8d PubMedGoogle ScholarCrossref
44.
Rosenberg  DE , Sallis  JF , Kerr  J ,  et al.  Brief scales to assess physical activity and sedentary equipment in the home.   Int J Behav Nutr Phys Act. 2010;7:10. doi:10.1186/1479-5868-7-10 PubMedGoogle ScholarCrossref
45.
Walsh  JJ , Barnes  JD , Cameron  JD ,  et al.  Associations between 24 hour movement behaviours and global cognition in US children: a cross-sectional observational study.   Lancet Child Adolesc Health. 2018;2(11):783-791. doi:10.1016/S2352-4642(18)30278-5 PubMedGoogle ScholarCrossref
46.
Duch  H , Fisher  EM , Ensari  I ,  et al.  Association of screen time use and language development in Hispanic toddlers: a cross-sectional and longitudinal study.   Clin Pediatr (Phila). 2013;52(9):857-865. doi:10.1177/0009922813492881 PubMedGoogle ScholarCrossref
47.
Tamana  SK , Ezeugwu  V , Chikuma  J ,  et al; CHILD study Investigators.  Screen-time is associated with inattention problems in preschoolers: results from the CHILD birth cohort study.   PLoS One. 2019;14(4):e0213995. doi:10.1371/journal.pone.0213995 PubMedGoogle Scholar
48.
Guerrero  MD , Barnes  JD , Walsh  JJ , Chaput  JP , Tremblay  MS , Goldfield  GS .  24-Hour movement behaviors and impulsivity.   Pediatrics. 2019;144(3):e20190187. doi:10.1542/peds.2019-0187 PubMedGoogle Scholar
49.
Luu  TM , Ment  L , Allan  W , Schneider  K , Vohr  BR .  Executive and memory function in adolescents born very preterm.   Pediatrics. 2011;127(3):e639-e646. doi:10.1542/peds.2010-1421 PubMedGoogle ScholarCrossref
50.
Baron  IS , Kerns  KA , Müller  U , Ahronovich  MD , Litman  FR .  Executive functions in extremely low birth weight and late-preterm preschoolers: effects on working memory and response inhibition.   Child Neuropsychol. 2012;18(6):586-599. doi:10.1080/09297049.2011.631906 PubMedGoogle ScholarCrossref
51.
Sriram  S , Schreiber  MD , Msall  ME ,  et al; ELGAN Study Investigators.  Cognitive development and quality of life associated with bpd in 10-year-olds born preterm.   Pediatrics. 2018;141(6):e20172719. doi:10.1542/peds.2017-2719 PubMedGoogle Scholar
52.
O’Meagher  S , Kemp  N , Norris  K , Anderson  P , Skilbeck  C .  Risk factors for executive function difficulties in preschool and early school-age preterm children.   Acta Paediatr. 2017;106(9):1468-1473. doi:10.1111/apa.13915 PubMedGoogle ScholarCrossref
53.
Joseph  RM , O’Shea  TM , Allred  EN ,  et al; ELGAN Study Investigators.  Neurocognitive and academic outcomes at age 10 years of extremely preterm newborns.   Pediatrics. 2016;137(4):e20154343. doi:10.1542/peds.2015-4343 PubMedGoogle Scholar
54.
Choi  M , Park  S .  The mediating effects of academic performance between screen time, executive function difficulty and school adjustment.   Compr Child Adolesc Nurs. 2020;43(4):334-347. doi:10.1080/24694193.2019.1675805 PubMedGoogle ScholarCrossref
55.
Peiró-Velert  C , Valencia-Peris  A , González  LM , García-Massó  X , Serra-Añó  P , Devís-Devís  J .  Screen media usage, sleep time and academic performance in adolescents: clustering a self-organizing maps analysis.   PLoS One. 2014;9(6):e99478. doi:10.1371/journal.pone.0099478 PubMedGoogle Scholar
56.
Paudel  S , Jancey  J , Subedi  N , Leavy  J .  Correlates of mobile screen media use among children aged 0-8: a systematic review.   BMJ Open. 2017;7(10):e014585. doi:10.1136/bmjopen-2016-014585 PubMedGoogle Scholar
57.
Nathanson  AI , Aladé  F , Sharp  ML , Rasmussen  EE , Christy  K .  The relation between television exposure and executive function among preschoolers.   Dev Psychol. 2014;50(5):1497-1506. doi:10.1037/a0035714 PubMedGoogle ScholarCrossref
58.
McNeill  J , Howard  SJ , Vella  SA , Cliff  DP .  Longitudinal associations of electronic application use and media program viewing with cognitive and psychosocial development in preschoolers.   Acad Pediatr. 2019;19(5):520-528. doi:10.1016/j.acap.2019.02.010 PubMedGoogle ScholarCrossref
59.
Hancox  RJ , Milne  BJ , Poulton  R .  Association of television viewing during childhood with poor educational achievement.   Arch Pediatr Adolesc Med. 2005;159(7):614-618. doi:10.1001/archpedi.159.7.614 PubMedGoogle ScholarCrossref
60.
Chonchaiya  W , Pruksananonda  C .  Television viewing associates with delayed language development.   Acta Paediatr. 2008;97(7):977-982. doi:10.1111/j.1651-2227.2008.00831.x PubMedGoogle ScholarCrossref
61.
Christakis  DA , Gilkerson  J , Richards  JA ,  et al.  Audible television and decreased adult words, infant vocalizations, and conversational turns: a population-based study.   Arch Pediatr Adolesc Med. 2009;163(6):554-558. doi:10.1001/archpediatrics.2009.61 PubMedGoogle ScholarCrossref
62.
Lo  CB , Waring  ME , Pagoto  SL , Lemon  SC .  A television in the bedroom is associated with higher weekday screen time among youth with attention deficit hyperactivity disorder (ADD/ADHD).   Prev Med Rep. 2015;2:1-3. doi:10.1016/j.pmedr.2014.11.001 PubMedGoogle ScholarCrossref
63.
Ahn  JS , Min  S , Kim  MH .  The role of uncontrolled eating and screen time in the link of attention deficit hyperactivity disorder with weight in late childhood.   Psychiatry Investig. 2017;14(6):808-816. doi:10.4306/pi.2017.14.6.808 PubMedGoogle ScholarCrossref
64.
Tandon  PS , Sasser  T , Gonzalez  ES , Whitlock  KB , Christakis  DA , Stein  MA .  Physical activity, screen time, and sleep in children with ADHD.   J Phys Act Health. 2019;16(6):416-422. doi:10.1123/jpah.2018-0215 PubMedGoogle ScholarCrossref
65.
Hinkley  T , Brown  H , Carson  V , Teychenne  M .  Cross sectional associations of screen time and outdoor play with social skills in preschool children.   PLoS One. 2018;13(4):e0193700. doi:10.1371/journal.pone.0193700 PubMedGoogle Scholar
66.
Hutton  JS , Dudley  J , Horowitz-Kraus  T , DeWitt  T , Holland  SK .  Associations between screen-based media use and brain white matter integrity in preschool-aged children.   JAMA Pediatr. 2020;174(1):e193869. doi:10.1001/jamapediatrics.2019.3869 PubMedGoogle Scholar
67.
Woodward  LJ , Clark  CA , Bora  S , Inder  TE .  Neonatal white matter abnormalities an important predictor of neurocognitive outcome for very preterm children.   PLoS One. 2012;7(12):e51879. doi:10.1371/journal.pone.0051879 PubMedGoogle Scholar
68.
Shah  DK , Anderson  PJ , Carlin  JB ,  et al.  Reduction in cerebellar volumes in preterm infants: relationship to white matter injury and neurodevelopment at two years of age.   Pediatr Res. 2006;60(1):97-102. doi:10.1203/01.pdr.0000220324.27597.f0 PubMedGoogle ScholarCrossref
69.
Thompson  DK , Lee  KJ , Egan  GF ,  et al.  Regional white matter microstructure in very preterm infants: predictors and 7 year outcomes.   Cortex. 2014;52:60-74. doi:10.1016/j.cortex.2013.11.010 PubMedGoogle ScholarCrossref
70.
Peterson  BS , Anderson  AW , Ehrenkranz  R ,  et al.  Regional brain volumes and their later neurodevelopmental correlates in term and preterm infants.   Pediatrics. 2003;111(5, pt 1):939-948. doi:10.1542/peds.111.5.939 PubMedGoogle ScholarCrossref
71.
Peterson  BS , Vohr  B , Staib  LH ,  et al.  Regional brain volume abnormalities and long-term cognitive outcome in preterm infants.   JAMA. 2000;284(15):1939-1947. doi:10.1001/jama.284.15.1939 PubMedGoogle ScholarCrossref
72.
Strasburger  VC ; Council on Communications and Media.  Children, adolescents, obesity, and the media.   Pediatrics. 2011;128(1):201-208. doi:10.1542/peds.2011-1066 PubMedGoogle Scholar
73.
Piercy  KL , Troiano  RP , Ballard  RM ,  et al.  The physical activity guidelines for Americans.   JAMA. 2018;320(19):2020-2028. doi:10.1001/jama.2018.14854 PubMedGoogle ScholarCrossref
74.
Bevington  F , Piercy  KL , Olscamp  K , Hilfiker  SW , Fisher  DG , Barnett  EY .  The Move Your Way Campaign: encouraging contemplators and families to meet the recommendations from the physical activity guidelines for Americans.   J Phys Act Health. 2020;17(4):397-403. doi:10.1123/jpah.2019-0395 PubMedGoogle ScholarCrossref
75.
Shah  R , Sobotka  SA , Chen  YF , Msall  ME .  Positive parenting practices, health disparities, and developmental progress.   Pediatrics. 2015;136(2):318-326. doi:10.1542/peds.2014-3390 PubMedGoogle ScholarCrossref
Close
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
Close
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close

Name Your Search

Save Search
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Close
Close

Lookup An Activity

or

My Saved Searches

You currently have no searches saved.

Close

My Saved Courses

You currently have no courses saved.

Close