Factors Associated With Household Transmission of SARS-CoV-2 | Global Health | JN Learning | AMA Ed Hub [Skip to Content]
[Skip to Content Landing]

Factors Associated With Household Transmission of SARS-CoV-2An Updated Systematic Review and Meta-analysis

Educational Objective
To identify the key insights or developments described in this article
1 Credit CME
Key Points

Question  Are early estimates of household transmission of SARS-CoV-2 indicative of current household transmission?

Findings  In this updated systematic review and meta-analysis of 87 studies representing 1 249 163 household contacts from 30 countries, the estimated household secondary attack rate was 19%. An increase in household transmission was observed over time, perhaps owing to improved diagnostic procedures and tools, longer follow-up, more contagious variants, and different study locations.

Meaning  These findings suggest that the household remains an important site of SARS-CoV-2 transmission, and recent studies have generated higher household secondary attack rate estimates compared with the earliest reports; more transmissible variants and vaccines may be associated with additional changes in the future.

Abstract

Importance  A previous systematic review and meta-analysis of household transmission of SARS-CoV-2 that summarized 54 published studies through October 19, 2020, found an overall secondary attack rate (SAR) of 16.6% (95% CI, 14.0%-19.3%). However, the understanding of household secondary attack rates for SARS-CoV-2 is still evolving, and updated analysis is needed.

Objective  To use newly published data to further the understanding of SARS-CoV-2 transmission in the household.

Data Sources  PubMed and reference lists of eligible articles were used to search for records published between October 20, 2020, and June 17, 2021. No restrictions on language, study design, time, or place of publication were applied. Studies published as preprints were included.

Study Selection  Articles with original data that reported at least 2 of the following factors were included: number of household contacts with infection, total number of household contacts, and secondary attack rates among household contacts. Studies that reported household infection prevalence (which includes index cases), that tested contacts using antibody tests only, and that included populations overlapping with another included study were excluded. Search terms were SARS-CoV-2 or COVID-19 with secondary attack rate, household, close contacts, contact transmission, contact attack rate, or family transmission.

Data Extraction and Synthesis  Meta-analyses were performed using generalized linear mixed models to obtain SAR estimates and 95% CIs. The Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) reporting guideline was followed.

Main Outcomes and Measures  Overall household SAR for SARS-CoV-2, SAR by covariates (contact age, sex, ethnicity, comorbidities, and relationship; index case age, sex, symptom status, presence of fever, and presence of cough; number of contacts; study location; and variant), and SAR by index case identification period.

Results  A total of 2722 records (2710 records from database searches and 12 records from the reference lists of eligible articles) published between October 20, 2020, and June 17, 2021, were identified. Of those, 93 full-text articles reporting household transmission of SARS-CoV-2 were assessed for eligibility, and 37 studies were included. These 37 new studies were combined with 50 of the 54 studies (published through October 19, 2020) from our previous review (4 studies from Wuhan, China, were excluded because their study populations overlapped with another recent study), resulting in a total of 87 studies representing 1 249 163 household contacts from 30 countries. The estimated household SAR for all 87 studies was 18.9% (95% CI, 16.2%-22.0%). Compared with studies from January to February 2020, the SAR for studies from July 2020 to March 2021 was higher (13.4% [95% CI, 10.7%-16.7%] vs 31.1% [95% CI, 22.6%-41.1%], respectively). Results from subgroup analyses were similar to those reported in a previous systematic review and meta-analysis; however, the SAR was higher to contacts with comorbidities (3 studies; 50.0% [95% CI, 41.4%-58.6%]) compared with previous findings, and the estimated household SAR for the B.1.1.7 (α) variant was 24.5% (3 studies; 95% CI, 10.9%-46.2%).

Conclusions and Relevance  The findings of this study suggest that the household remains an important site of SARS-CoV-2 transmission, and recent studies have higher household SAR estimates compared with the earliest reports. More transmissible variants and vaccines may be associated with further changes.

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 CME Credit™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

CME Disclosure Statement: Unless noted, all individuals in control of content reported no relevant financial relationships. If applicable, all relevant financial relationships have been mitigated.

Article Information

Accepted for Publication: June 19, 2021.

Published: August 27, 2021. doi:10.1001/jamanetworkopen.2021.22240

Open Access: This is an open access article distributed under the terms of the CC-BY License. © 2021 Madewell ZJ et al. JAMA Network Open.

Corresponding Author: Zachary J. Madewell, PhD, Department of Biostatistics, University of Florida, PO Box 117450, Gainesville, FL 32611 (zmadewell@ufl.edu).

Author Contributions: Dr Madewell had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: Madewell, Longini, Halloran, Dean.

Acquisition, analysis, or interpretation of data: Madewell, Yang, Longini, Halloran.

Drafting of the manuscript: Madewell, Longini, Dean.

Critical revision of the manuscript for important intellectual content: Madewell, Yang, Longini, Halloran.

Statistical analysis: Madewell, Longini, Halloran.

Obtained funding: Longini, Dean.

Supervision: Yang, Halloran, Dean.

Conflict of Interest Disclosures: Dr Halloran reported receiving grants from the National Institute of Allergy and Infectious Diseases during the conduct of the study. No other disclosures were reported.

Funding/Support: This work was supported by grant R01-AI139761 from the National Institutes of Health (all authors).

Role of the Funder/Sponsor: The funder had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

References
1.
Madewell  ZJ , Yang  Y , Longini  IM  Jr , Halloran  ME , Dean  NE .  Household transmission of SARS-CoV-2: a systematic review and meta-analysis.   JAMA Netw Open. 2020;3(12):e2031756. doi:10.1001/jamanetworkopen.2020.31756PubMedGoogle Scholar
2.
Elliott  JH , Synnot  A , Turner  T ,  et al; Living Systematic Review Network.  Living systematic review: 1: introduction—the why, what, when, and how.   J Clin Epidemiol. 2017;91:23-30. doi:10.1016/j.jclinepi.2017.08.010PubMedGoogle ScholarCrossref
3.
Schwarzer  G , Chemaitelly  H , Abu-Raddad  LJ , Rucker  G .  Seriously misleading results using inverse of Freeman-Tukey double arcsine transformation in meta-analysis of single proportions.   Res Synth Methods. 2019;10(3):476-483. doi:10.1002/jrsm.1348PubMedGoogle ScholarCrossref
4.
Areekal  B , Vijayan  SM , Suseela  MS ,  et al.  Risk factors, epidemiological and clinical outcome of close contacts of COVID-19 cases in a tertiary hospital in southern India.   J Clin Diagn Res. 2021;15(3):34-37.Google Scholar
5.
Awang  H , Yaacob  EL , Syed Aluawi  SN ,  et al.  A case-control study of determinants for COVID-19 infection based on contact tracing in Dungun district, Terengganu state of Malaysia.   Infect Dis (Lond). 2021;53(3):222-225. doi:10.1080/23744235.2020.1857829PubMedGoogle ScholarCrossref
6.
Bender  JK , Brandl  M , Hohle  M , Buchholz  U , Zeitlmann  N .  Analysis of asymptomatic and presymptomatic transmission in SARS-CoV-2 outbreak, Germany, 2020.   Emerg Infect Dis. 2021;27(4):1159-1163. doi:10.3201/eid2704.204576PubMedGoogle ScholarCrossref
7.
Carazo  S , Laliberté  D , Villeneuve  J ,  et al.  Characterization and evolution of infection control practices among severe acute respiratory coronavirus virus 2 (SARS-CoV-2)-infected healthcare workers in acute-care hospitals and long-term care facilities in Québec, Canada, Spring 2020.   Infect Control Hosp Epidemiol. 2021;1-9. doi:10.1017/ice.2021.160PubMedGoogle Scholar
8.
Cerami  C , Rapp  T , Lin  FC ,  et al.  High household transmission of SARS-CoV-2 in the United States: living density, viral load, and disproportionate impact on communities of color.   medRxiv. Preprint posted online March 12, 2021. doi:10.1101/2021.03.10.21253173Google Scholar
9.
Demko  ZO , Antar  AAR , Blair  PW ,  et al.  Clustering of SARS-CoV-2 infections in households of patients diagnosed in the outpatient setting in Baltimore, MD.   Open Forum Infect Dis. 2021;8(4):ofab121. doi:10.1093/ofid/ofab121Google Scholar
10.
Gomaa  MR , El Rifay  AS , Shehata  M ,  et al.  Incidence, household transmission, and neutralizing antibody seroprevalence of coronavirus disease 2019 in Egypt: results of a community-based cohort.   PLoS Pathog. 2021;17(3):e1009413. doi:10.1371/journal.ppat.1009413PubMedGoogle Scholar
11.
Grijalva  CG , Rolfes  MA , Zhu  Y ,  et al.  Transmission of SARS-COV-2 infections in households—Tennessee and Wisconsin, April–September 2020.   MMWR Morb Mortal Wkly Rep. 2020;69(44):1631-1634. doi:10.15585/mmwr.mm6944e1PubMedGoogle ScholarCrossref
12.
Hu  P , Ma  M , Jing  Q ,  et al.  Retrospective study identifies infection related risk factors in close contacts during COVID-19 epidemic.   Int J Infect Dis. 2021;103:395-401. doi:10.1016/j.ijid.2020.12.011PubMedGoogle ScholarCrossref
13.
Koureas  M , Speletas  M , Bogogiannidou  Z ,  et al.  Transmission dynamics of SARS-CoV-2 during an outbreak in a Roma community in Thessaly, Greece—control measures and lessons learned.   Int J Environ Res Public Health. 2021;18(6):2878. doi:10.3390/ijerph18062878PubMedGoogle ScholarCrossref
14.
Li  F , Li  YY , Liu  MJ ,  et al.  Household transmission of SARS-CoV-2 and risk factors for susceptibility and infectivity in Wuhan: a retrospective observational study.   Lancet Infect Dis. 2021;21(5):617-628. doi:10.1016/S1473-3099(20)30981-6PubMedGoogle ScholarCrossref
15.
Metlay  JP , Haas  JS , Soltoff  AE , Armstrong  KA .  Household transmission of SARS-CoV-2.   JAMA Netw Open. 2021;4(2):e210304. doi:10.1001/jamanetworkopen.2021.0304PubMedGoogle Scholar
16.
Miyahara  R , Tsuchiya  N , Yasuda  I ,  et al.  Familial clusters of coronavirus disease in 10 prefectures, Japan, February-May 2020.   Emerg Infect Dis. 2021;27(3):915-918. doi:10.3201/eid2703.203882PubMedGoogle ScholarCrossref
17.
Ng  OT , Marimuthu  K , Koh  V ,  et al.  SARS-CoV-2 seroprevalence and transmission risk factors among high-risk close contacts: a retrospective cohort study.   Lancet Infect Dis. 2021;21(3):333-343. doi:10.1016/S1473-3099(20)30833-1PubMedGoogle ScholarCrossref
18.
Peng  J , Liu  J , Mann  SA ,  et al; IDseq Team.  Estimation of secondary household attack rates for emergent spike L452R SARS-CoV-2 variants detected by genomic surveillance at a community-based testing site in San Francisco.   Clin Infect Dis. Published online March 31, 2021. doi:10.1093/cid/ciab283PubMedGoogle Scholar
19.
Pett  J , McAleavey  P , McGurnaghan  P ,  et al.  Epidemiology of COVID-19 in Northern Ireland, 26 February 2020-26 April 2020.   Epidemiol Infect. 2021;149:e36. doi:10.1017/S0950268821000224PubMedGoogle Scholar
20.
Reid  MJA , Prado  P , Brosnan  H ,  et al.  Assessing testing strategies and duration of quarantine in contact tracing for SARS-CoV-2: a retrospective study of San Francisco’s COVID-19 contact tracing program, June-August, 2020.   Open Forum Infect Dis. Published online April 2, 2021. doi:10.1093/ofid/ofab171Google Scholar
21.
Sundar  V , Bhaskar  E .  Low secondary transmission rates of SARS-CoV-2 infection among contacts of construction laborers at open air environment.   Germs. 2021;11(1):128-131. doi:10.18683/germs.2021.1250PubMedGoogle ScholarCrossref
22.
Tak  P , Rohilla  J .  COVID-19 contact tracing in a tertiary care hospital: a retrospective chart review.   Infect Dis Model. 2021;6:1-4.PubMedGoogle Scholar
23.
Tanaka  ML , Marentes Ruiz  CJ , Malhotra  S ,  et al. Urban household transmission of SARS-CoV-2 during periods of high and low community transmission. SSRN. Preprint posted online March 10, 2021. doi:10.2139/ssrn.3801730
24.
Tibebu  S , Brown  KA , Daneman  N , Paul  LA , Buchan  SA .  Household secondary attack rate of COVID-19 by household size and index case characteristics.   medRxiv. Preprint posted online February 25, 2021. doi:10.1101/2021.02.23.21252287Google Scholar
25.
Trunfio  M , Longo  BM , Alladio  F ,  et al.  On the SARS-CoV-2 “variolation hypothesis”: no association between viral load of index cases and COVID-19 severity of secondary cases.   Front Microbiol. 2021;12(473):646679. doi:10.3389/fmicb.2021.646679PubMedGoogle Scholar
26.
Wilkinson  K , Chen  X , Shaw  S .  Secondary attack rate of COVID-19 in household contacts in the Winnipeg health region, Canada.   Can J Public Health. 2021;112(1):12-16. doi:10.17269/s41997-020-00451-xPubMedGoogle ScholarCrossref
27.
Wu  P , Liu  F , Chang  Z ,  et al.  Assessing asymptomatic, pre-symptomatic and symptomatic transmission risk of SARS-CoV-2.   Clin Infect Dis. Published online March 27, 2021. doi:10.1093/cid/ciab271PubMedGoogle Scholar
28.
Seto  J , Aoki  Y , Komabayashi  K ,  et al.  Epidemiology of coronavirus disease 2019 in Yamagata Prefecture, Japan, January-May 2020: the importance of retrospective contact tracing.   Jpn J Infect Dis. Published online March 31, 2021. doi:10.7883/yoken.JJID.2020.1073PubMedGoogle Scholar
29.
Harris  RJ , Hall  JA , Zaidi  A , Andrews  NJ , Dunbar  JK , Dabrera  G . Impact of vaccination on household transmission of SARS-COV-2 in England. Khub.net. Preprint posted online April 28, 2021. https://khub.net/documents/135939561/390853656/Impact+of+vaccination+on+household+transmission+of+SARS-COV-2+in+England.pdf/35bf4bb1-6ade-d3eb-a39e-9c9b25a8122a
30.
Kuba  Y , Shingaki  A , Nidaira  M ,  et al.  The characteristics of household transmission during COVID-19 outbreak in Okinawa, Japan from February to May 2020.   Jpn J Infect Dis. 2021. Published online April 30, 2021.PubMedGoogle Scholar
31.
Hsu  CY , Wang  JT , Huang  KC , Fan  ACH , Yeh  YP , Chen  SLS .  Household transmission but without the community-acquired outbreak of COVID-19 in Taiwan.   J Formos Med Assoc. 2021;120(Suppl 1):S38-S45.PubMedGoogle Scholar
32.
Telle  K , Jorgensen  SB , Hart  R , Greve-Isdahl  M , Kacelnik  O .  Secondary attack rates of COVID-19 in Norwegian families: a nation-wide register-based study.   Eur J Epidemiol. Published online May 25, 2021. doi:10.1007/s10654-021-00760-6PubMedGoogle Scholar
33.
Jashaninejad  R , Doosti-Irani  A , Karami  M , Keramat  F , Mirzaei  M .  Transmission of COVID-19 and its determinants among close contacts of COVID-19 patients.   J Res Health Sci. 2021;21(2):1-6.Google Scholar
34.
Valles  X , Roure  S , Valerio  L ,  et al.  SARS-CoV-2 contact tracing among disadvantaged populations during epidemic intervals should be a priority strategy: results from a pilot experiment in Barcelona.   Public Health. 2021;195:132-134. doi:10.1016/j.puhe.2021.04.027PubMedGoogle ScholarCrossref
35.
Loenenbach  A , Markus  I , Lehfeld  AS ,  et al.  SARS-CoV-2 variant B.1.1.7 susceptibility and infectiousness of children and adults deduced from investigations of childcare centre outbreaks, Germany, 2021.   Euro Surveill. 2021;26(21):2100433. doi:10.2807/1560-7917.ES.2021.26.21.2100433PubMedGoogle Scholar
36.
Charbonnier  L , Roupret-Serzec  J , Caseris  M ,  et al.  Contribution of serological rapid diagnostic tests to the strategy of contact tracing in households following SARS-CoV-2 infection diagnosis in children.   Front Pediatr. 2021;9(217):638502. doi:10.3389/fped.2021.638502PubMedGoogle Scholar
37.
Verberk  JDM , de Hoog  MLA , Westerhof  I ,  et al.  Transmission of SARS-CoV-2 within households: a prospective cohort study in the Netherlands and Belgium—interim results.   medRxiv. Preprint posted online April 26, 2021. doi:10.1101/2021.04.23.21255846Google Scholar
38.
Akaishi  T , Kushimoto  S , Katori  Y ,  et al.  COVID-19 transmission in group living environments and households.   Sci Rep. 2021;11(1):11616. doi:10.1038/s41598-021-91220-4PubMedGoogle ScholarCrossref
39.
Semakula  M , Niragire  F , Umutoni  A ,  et al.  The secondary transmission pattern of COVID-19 based on contact tracing in Rwanda.   BMJ Glob Health. 2021;6(6):e004885. doi:10.1136/bmjgh-2020-004885PubMedGoogle Scholar
40.
Lyngse  FP , Molbak  K , Skov  RL ,  et al.  Increased transmissibility of SARS-CoV-2 lineage B.1.1.7 by age and viral load: evidence from Danish households.   medRxiv. Preprint posted online April 19, 2021. doi:10.1101/2021.04.16.21255459Google Scholar
41.
Wang  Z , Ma  W , Zheng  X , Wu  G , Zhang  R .  Household transmission of SARS-CoV-2.   J Infect. 2020;81(1):179-182. doi:10.1016/j.jinf.2020.03.040PubMedGoogle ScholarCrossref
42.
Wang  X , Zhou  Q , He  Y ,  et al.  Nosocomial outbreak of COVID-19 pneumonia in Wuhan, China.   Eur Respir J. 2020;55(6):2000544. doi:10.1183/13993003.00544-2020PubMedGoogle Scholar
43.
Yu  HJ , Hu  YF , Liu  XX ,  et al.  Household infection: the predominant risk factor for close contacts of patients with COVID-19.   Travel Med Infect Dis. 2020;36:101809. doi:10.1016/j.tmaid.2020.101809PubMedGoogle Scholar
44.
Li W, Zhang B, Lu J, et al. Characteristics of household transmission of COVID-19. Clin Infect Dis. 2020;71(8):1943-1946. doi:10.1093/cid/ciaa450
45.
Lopez Bernal  J , Panagiotopoulos  N , Byers  C ,  et al.  Transmission dynamics of COVID-19 in household and community settings in the United Kingdom.   medRxiv. Preprint posted online August 22, 2020. doi:10.1101/2020.08.19.20177188Google Scholar
46.
Wu  J , Huang  Y , Tu  C ,  et al.  Household transmission of SARS-CoV-2, Zhuhai, China, 2020.   Clin Infect Dis. 2020;71(16):2099-2108. doi:10.1093/cid/ciaa557PubMedGoogle ScholarCrossref
47.
Sun  WW , Ling  F , Pan  JR ,  et al. Epidemiological characteristics of 2019 novel coronavirus family clustering in Zhejiang Province.  Zhonghua Yu Fang Yi Xue Za Zhi. 2020;54(0):E027.
48.
Bohmer  MM , Buchholz  U , Corman  VM ,  et al.  Investigation of a COVID-19 outbreak in Germany resulting from a single travel-associated primary case: a case series.   Lancet Infect Dis. 2020;20(8):920-928. doi:10.1016/S1473-3099(20)30314-5PubMedGoogle ScholarCrossref
49.
Dong  XC , Li  JM , Bai  JY ,  et al.  Epidemiological characteristics of confirmed COVID-19 cases in Tianjin.   Zhonghua Liu Xing Bing Xue Za Zhi. 2020;41(5):638-641.PubMedGoogle Scholar
50.
Hua  CZ , Miao  ZP , Zheng  JS ,  et al.  Epidemiological features and viral shedding in children with SARS-CoV-2 infection.   J Med Virol. 2020;92(11):2804-2812. doi:10.1002/jmv.26180PubMedGoogle ScholarCrossref
51.
Chen  Y , Wang  AH , Yi  B ,  et al.  Epidemiological characteristics of infection in COVID-19 close contacts in Ningbo city.   Zhonghua Liu Xing Bing Xue Za Zhi. 2020;41(5):667-671.PubMedGoogle Scholar
52.
Xin  H , Jiang  F , Xue  A ,  et al. Risk factors associated with occurrence of COVID-19 among household persons exposed to patients with confirmed COVID-19 in Qingdao Municipal, China. Transbound Emerg Dis. 2021;68(2):782-788. doi:10.1111/tbed.13743
53.
Wu  Y , Song  S , Kao  Q , Kong  Q , Sun  Z , Wang  B .  Risk of SARS-CoV-2 infection among contacts of individuals with COVID-19 in Hangzhou, China.   Public Health. 2020;185:57-59. doi:10.1016/j.puhe.2020.05.016PubMedGoogle ScholarCrossref
54.
Jing  QL , Liu  MJ , Zhang  ZB ,  et al.  Household secondary attack rate of COVID-19 and associated determinants in Guangzhou, China: a retrospective cohort study.   Lancet Infect Dis. 2020;20(10):1141-1150. doi:10.1016/S1473-3099(20)30471-0PubMedGoogle ScholarCrossref
55.
Zhang  W , Cheng  W , Luo  L ,  et al.  Secondary transmission of coronavirus disease from presymptomatic persons, China.   Emerg Infect Dis. 2020;26(8):1924-1926. doi:10.3201/eid2608.201142PubMedGoogle ScholarCrossref
56.
Wang  X , Pan  Y , Zhang  D ,  et al.  Basic epidemiological parameter values from data of real-world in mega-cities: the characteristics of COVID-19 in Beijing, China.   BMC Infect Dis. 2020;20(1):526. doi:10.1186/s12879-020-05251-9PubMedGoogle ScholarCrossref
57.
Park  YJ , Choe  YJ , Park  O ,  et al; COVID-19 National Emergency Response Center, Epidemiology and Case Management Team.  Contact tracing during coronavirus disease outbreak, South Korea, 2020.   Emerg Infect Dis. 2020;26(10):2465-2468. doi:10.3201/eid2610.201315PubMedGoogle ScholarCrossref
58.
Park  SY , Kim  YM , Yi  S ,  et al.  Coronavirus disease outbreak in call center, South Korea.   Emerg Infect Dis. 2020;26(8):1666-1670. doi:10.3201/eid2608.201274PubMedGoogle ScholarCrossref
59.
Liu  T , Liang  W , Zhong  H ,  et al.  Risk factors associated with COVID-19 infection: a retrospective cohort study based on contacts tracing.   Emerg Microbes Infect. 2020;9(1):1546-1553. doi:10.1080/22221751.2020.1787799PubMedGoogle ScholarCrossref
60.
Bi  Q , Wu  Y , Mei  S ,  et al.  Epidemiology and transmission of COVID-19 in 391 cases and 1286 of their close contacts in Shenzhen, China: a retrospective cohort study.   Lancet Infect Dis. 2020;20(8):911-919. doi:10.1016/S1473-3099(20)30287-5PubMedGoogle ScholarCrossref
61.
Burke  RM , Midgley CM, Dratch A, et al.  Active monitoring of persons exposed to patients with confirmed COVID-19—United States, January-February 2020.   MMWR Morb Mortal Wkly Rep. 2020;69(9):245-246. doi:10.15585/mmwr.mm6909e1Google Scholar
62.
Luo  L , Liu  D , Liao  X ,  et al.  Contact settings and risk for transmission in 3410 close contacts of patients with COVID-19 in Guangzhou, China: a prospective cohort study.   Ann Intern Med. 2020;173(11):879-887. doi:10.7326/M20-2671PubMedGoogle ScholarCrossref
63.
Hu  S , Wang  W , Wang  Y ,  et al.  Infectivity, susceptibility, and risk factors associated with SARS-CoV-2 transmission under intensive contact tracing in Hunan, China.   Nat Commun. 2021;12(1):1533. doi:10.1038/s41467-021-21710-6PubMedGoogle ScholarCrossref
64.
Zhuang  YL , Zhang  YT , Li  M ,  et al.  Analysis on the cluster epidemic of coronavirus disease 2019 in Guangdong Province.   Zhonghua Yu Fang Yi Xue Za Zhi. 2020;54(7):720-725. doi:10.3760/cma.j.cn112150-20200326-00446 PubMedGoogle Scholar
65.
Cheng  HY , Jian  SW , Liu  DP , Ng  TC , Huang  WT , Lin  HH ; Taiwan COVID-19 Outbreak Investigation Team.  Contact tracing assessment of COVID-19 transmission dynamics in Taiwan and risk at different exposure periods before and after symptom onset.   JAMA Intern Med. 2020;180(9):1156-1163. doi:10.1001/jamainternmed.2020.2020PubMedGoogle ScholarCrossref
66.
Kim  J , Choe  YJ , Lee  J ,  et al. Role of children in household transmission of COVID-19. Arch Dis Child. 2021;106(7):709-711. doi:10.1136/archdischild-2020-319910
67.
Zhang JZ, Zhou P, Han DB, et al. Investigation on a cluster epidemic of COVID-19 in a supermarket in Liaocheng, Shandong province. Zhonghua Liu Xing Bing Xue Za Zhi. 2020;41(12):2024-2028. doi:10.3760/cma.j.cn112338-20200228-00206
68.
Patel  A , Charani  E , Ariyanayagam  D ,  et al.  New-onset anosmia and ageusia in adult patients diagnosed with SARS-CoV-2 infection.   Clin Microbiol Infect. 2020;26(9):1236-1241. doi:10.1016/j.cmi.2020.05.026PubMedGoogle ScholarCrossref
69.
Boscolo-Rizzo  P , Borsetto  D , Spinato  G ,  et al.  New onset of loss of smell or taste in household contacts of home-isolated SARS-CoV-2–positive subjects.   Eur Arch Otorhinolaryngol. 2020;277(9):2637-2640. doi:10.1007/s00405-020-06066-9PubMedGoogle ScholarCrossref
70.
Rosenberg  ES , Dufort  EM , Blog  DS ,  et al; New York State Coronavirus 2019 Response Team.  COVID-19 testing, epidemic features, hospital outcomes, and household prevalence, New York State–March 2020.   Clin Infect Dis. 2020;71(8):1953-1959. doi:10.1093/cid/ciaa549PubMedGoogle ScholarCrossref
71.
Dattner  I , Goldberg  Y , Katriel  G ,  et al.  The role of children in the spread of COVID-19: using household data from Bnei Brak, Israel, to estimate the relative susceptibility and infectivity of children.   PLoS Comput Biol. 2021;17(2):e1008559. doi:10.1371/journal.pcbi.1008559PubMedGoogle Scholar
72.
Lewis  NM , Chu  VT , Ye  D ,  et al.  Household transmission of SARS-CoV-2 in the United States.   Clin Infect Dis. Published online August 16, 2020. doi:10.1093/cid/ciaa1166PubMedGoogle Scholar
73.
van der Hoek  W , Backer  JA , Bodewes  R ,  et al. The role of children in the transmission of SARS-CoV-2.  Ned Tijdschr Geneeskd. 2020;164:D5140.
74.
Dawson  P , Rabold  EM , Laws  RL ,  et al.  Loss of taste and smell as distinguishing symptoms of coronavirus disease 2019.   Clin Infect Dis. 2021;72(4):682-685.PubMedGoogle ScholarCrossref
75.
Wang  Y , Tian  H , Zhang  L ,  et al.  Reduction of secondary transmission of SARS-CoV-2 in households by face mask use, disinfection and social distancing: a cohort study in Beijing, China.   BMJ Glob Health. 2020;5(5):e002794. doi:10.1136/bmjgh-2020-002794PubMedGoogle Scholar
76.
Han  T .  Outbreak investigation: transmission of COVID-19 started from a spa facility in a local community in Korea.   Epidemiol Health. 2020;42:e2020056. doi:10.4178/epih.e2020056PubMedGoogle Scholar
77.
Bae  S , Kim  H , Jung  TY ,  et al.  Epidemiological characteristics of COVID-19 outbreak at fitness centers in Cheonan, Korea.   J Korean Med Sci. 2020;35(31):e288. doi:10.3346/jkms.2020.35.e288PubMedGoogle Scholar
78.
Doung-Ngern  P , Suphanchaimat  R , Panjagampatthana  A ,  et al.  Case-control study of use of personal protective measures and risk for SARS-CoV 2 infection, Thailand.   Emerg Infect Dis. 2020;26(11):2607-2616. doi:10.3201/eid2611.203003PubMedGoogle Scholar
79.
Fateh-Moghadam  P , Battisti  L , Molinaro  S ,  et al.  Contact tracing during phase I of the COVID-19 pandemic in the province of Trento, Italy: key findings and recommendations.   medRxiv. Preprint posted online July 29, 2020. doi:10.1101/2020.07.16.20127357Google Scholar
80.
Phiriyasart  F , Chantutanon  S , Salaeh  F ,  et al. Outbreak investigation of coronavirus disease (COVID-19) among Islamic missionaries in southern Thailand, April 2020. Outbreak Surveill Investig Rep. 2020;13(2):48-54.
81.
Arnedo-Pena  A , Sabater-Vidal  S , Meseguer-Ferrer  N ,  et al.  COVID-19 secondary attack rate and risk factors in household contacts in Castellon (Spain): preliminary report.   Enfermedades Emergentes. 2020;19(2):64-70.Google Scholar
82.
Malheiro  R , Figueiredo  AL , Magalhaes  JP ,  et al.  Effectiveness of contact tracing and quarantine on reducing COVID-19 transmission: a retrospective cohort study.   Public Health. 2020;189:54-59. doi:10.1016/j.puhe.2020.09.012PubMedGoogle ScholarCrossref
83.
Son  H , Lee  H , Lee  M ,  et al.  Epidemiological characteristics of and containment measures for COVID-19 in Busan, Korea.   Epidemiol Health. 2020;42:e2020035. doi:10.4178/epih.e2020035PubMedGoogle Scholar
84.
Yung  CF , Kam  KQ , Chong  CY ,  et al.  Household transmission of severe acute respiratory syndrome coronavirus 2 from adults to children.   J Pediatr. 2020;225:249-251. doi:10.1016/j.jpeds.2020.07.009PubMedGoogle ScholarCrossref
85.
Lee  M , Eun  Y , Park  K , Heo  J , Son  H .  Follow-up investigation of asymptomatic COVID-19 cases at diagnosis in Busan, Korea.   Epidemiol Health. 2020;42:e2020046. doi:10.4178/epih.e2020046PubMedGoogle Scholar
86.
Draper  AD , Dempsey  KE , Boyd  RH ,  et al.  The first 2 months of COVID-19 contact tracing in the northern territory of Australia, March-April 2020.   Commun Dis Intell (2018). 2020;44:1-10. doi:10.33321/cdi.2020.44.53PubMedGoogle Scholar
87.
Teherani  MF , Kao  CM , Camacho-Gonzalez  A ,  et al.  Burden of illness in households with severe acute respiratory syndrome coronavirus 2–infected children.   J Pediatric Infect Dis Soc. 2020;9(5):613-616. doi:10.1093/jpids/piaa097PubMedGoogle ScholarCrossref
88.
Lyngse  FP , Kirkeby  CT , Halasa  T ,  et al.  COVID-19 transmission within Danish households: a nationwide study from lockdown to reopening.   medRxiv. Preprint posted online September 9, 2020. doi:10.1101/2020.09.09.20191239Google Scholar
89.
Islam  SS , Noman  ASM . Transmission dynamics and contact tracing assessment of COVID-19 in Chattogram, Bangladesh and potential risk of close contacts at different exposure settings. SSRN. Preprint posted online October 12, 2020. doi:10.2139/ssrn.3677863
90.
Adamik  B , Bawiec  M , Bezborodov  V ,  et al; MOCOS International Research Group. Bounds on the total number of SARS-CoV-2 infections: the link between severeness rate, household attack rate and the number of undetected cases. ResearchGate. Preprint posted online July 29, 2020. doi:10.13140/RG.2.2.30750.77124
91.
Laxminarayan  R , Wahl  B , Dudala  SR ,  et al.  Epidemiology and transmission dynamics of COVID-19 in two Indian states.   Science. 2020;370(6517):691-697. doi:10.1126/science.abd7672PubMedGoogle ScholarCrossref
92.
Shah  K , Desai  N , Saxena  D , Mavalankar  D , Mishra  U , Patel  GC .  Household secondary attack rate in Gandhinagar district of Gujarat state from western India.   medRxiv. Preprint posted online September 5, 2020. doi:10.1101/2020.09.03.20187336Google Scholar
93.
Chaw  L , Koh  WC , Jamaludin  SA , Naing  L , Alikhan  MF , Wong  J .  Analysis of SARS-CoV-2 transmission in different settings, Brunei.   Emerg Infect Dis. 2020;26(11):2598-2606. doi:10.3201/eid2611.202263PubMedGoogle ScholarCrossref
94.
COVID-19 National Emergency Response Center; Epidemiology Case Management Team; Korea Centers for Disease Control and Prevention. Coronavirus disease–19: summary of 2,370 contact investigations of the first 30 cases in the Republic of Korea. Osong Public Health Res Perspect. 2020;11(2):81-84. doi:10.24171/j.phrp.2020.11.2.04
95.
Liu  R , Han  H , Liu  F ,  et al.  Positive rate of RT-PCR detection of SARS-CoV-2 infection in 4880 cases from one hospital in Wuhan, China, from Jan to Feb 2020.   Clin Chim Acta. 2020;505:172-175. doi:10.1016/j.cca.2020.03.009PubMedGoogle ScholarCrossref
96.
Public Health England. SARS-CoV-2 variants of concern and variants under investigation in England. Public Health England; 2021. Technical briefing 14. Accessed June 10, 2021. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/991343/Variants_of_Concern_VOC_Technical_Briefing_14.pdf
97.
Hou  C , Chen  J , Zhou  Y ,  et al.  The effectiveness of quarantine of Wuhan city against the corona virus disease 2019 (COVID-19): a well-mixed SEIR model analysis.   J Med Virol. 2020;92(7):841-848. doi:10.1002/jmv.25827PubMedGoogle ScholarCrossref
98.
Elvik  R .  Publication bias and time-trend bias in meta-analysis of bicycle helmet efficacy: a re-analysis of Attewell, Glase and McFadden, 2001.   Accid Anal Prev. 2011;43(3):1245-1251. doi:10.1016/j.aap.2011.01.007PubMedGoogle ScholarCrossref
99.
Apra  C , Caucheteux  C , Mensch  A ,  et al; AP-HP/Universities/Inserm COVID-19 Research Collaboration.  Predictive usefulness of PCR testing in different patterns of Covid-19 symptomatology—analysis of a French cohort of 12,810 outpatients.   medRxiv. Preprint posted online June 9, 2020. doi:10.1101/2020.06.07.20124438Google Scholar
100.
Alyammahi  SK , Abdin  SM , Alhamad  DW , Elgendy  SM , Altell  AT , Omar  HA .  The dynamic association between COVID-19 and chronic disorders: an updated insight into prevalence, mechanisms and therapeutic modalities.   Infect Genet Evol. 2021;87:104647. doi:10.1016/j.meegid.2020.104647PubMedGoogle Scholar
101.
Qiu  X , Nergiz  AI , Maraolo  AE , Bogoch  II , Low  N , Cevik  M .  The role of asymptomatic and pre-symptomatic infection in SARS-CoV-2 transmission-a living systematic review.   Clin Microbiol Infect. 2021;27(4):511-519. doi:10.1016/j.cmi.2021.01.011PubMedGoogle ScholarCrossref
102.
Brown  KA , Tibebu  S , Daneman  N , Schwartz  K , Whelan  M , Buchan  S .  Comparative household secondary attack rates associated with B.1.1.7, B.1.351, and P.1 SARS-CoV-2 variants.   medRxiv. Preprint posted online June 4, 2021. doi:10.1101/2021.06.03.21258302Google Scholar
103.
Lindstrom  JC , Engebretsen  S , Brathen Kristoffersen  A ,  et al.  Increased transmissibility of the B.1.1.7 SARS-CoV-2 variant: evidence from contact tracing data in Oslo, January to February 2021.   medRxiv. Preprint posted online March 30, 2021. doi:10.1101/2021.03.29.21254122Google Scholar
104.
Buchan  SA , Tibebu  S , Daneman  N ,  et al.  Increased household secondary attacks rates with variant of concern SARS-CoV-2 index cases.   Clin Infect Dis. Published online June 9, 2021. doi:10.1093/cid/ciab496PubMedGoogle Scholar
105.
Davies  NG , Abbott  S , Barnard  RC ,  et al; CMMID COVID-19 Working Group; COVID-19 Genomics UK (COG-UK) Consortium.  Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England.   Science. 2021;372(6538):eabg3055. doi:10.1126/science.abg3055PubMedGoogle Scholar
106.
Thompson  CN , Hughes  S , Ngai  S ,  et al.  Rapid emergence and epidemiologic characteristics of the SARS-CoV-2 B.1.526 variant—New York City, New York, January 1-April 5, 2021.   MMWR Morb Mortal Wkly Rep. 2021;70(19):712-716. doi:10.15585/mmwr.mm7019e1PubMedGoogle ScholarCrossref
107.
Salo  J , Hagg  M , Kortelainen  M ,  et al.  The indirect effect of mRNA-based Covid-19 vaccination on unvaccinated household members.   medRxiv. Preprint posted online May 29, 2021. doi:10.1101/2021.05.27.21257896Google Scholar
108.
Shah  ASV , Gribben  C , Bishop  J ,  et al.  Effect of vaccination on transmission of COVID-19: an observational study in healthcare workers and their households.   medRxiv. Preprint posted online March 21, 2021. doi:10.1101/2021.03.11.21253275Google Scholar
109.
Richterman  A , Meyerowitz  EA , Cevik  M .  Indirect protection by reducing transmission: ending the pandemic with SARS-CoV-2 vaccination.   Open Forum Infect Dis. Published online May 19, 2021. doi:10.1093/ofid/ofab259Google Scholar
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_Multimedia_LoginSubscribe_Purchase
Close
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_Multimedia_LoginSubscribe_Purchase
Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close

Name Your Search

Save Search
Close
With a personal account, you can:
  • Track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
jn-learning_Modal_SaveSearch_NoAccess_Purchase
Close

Lookup An Activity

or

Close

My Saved Searches

You currently have no searches saved.

Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close