[Skip to Content]
[Skip to Content Landing]

Effect of Pain Reprocessing Therapy vs Placebo and Usual Care for Patients With Chronic Back PainA Randomized Clinical Trial

Educational Objective
To test whether a psychological treatment (pain reprocessing therapy [PRT]) aiming to shift patients' beliefs about the causes and threat value of pain provides substantial and durable pain relief from primary chronic back pain and to investigate treatment mechanisms.
1 Credit CME
Key Points

Question  Can a psychological treatment based on the reappraisal of primary chronic back pain as due to nondangerous central nervous system processes provide substantial and durable pain relief?

Findings  In this randomized clinical trial, 33 of 50 participants (66%) randomized to 4 weeks of pain reprocessing therapy were pain-free or nearly pain-free at posttreatment, compared with 10 of 51 participants (20%) randomized to placebo and 5 of 50 participants (10%) randomized to usual care, with gains largely maintained through 1-year follow-up. Treatment effects on pain were mediated by reduced beliefs that pain indicates tissue damage, and longitudinal functional magnetic resonance imaging showed reduced prefrontal responses to evoked back pain and increased resting prefrontal-somatosensory connectivity in patients randomized to treatment relative to patients randomized to placebo or usual care.

Meaning  Psychological treatment focused on changing beliefs about the causes and threat value of primary chronic back pain may provide substantial and durable pain relief.

Abstract

Importance  Chronic back pain (CBP) is a leading cause of disability, and treatment is often ineffective. Approximately 85% of cases are primary CBP, for which peripheral etiology cannot be identified, and maintenance factors include fear, avoidance, and beliefs that pain indicates injury.

Objective  To test whether a psychological treatment (pain reprocessing therapy [PRT]) aiming to shift patients’ beliefs about the causes and threat value of pain provides substantial and durable pain relief from primary CBP and to investigate treatment mechanisms.

Design, Setting, and Participants  This randomized clinical trial with longitudinal functional magnetic resonance imaging (fMRI) and 1-year follow-up assessment was conducted in a university research setting from November 2017 to August 2018, with 1-year follow-up completed by November 2019. Clinical and fMRI data were analyzed from January 2019 to August 2020. The study compared PRT with an open-label placebo treatment and with usual care in a community sample.

Interventions  Participants randomized to PRT participated in 1 telehealth session with a physician and 8 psychological treatment sessions over 4 weeks. Treatment aimed to help patients reconceptualize their pain as due to nondangerous brain activity rather than peripheral tissue injury, using a combination of cognitive, somatic, and exposure-based techniques. Participants randomized to placebo received an open-label subcutaneous saline injection in the back; participants randomized to usual care continued their routine, ongoing care.

Main Outcomes and Measures  One-week mean back pain intensity score (0 to 10) at posttreatment, pain beliefs, and fMRI measures of evoked pain and resting connectivity.

Results  At baseline, 151 adults (54% female; mean [SD] age, 41.1 [15.6] years) reported mean (SD) pain of low to moderate severity (mean [SD] pain intensity, 4.10 [1.26] of 10; mean [SD] disability, 23.34 [10.12] of 100) and mean (SD) pain duration of 10.0 (8.9) years. Large group differences in pain were observed at posttreatment, with a mean (SD) pain score of 1.18 (1.24) in the PRT group, 2.84 (1.64) in the placebo group, and 3.13 (1.45) in the usual care group. Hedges g was −1.14 for PRT vs placebo and −1.74 for PRT vs usual care (P < .001). Of 151 total participants, 33 of 50 participants (66%) randomized to PRT were pain-free or nearly pain-free at posttreatment (reporting a pain intensity score of 0 or 1 of 10), compared with 10 of 51 participants (20%) randomized to placebo and 5 of 50 participants (10%) randomized to usual care. Treatment effects were maintained at 1-year follow-up, with a mean (SD) pain score of 1.51 (1.59) in the PRT group, 2.79 (1.78) in the placebo group, and 3.00 (1.77) in the usual care group. Hedges g was −0.70 for PRT vs placebo (P = .001) and −1.05 for PRT vs usual care (P < .001) at 1-year follow-up. Longitudinal fMRI showed (1) reduced responses to evoked back pain in the anterior midcingulate and the anterior prefrontal cortex for PRT vs placebo; (2) reduced responses in the anterior insula for PRT vs usual care; (3) increased resting connectivity from the anterior prefrontal cortex and the anterior insula to the primary somatosensory cortex for PRT vs both control groups; and (4) increased connectivity from the anterior midcingulate to the precuneus for PRT vs usual care.

Conclusions and Relevance  Psychological treatment centered on changing patients’ beliefs about the causes and threat value of pain may provide substantial and durable pain relief for people with CBP.

Trial Registration  ClinicalTrials.gov Identifier: NCT03294148.

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 Credit(s)™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

CME Disclosure Statement: Unless noted, all individuals in control of content reported no relevant financial relationships. If applicable, all relevant financial relationships have been mitigated.

Article Information

Accepted for Publication: July 27, 2021.

Published Online: September 29, 2021. doi:10.1001/jamapsychiatry.2021.2669

Open Access: This is an open access article distributed under the terms of the CC-BY License. © 2021 Ashar YK et al. JAMA Psychiatry.

Corresponding Author: Tor D. Wager, PhD, Department of Psychological and Brain Sciences, Dartmouth College, 352 Moore Hall, HB 6207, Hanover, New Hampshire 03755 (tor.d.wager@dartmouth.edu); Yoni K. Ashar, PhD, Department of Psychiatry, Weill Cornell Medical College, 1300 York Ave, New York, NY 10065 (yoniashar@gmail.com).

Author Contributions: Drs Ashar and Wager had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: Ashar, Gordon, Schubiner, Uipi, Knight, Geuter, Dimidjian, Wager.

Acquisition, analysis, or interpretation of data: Ashar, Gordon, Schubiner, Uipi, Knight, Anderson, Carlisle, Polisky, Geuter, Flood, Kragel, Lumley, Wager.

Drafting of the manuscript: Ashar, Gordon, Schubiner, Polisky, Lumley, Wager.

Critical revision of the manuscript for important intellectual content: All authors.

Statistical analysis: Ashar, Polisky, Geuter, Lumley, Wager.

Obtained funding: Gordon, Schubiner, Flood, Wager.

Administrative, technical, or material support: Ashar, Uipi, Knight, Anderson, Carlisle, Polisky, Kragel, Dimidjian, Lumley, Wager.

Supervision: Ashar, Gordon, Wager.

Conflict of Interest Disclosures: Dr Ashar reports grants from the National Institutes of Health during the conduct of the study and personal fees from UnitedHealth Group, Lin Health, Inc, Pain Reprocessing Therapy Center, Inc, and Mental Health Partners of Boulder County outside the submitted work. Mr Gordon is a consultant with UnitedHealth Group, director of the Pain Psychology Center and the Pain Reprocessing Therapy Center, and is the author of the book The Way Out. Dr Schubiner is the co-owner of Freedom From Chronic Pain, Inc, earns book royalties for Unlearn Your Pain, Unlearn Your Anxiety and Depression and Hidden From View; serves as a consultant with UnitedHealth Group, Karuna Labs, and Curable Health; and receives personal fees from OVID Dx outside the submitted work. Mrs Uipi serves as a consultant for UnitedHealth Group. Dr Dimidjian reports being a co-founder of Mindful Noggin, Inc, and received royalties from Guilford Press and Wolters Kluwer as well as funding from The National Institutes of Health. Dr Lumley reports personal fees from CognifiSense, Inc, outside the submitted work. Dr Wager reports grants from the National Institutes of Health and the Foundation for the Study of the Therapeutic Encounter, and funding to support trainees from the Radiological Society of North America and the German Research Foundation; he is on the Scientific Advisory Board of Curable Health. No other disclosures were reported.

Funding and Support: This study was funded by National Institutes of Health grants R01 DA035484 (Dr Wager), R01 MH076136 (Dr Wager), National Center for Advancing Translational Sciences grant TL1-TR-002386 (Dr Ashar), Radiological Society of North America (Dr Flood), German Research Foundation grant GE 2774/1-1 (Dr Geuter), the Psychophysiologic Disorders Association, the Foundation for the Study of the Therapeutic Encounter, and community donations.

Role of the Funder/Sponsor: The funders had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Data Sharing Statement: See Supplement 3.

Additional Information: Deidentified demographic and clinical outcomes data and subject-level functional magnetic resonance imaging statistical parameter maps for evoked pain and seed connectivity are provided here: https://figshare.com/s/1840dc4c0e236a7072ca

References
1.
Dahlhamer  J , Lucas  J , Zelaya  C ,  et al.  Prevalence of chronic pain and high-impact chronic pain among adults—United States, 2016.   MMWR Morb Mortal Wkly Rep. 2018;67(36):1001-1006. doi:10.15585/mmwr.mm6736a2 PubMedGoogle ScholarCrossref
2.
Institute of Medicine.  Relieving Pain in America: A Blueprint for Transforming Prevention, Care, Education, and Research. National Academies Press; 2011. doi:10.17226/13172
3.
Hartvigsen  J , Hancock  MJ , Kongsted  A ,  et al; Lancet Low Back Pain Series Working Group.  What low back pain is and why we need to pay attention.   Lancet. 2018;391(10137):2356-2367. doi:10.1016/S0140-6736(18)30480-X PubMedGoogle ScholarCrossref
4.
Maher  C , Underwood  M , Buchbinder  R .  Non-specific low back pain.   Lancet. 2017;389(10070):736-747. doi:10.1016/S0140-6736(16)30970-9 PubMedGoogle ScholarCrossref
5.
Vlaeyen  JWS , Maher  CG , Wiech  K ,  et al  Low back pain.   Nat Rev Dis Primers. 2018;4(1):52. doi:10.1038/s41572-018-0052-1 PubMedGoogle ScholarCrossref
6.
Henschke  N , Maher  CG , Refshauge  KM ,  et al.  Prevalence of and screening for serious spinal pathology in patients presenting to primary care settings with acute low back pain.   Arthritis Rheum. 2009;60(10):3072-3080. doi:10.1002/art.24853 PubMedGoogle ScholarCrossref
7.
Deyo  RA , Weinstein  JN .  Low back pain.   N Engl J Med. 2001;344(5):363-370. doi:10.1056/NEJM200102013440508 PubMedGoogle ScholarCrossref
8.
Karshikoff  B , Jensen  KB , Kosek  E ,  et al  Why sickness hurts: a central mechanism for pain induced by peripheral inflammation.   Brain Behav Immun. 2016;57:38-46. doi:10.1016/j.bbi.2016.04.001 PubMedGoogle ScholarCrossref
9.
Nicholas  M , Vlaeyen  JWS , Rief  W ,  et al; IASP Taskforce for the Classification of Chronic Pain.  The IASP classification of chronic pain for ICD-11: chronic primary pain.   Pain. 2019;160(1):28-37. doi:10.1097/j.pain.0000000000001390 PubMedGoogle ScholarCrossref
10.
Clauw  DJ .  Diagnosing and treating chronic musculoskeletal pain based on the underlying mechanism(s).   Best Pract Res Clin Rheumatol. 2015;29(1):6-19. doi:10.1016/j.berh.2015.04.024 PubMedGoogle ScholarCrossref
11.
Williams  ACC , Fisher  E , Hearn  L , Eccleston  C .  Psychological therapies for the management of chronic pain (excluding headache) in adults.   Cochrane Database Syst Rev. 2020;8(8):CD007407. doi:10.1002/14651858.CD007407.pub4PubMedGoogle Scholar
12.
Chou  R , Deyo  R , Friedly  J ,  et al.  Nonpharmacologic therapies for low back pain: a systematic review for an American College of physicians clinical practice guideline.   Ann Intern Med. 2017;166(7):493-505. doi:10.7326/M16-2459 PubMedGoogle ScholarCrossref
13.
Woolf  CJ .  Central sensitization: implications for the diagnosis and treatment of pain.   Pain. 2011;152(3)(suppl):S2-S15. doi:10.1016/j.pain.2010.09.030 PubMedGoogle ScholarCrossref
14.
Kuner  R , Flor  H .  Structural plasticity and reorganisation in chronic pain.   Nat Rev Neurosci. 2016;18(1):20-30. doi:10.1038/nrn.2016.162 PubMedGoogle ScholarCrossref
15.
Corder  G , Ahanonu  B , Grewe  BF , Wang  D , Schnitzer  MJ , Scherrer  G .  An amygdalar neural ensemble that encodes the unpleasantness of pain.   Science. 2019;363(6424):276-281. doi:10.1126/science.aap8586 PubMedGoogle ScholarCrossref
16.
Dale  J , Zhou  H , Zhang  Q ,  et al.  Scaling up cortical control inhibits pain.   Cell Rep. 2018;23(5):1301-1313. doi:10.1016/j.celrep.2018.03.139 PubMedGoogle ScholarCrossref
17.
Hua  T , Chen  B , Lu  D ,  et al.  General anesthetics activate a potent central pain-suppression circuit in the amygdala.   Nat Neurosci. 2020;23(7):854-868. doi:10.1038/s41593-020-0632-8 PubMedGoogle ScholarCrossref
18.
Kleckner  IR , Zhang  J , Touroutoglou  A ,  et al.  Evidence for a large-scale brain system supporting allostasis and interoception in humans.   Nat Hum Behav. 2017;1:0069. doi:10.1038/s41562-017-0069 PubMedGoogle ScholarCrossref
19.
Barrett  LF .  The theory of constructed emotion: an active inference account of interoception and categorization.   Soc Cogn Affect Neurosci. 2017;12(1):1-23. doi:10.1093/scan/nsx060 PubMedGoogle ScholarCrossref
20.
Barrett  LF , Simmons  WK .  Interoceptive predictions in the brain.   Nat Rev Neurosci. 2015;16(7):419-429. doi:10.1038/nrn3950 PubMedGoogle ScholarCrossref
21.
Sterling  P .  Allostasis: a model of predictive regulation.   Physiol Behav. 2012;106(1):5-15. doi:10.1016/j.physbeh.2011.06.004 PubMedGoogle ScholarCrossref
22.
Baliki  MN , Apkarian  AV .  Nociception, pain, negative moods, and behavior selection.   Neuron. 2015;87(3):474-491. doi:10.1016/j.neuron.2015.06.005 PubMedGoogle ScholarCrossref
23.
Petzschner  FH , Weber  LAE , Gard  T , Stephan  KE .  Computational psychosomatics and computational psychiatry: toward a joint framework for differential diagnosis.   Biol Psychiatry. 2017;82(6):421-430. doi:10.1016/j.biopsych.2017.05.012 PubMedGoogle ScholarCrossref
24.
Büchel  C , Geuter  S , Sprenger  C , Eippert  F .  Placebo analgesia: a predictive coding perspective.   Neuron. 2014;81(6):1223-1239. doi:10.1016/j.neuron.2014.02.042 PubMedGoogle ScholarCrossref
25.
Tracey  I .  Getting the pain you expect: mechanisms of placebo, nocebo and reappraisal effects in humans.   Nat Med. 2010;16(11):1277-1283. doi:10.1038/nm.2229 PubMedGoogle ScholarCrossref
26.
Kaptchuk  TJ , Hemond  CC , Miller  FG .  Placebos in chronic pain: evidence, theory, ethics, and use in clinical practice.   BMJ. 2020;370:m1668. doi:10.1136/bmj.m1668 PubMedGoogle Scholar
27.
Seymour  B .  Pain: a precision signal for reinforcement learning and control.   Neuron. 2019;101(6):1029-1041. doi:10.1016/j.neuron.2019.01.055 PubMedGoogle ScholarCrossref
28.
Ashar  YK , Chang  LJ , Wager  TD .  Brain mechanisms of the placebo effect: an affective appraisal account.   Annu Rev Clin Psychol. 2017;13(1):73-98. doi:10.1146/annurev-clinpsy-021815-093015 PubMedGoogle ScholarCrossref
29.
Jepma  M , Koban  L , van Doorn  J , Jones  M , Wager  TD .  Behavioural and neural evidence for self-reinforcing expectancy effects on pain.   Nat Hum Behav. 2018;2(11):838-855. doi:10.1038/s41562-018-0455-8 PubMedGoogle ScholarCrossref
30.
Vlaeyen  JWS , Crombez  G .  Behavioral conceptualization and treatment of chronic pain.   Annu Rev Clin Psychol. 2020;16:187-212. doi:10.1146/annurev-clinpsy-050718-095744 PubMedGoogle ScholarCrossref
31.
Meulders  A .  Fear in the context of pain: Lessons learned from 100 years of fear conditioning research.   Behav Res Ther. 2020;131:103635. doi:10.1016/j.brat.2020.103635 PubMedGoogle Scholar
32.
Hashmi  JA , Baliki  MN , Huang  L ,  et al.  Shape shifting pain: chronification of back pain shifts brain representation from nociceptive to emotional circuits.   Brain. 2013;136(Pt 9):2751-2768. doi:10.1093/brain/awt211 PubMedGoogle Scholar
33.
Napadow  V , Harris  RE .  What has functional connectivity and chemical neuroimaging in fibromyalgia taught us about the mechanisms and management of ‘centralized’ pain?   Arthritis Res Ther. 2014;16(5):425. doi:10.1186/s13075-014-0425-0 PubMedGoogle Scholar
34.
Roy  M , Shohamy  D , Daw  N , Jepma  M , Wimmer  GE , Wager  TD .  Representation of aversive prediction errors in the human periaqueductal gray.   Nat Neurosci. 2014;17(11):1607-1612. doi:10.1038/nn.3832 PubMedGoogle ScholarCrossref
35.
Čeko  M , Shir  Y , Ouellet  JA , Ware  MA , Stone  LS , Seminowicz  DA .  Partial recovery of abnormal insula and dorsolateral prefrontal connectivity to cognitive networks in chronic low back pain after treatment.   Hum Brain Mapp. 2015;36(6):2075-2092. doi:10.1002/hbm.22757 PubMedGoogle ScholarCrossref
36.
Martucci  KT , Shirer  WR , Bagarinao  E ,  et al.  The posterior medial cortex in urologic chronic pelvic pain syndrome: detachment from default mode network—a resting-state study from the MAPP Research Network.   Pain. 2015;156(9):1755-1764. doi:10.1097/j.pain.0000000000000238 PubMedGoogle ScholarCrossref
37.
Woo  C-W , Roy  M , Buhle  JT , Wager  TD .  Distinct brain systems mediate the effects of nociceptive input and self-regulation on pain.   PLoS Biol. 2015;13(1):e1002036. doi:10.1371/journal.pbio.1002036 PubMedGoogle Scholar
38.
Kober  H , Buhle  J , Weber  J , Ochsner  KN , Wager  TD .  Let it be: mindful acceptance down-regulates pain and negative emotion.   Soc Cogn Affect Neurosci. 2019;14(11):1147-1158. doi:10.1093/scan/nsz104 PubMedGoogle ScholarCrossref
39.
Lutz  A , McFarlin  DR , Perlman  DM , Salomons  TV , Davidson  RJ .  Altered anterior insula activation during anticipation and experience of painful stimuli in expert meditators.   Neuroimage. 2013;64(1):538-546. doi:10.1016/j.neuroimage.2012.09.030 PubMedGoogle Scholar
40.
Xiao  L , Yank  V , Ma  J .  Algorithm for balancing both continuous and categorical covariates in randomized controlled trials.   Comput Methods Programs Biomed. 2012;108(3):1185-1190. doi:10.1016/j.cmpb.2012.06.001 PubMedGoogle ScholarCrossref
41.
Thorn  BE , Eyer  JC , Van Dyke  BP ,  et al.  Literacy-adapted cognitive behavioral therapy versus education for chronic pain at low-income clinics: a randomized controlled trial.   Ann Intern Med. 2018;168(7):471-480. doi:10.7326/M17-0972 PubMedGoogle ScholarCrossref
42.
Vlaeyen  JWS , Morley  S , Linton  S , Boersma  K , De Jong  J .  Pain-Related Fear: Exposure-Based Treatment for Chronic Pain. IASP Press; 2012.
43.
Moseley  GL , Butler  DS .  Fifteen years of explaining pain: the past, present, and future.   J Pain. 2015;16(9):807-813. doi:10.1016/j.jpain.2015.05.005 PubMedGoogle ScholarCrossref
44.
McCracken  LM , Vowles  KE .  Acceptance and commitment therapy and mindfulness for chronic pain: model, process, and progress.   Am Psychol. 2014;69(2):178-187. doi:10.1037/a0035623 PubMedGoogle ScholarCrossref
45.
Lumley  MA , Schubiner  H , Lockhart  NA ,  et al.  Emotional awareness and expression therapy, cognitive behavioral therapy, and education for fibromyalgia: a cluster-randomized controlled trial.   Pain. 2017;158(12):2354-2363. doi:10.1097/j.pain.0000000000001036 PubMedGoogle ScholarCrossref
46.
Cherkin  DC , Sherman  KJ , Balderson  BH ,  et al.  Effect of mindfulness-based stress reduction vs cognitive behavioral therapy or usual care on back pain and functional limitations in adults with chronic low back pain: a randomized clinical trial.   JAMA. 2016;315(12):1240-1249. doi:10.1001/jama.2016.2323 PubMedGoogle ScholarCrossref
47.
Kabat-Zinn  J , Lipworth  L , Burney  R .  The clinical use of mindfulness meditation for the self-regulation of chronic pain.   J Behav Med. 1985;8(2):163-190. doi:10.1007/BF00845519 PubMedGoogle ScholarCrossref
48.
Garland  EL , Manusov  EG , Froeliger  B , Kelly  A , Williams  JM , Howard  MO .  Mindfulness-oriented recovery enhancement for chronic pain and prescription opioid misuse: results from an early-stage randomized controlled trial.   J Consult Clin Psychol. 2014;82(3):448-459. doi:10.1037/a0035798 PubMedGoogle ScholarCrossref
49.
Kaptchuk  TJ , Friedlander  E , Kelley  JM ,  et al.  Placebos without deception: a randomized controlled trial in irritable bowel syndrome.   PLoS One. 2010;5(12):e15591. doi:10.1371/journal.pone.0015591 PubMedGoogle Scholar
50.
Locher  C , Frey Nascimento  A , Kirsch  I , Kossowsky  J , Meyer  A , Gaab  J .  Is the rationale more important than deception? a randomized controlled trial of open-label placebo analgesia.   Pain. 2017;158(12):2320-2328. doi:10.1097/j.pain.0000000000001012 PubMedGoogle ScholarCrossref
51.
Kleine-Borgmann  J , Schmidt  K , Hellmann  A , Bingel  U .  Effects of open-label placebo on pain, functional disability, and spine mobility in patients with chronic back pain: a randomized controlled trial.   Pain. 2019;160(12):2891-2897. doi:10.1097/j.pain.0000000000001683 PubMedGoogle ScholarCrossref
52.
Lembo  A , Kelley  JM , Nee  J ,  et al.  Open-label placebo vs double-blind placebo for irritable bowel syndrome: a randomized clinical trial.   Pain. 2021. doi:10.1097/j.pain.0000000000002234 PubMedGoogle Scholar
53.
Schubiner  H , Betzold  M .  Unlearn Your Pain. Mind Body Publishing; 2010.
54.
Napadow  V , Kim  J , Clauw  DJ , Harris  RE .  Decreased intrinsic brain connectivity is associated with reduced clinical pain in fibromyalgia.   Arthritis Rheum. 2012;64(7):2398-2403. doi:10.1002/art.34412 PubMedGoogle ScholarCrossref
55.
Mawla  I , Ichesco  E , Zöllner  HJ ,  et al.  Greater Somatosensory Afference With Acupuncture Increases Primary Somatosensory Connectivity and Alleviates Fibromyalgia Pain via Insular γ-Aminobutyric Acid: A Randomized Neuroimaging Trial.   Arthritis Rheumatol. 2021;73(7):1318-1328. doi:10.1002/art.41620PubMedGoogle ScholarCrossref
56.
Bushnell  MC , Ceko  M , Low  LA .  Cognitive and emotional control of pain and its disruption in chronic pain.   Nat Rev Neurosci. 2013;14(7):502-511. doi:10.1038/nrn3516 PubMedGoogle ScholarCrossref
57.
Lazaridou  A , Kim  J , Cahalan  CM ,  et al.  Effects of cognitive-behavioral therapy (CBT) on brain connectivity supporting catastrophizing in fibromyalgia.   Clin J Pain. 2017;33(3):215-221. doi:10.1097/AJP.0000000000000422 PubMedGoogle ScholarCrossref
58.
Kim  J , Mawla  I , Kong  J ,  et al.  Somatotopically specific primary somatosensory connectivity to salience and default mode networks encodes clinical pain.   Pain. 2019;160(7):1594-1605. doi:10.1097/j.pain.0000000000001541 PubMedGoogle ScholarCrossref
59.
Kong  J , Spaeth  RB , Wey  H-Y ,  et al.  S1 is associated with chronic low back pain: a functional and structural MRI study.   Mol Pain. 2013;9(1):43. doi:10.1186/1744-8069-9-43 PubMedGoogle Scholar
60.
Adler  NE , Epel  ES , Castellazzo  G , Ickovics  JR .  Relationship of subjective and objective social status with psychological and physiological functioning: preliminary data in healthy white women.   Health Psychol. 2000;19(6):586-592. doi:10.1037/0278-6133.19.6.586 PubMedGoogle ScholarCrossref
61.
Brinjikji  W , Luetmer  PH , Comstock  B ,  et al.  Systematic literature review of imaging features of spinal degeneration in asymptomatic populations.   AJNR Am J Neuroradiol. 2015;36(4):811-816. doi:10.3174/ajnr.A4173 PubMedGoogle ScholarCrossref
62.
Keefe  FJ , Caldwell  DS , Williams  DA ,  et al  Pain coping skills training in the management of osteoarthritic knee pain: a comparative study.   Behav Ther. 1990;21(1):49-62. doi:10.1016/S0005-7894(05)80188-1 Google ScholarCrossref
63.
Logan  DE , Carpino  EA , Chiang  G ,  et al.  A day-hospital approach to treatment of pediatric complex regional pain syndrome: initial functional outcomes.   Clin J Pain. 2012;28(9):766-774. doi:10.1097/AJP.0b013e3182457619 PubMedGoogle ScholarCrossref
64.
Sherry  DD , Wallace  CA , Kelley  C , Kidder  M , Sapp  L .  Short- and long-term outcomes of children with complex regional pain syndrome type I treated with exercise therapy.   Clin J Pain. 1999;15(3):218-223. doi:10.1097/00002508-199909000-00009 PubMedGoogle ScholarCrossref
65.
Craske  MG , Kircanski  K , Zelikowsky  M , Mystkowski  J , Chowdhury  N , Baker  A .  Optimizing inhibitory learning during exposure therapy.   Behav Res Ther. 2008;46(1):5-27. doi:10.1016/j.brat.2007.10.003 PubMedGoogle ScholarCrossref
66.
Barlow  DH , Craske  MG , Cerny  JA , Klosko  JS .  Behavioral treatment of panic disorder.   Behav Ther. 1989;20(2):261-282. doi:10.1016/S0005-7894(89)80073-5 Google ScholarCrossref
67.
Seminowicz  DA , Moayedi  M .  The dorsolateral prefrontal cortex in acute and chronic pain.   J Pain. 2017;18(9):1027-1035. doi:10.1016/j.jpain.2017.03.008 PubMedGoogle ScholarCrossref
68.
Craig  AD .  How do you feel—now? the anterior insula and human awareness.   Nat Rev Neurosci. 2009;10(1):59-70. doi:10.1038/nrn2555 PubMedGoogle ScholarCrossref
69.
Lindquist  KA , Wager  TD , Kober  H , Bliss-Moreau  E , Barrett  LF .  The brain basis of emotion: a meta-analytic review.   Behav Brain Sci. 2012;35(3):121-143. doi:10.1017/S0140525X11000446 PubMedGoogle ScholarCrossref
70.
Geuter  S , Boll  S , Eippert  F , Büchel  C .  Functional dissociation of stimulus intensity encoding and predictive coding of pain in the insula.   Elife. 2017;6:e24770. doi:10.7554/eLife.24770 PubMedGoogle Scholar
71.
Garland  EL , Gaylord  SA , Palsson  O , Faurot  K , Douglas Mann  J , Whitehead  WE .  Therapeutic mechanisms of a mindfulness-based treatment for IBS: effects on visceral sensitivity, catastrophizing, and affective processing of pain sensations.   J Behav Med. 2012;35(6):591-602. doi:10.1007/s10865-011-9391-z PubMedGoogle ScholarCrossref
72.
Kim  J , Loggia  ML , Cahalan  CM ,  et al.  The somatosensory link in fibromyalgia: functional connectivity of the primary somatosensory cortex is altered by sustained pain and is associated with clinical/autonomic dysfunction.   Arthritis Rheumatol. 2015;67(5):1395-1405. doi:10.1002/art.39043 PubMedGoogle ScholarCrossref
AMA CME Accreditation Information

Credit Designation Statement: The American Medical Association designates this Journal-based CME activity activity for a maximum of 1.00  AMA PRA Category 1 Credit(s)™. Physicians should claim only the credit commensurate with the extent of their participation in the activity.

Successful completion of this CME activity, which includes participation in the evaluation component, enables the participant to earn up to:

  • 1.00 Medical Knowledge MOC points in the American Board of Internal Medicine's (ABIM) Maintenance of Certification (MOC) program;;
  • 1.00 Self-Assessment points in the American Board of Otolaryngology – Head and Neck Surgery’s (ABOHNS) Continuing Certification program;
  • 1.00 MOC points in the American Board of Pediatrics’ (ABP) Maintenance of Certification (MOC) program;
  • 1.00 Lifelong Learning points in the American Board of Pathology’s (ABPath) Continuing Certification program; and
  • 1.00 CME points in the American Board of Surgery’s (ABS) Continuing Certification program

It is the CME activity provider's responsibility to submit participant completion information to ACCME for the purpose of granting MOC credit.

Close
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
Close
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close

Name Your Search

Save Search
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Close
Close

Lookup An Activity

or

My Saved Searches

You currently have no searches saved.

Close

My Saved Courses

You currently have no courses saved.

Close