[Skip to Content]
[Skip to Content Landing]

Interventions to Mitigate Risk of Cardiovascular Disease After Adverse Pregnancy OutcomesA Review

Educational Objective
To identify the key insights or developments described in this article
1 Credit CME
Abstract

Importance  A growing body of evidence suggests that adverse pregnancy outcomes (APOs), including hypertensive disorders of pregnancy, gestational diabetes (GD), preterm birth, and intrauterine growth restriction, are associated with increased risk of cardiometabolic disease and cardiovascular disease (CVD) later in life. Adverse pregnancy outcomes may therefore represent an opportunity to intervene to prevent or delay onset of CVD. The objective of this review was to summarize the current evidence for targeted postpartum interventions and strategies to reduce CVD risk in women with a history of APOs.

Observations  A search of PubMed and Ovid for English-language randomized clinical trials, cohort studies, descriptive studies, and guidelines published from January 1, 2000, to April 30, 2021, was performed. Four broad categories of interventions were identified: transitional clinics, lifestyle interventions, pharmacotherapy, and patient and clinician education. Observational studies suggest that postpartum transitional clinics identify women who are at elevated risk for CVD and may aid in the transition to longitudinal primary care. Lifestyle interventions to increase physical activity and improve diet quality may help reduce the incidence of type 2 diabetes in women with prior GD; less is known about women with other prior APOs. Metformin hydrochloride may prevent development of type 2 diabetes in women with prior GD. Evidence is lacking in regard to specific pharmacotherapies after other APOs. Cardiovascular guidelines endorse using a history of APOs to refine CVD risk assessment and guide statin prescription for primary prevention in women with intermediate calculated 10-year CVD risk. Research suggests a low level of awareness of the link between APOs and CVD among both patients and clinicians.

Conclusions and Relevance  These findings suggest that transitional clinics, lifestyle intervention, targeted pharmacotherapy, and clinician and patient education represent promising strategies for improving postpartum maternal cardiometabolic health in women with APOs; further research is needed to develop and rigorously evaluate these interventions. Future efforts should focus on strategies to increase maternal postpartum follow-up, improve accessibility to interventions across diverse racial and cultural groups, expand awareness of sex-specific CVD risk factors, and define evidence-based precision prevention strategies for this high-risk population.

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 Credit(s)™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

CME Disclosure Statement: Unless noted, all individuals in control of content reported no relevant financial relationships. If applicable, all relevant financial relationships have been mitigated.

Article Information

Accepted for Publication: September 6, 2021.

Published Online: October 27, 2021. doi:10.1001/jamacardio.2021.4391

Corresponding Author: Michael C. Honigberg, MD, MPP, Massachusetts General Hospital, 185 Cambridge St, Mail Box CPZN 3.187, Boston, MA 02114 (mhonigberg@mgh.harvard.edu).

Author Contributions: Ms Jowell and Dr Honigberg had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: Jowell, Sarma, Vaught, Natarajan, Powe, Honigberg.

Acquisition, analysis, or interpretation of data: Jowell, Gulati, Michos, Honigberg.

Drafting of the manuscript: Jowell, Vaught.

Critical revision of the manuscript for important intellectual content: Jowell, Sarma, Gulati, Michos, Natarajan, Powe, Honigberg.

Administrative, technical, or material support: Natarajan.

Supervision: Sarma, Gulati, Vaught, Honigberg.

Conflict of Interest Disclosures: Dr Sarma reported receiving grants from the National Heart, Lung, and Blood Institute (NHLBI) and a CRICO Patient Safety Award outside the submitted work. Dr Michos reported receiving personal fees from the advisory boards of Novartis International AG, Amarin Corporation, Esperion, Therapeutics Inc, and AstraZeneca outside the submitted work. Dr Natarajan reported receiving grants from Amgen Inc, Apple Inc, Boston Scientific Corporation, and AstraZeneca; personal fees from Apple Inc, Blackstone Life Sciences, Novartis International AG, Genentech/Roche, AstraZeneca, and Foresite Labs; and having a spouse who is employed by Vertex Pharmaceuticals Inc outside the submitted work. No other disclosures were reported.

Funding/Support: This study was supported by grants R01HL142711, R01HL148050, R01HL148565, and R01HL151283 from the NHLBI (Dr Natarajan); grant TNE-18CVD04 from Fondation Leducq (Dr Natarajan); a Hassenfeld Scholar Award from Massachusetts General Hospital (Dr Natarajan); grant 5U01DK123795-02 from the National Institute of Diabetes and Digestive and Kidney Diseases (Dr Powe); and grant T32HL094301-07 from the NHLBI (Dr Honigberg).

Role of the Funder/Sponsor: The sponsors had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Additional Contributions: Paul Bain, PhD, MLIS, Countway Library, Harvard Medical School, Boston, Massachusetts, assisted with the literature search without compensation.

References
1.
Cain  MA , Salemi  JL , Tanner  JP , Kirby  RS , Salihu  HM , Louis  JM .  Pregnancy as a window to future health: maternal placental syndromes and short-term cardiovascular outcomes.   Am J Obstet Gynecol. 2016;215(4):484.e1-484.e14. doi:10.1016/j.ajog.2016.05.047 PubMedGoogle ScholarCrossref
2.
Jarvie  JL , Metz  TD , Davis  MB , Ehrig  JC , Kao  DP .  Short-term risk of cardiovascular readmission following a hypertensive disorder of pregnancy.   Heart. 2018;104(14):1187-1194. doi:10.1136/heartjnl-2017-312299 PubMedGoogle ScholarCrossref
3.
Song  C , Lyu  Y , Li  C ,  et al.  Long-term risk of diabetes in women at varying durations after gestational diabetes: a systematic review and meta-analysis with more than 2 million women.   Obes Rev. 2018;19(3):421-429. doi:10.1111/obr.12645 PubMedGoogle ScholarCrossref
4.
Rosenbloom  JI , Stwalley  D , Lindley  KJ , Michael Nelson  D , Olsen  MA , Stout  MJ .  Latency of preterm hypertensive disorders of pregnancy and subsequent cardiovascular complications.   Pregnancy Hypertens. 2020;21(May):139-144. doi:10.1016/j.preghy.2020.05.015 PubMedGoogle Scholar
5.
Grandi  SM , Filion  KB , Yoon  S ,  et al.  Cardiovascular disease-related morbidity and mortality in women with a history of pregnancy complications.   Circulation. 2019;139(8):1069-1079. doi:10.1161/CIRCULATIONAHA.118.036748 PubMedGoogle ScholarCrossref
6.
Honigberg  MC , Zekavat  SM , Aragam  K ,  et al.  Long-term cardiovascular risk in women with hypertension during pregnancy.   J Am Coll Cardiol. 2019;74(22):2743-2754. doi:10.1016/j.jacc.2019.09.052 PubMedGoogle ScholarCrossref
7.
Tobias  DK , Stuart  JJ , Li  S ,  et al.  Association of history of gestational diabetes with long-term cardiovascular disease risk in a large prospective cohort of US women.   JAMA Intern Med. 2017;177(12):1735-1742. doi:10.1001/jamainternmed.2017.2790 PubMedGoogle ScholarCrossref
8.
Garovic  VD , White  WM , Vaughan  L ,  et al.  Incidence and long-term outcomes of hypertensive disorders of pregnancy.   J Am Coll Cardiol. 2020;75(18):2323-2334. doi:10.1016/j.jacc.2020.03.028 PubMedGoogle ScholarCrossref
9.
Casagrande  SS , Linder  B , Cowie  CC .  Prevalence of gestational diabetes and subsequent type 2 diabetes among US women.   Diabetes Res Clin Pract. 2018;141:200-208. doi:10.1016/j.diabres.2018.05.010 PubMedGoogle ScholarCrossref
10.
Tanz  LJ , Stuart  JJ , Williams  PL ,  et al.  Preterm delivery and maternal cardiovascular disease in young and middle-aged adult women.   Circulation. 2017;135(6):578-589. doi:10.1161/CIRCULATIONAHA.116.025954 PubMedGoogle ScholarCrossref
11.
Suhag  A , Berghella  V .  Intrauterine growth restriction (IUGR): etiology and diagnosis.   Curr Obstet Gynecol Rep. 2013;2(2):102-111. doi:10.1007/s13669-013-0041-z Google ScholarCrossref
12.
Ferrara  A .  Increasing prevalence of gestational diabetes mellitus: a public health perspective.   Diabetes Care. 2007;30(suppl 2):S141-S146. doi:10.2337/dc07-s206 PubMedGoogle ScholarCrossref
13.
Schaaf  JM , Liem  SMS , Mol  BWJ , Abu-Hanna  A , Ravelli  ACJ .  Ethnic and racial disparities in the risk of preterm birth: a systematic review and meta-analysis.   Am J Perinatol. 2013;30(6):433-450. doi:10.1055/s-0032-1326988PubMedGoogle Scholar
14.
Stuart  JJ , Tanz  LJ , Missmer  SA ,  et al.  Hypertensive disorders of pregnancy and maternal cardiovascular disease risk factor development: an observational cohort study.   Ann Intern Med. 2018;169(4):224-232. doi:10.7326/M17-2740 PubMedGoogle ScholarCrossref
15.
Tanz  LJ , Stuart  JJ , Williams  PL ,  et al.  Preterm delivery and maternal cardiovascular disease risk factors: the Nurses’ Health Study II.   J Womens Health (Larchmt). 2019;28(5):677-685. doi:10.1089/jwh.2018.7150 PubMedGoogle ScholarCrossref
16.
Smith  GN , Pudwell  J , Walker  M , Wen  SW .  Risk estimation of metabolic syndrome at one and three years after a pregnancy complicated by preeclampsia.   J Obstet Gynaecol Can. 2012;34(9):836-841. doi:10.1016/S1701-2163(16)35382-8 PubMedGoogle ScholarCrossref
17.
Crump  C , Sundquist  J , Howell  EA , McLaughlin  MA , Stroustrup  A , Sundquist  K .  Pre-term delivery and risk of ischemic heart disease in women.   J Am Coll Cardiol. 2020;76(1):57-67. doi:10.1016/j.jacc.2020.04.072 PubMedGoogle ScholarCrossref
18.
Søndergaard  MM , Hlatky  MA , Stefanick  ML ,  et al.  Association of adverse pregnancy outcomes with risk of atherosclerotic cardiovascular disease in postmenopausal women.   JAMA Cardiol. 2020;5(12):1390-1398. doi:10.1001/jamacardio.2020.4097 PubMedGoogle ScholarCrossref
19.
Arnett  DK , Blumenthal  RS , Albert  MA ,  et al.  2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines.   Circulation. 2019;140(11):e596-e646. doi:10.1161/CIR.0000000000000678PubMedGoogle Scholar
20.
Duckitt  K , Harrington  D .  Risk factors for pre-eclampsia at antenatal booking: systematic review of controlled studies.   BMJ. 2005;330(7491):565-567. doi:10.1136/bmj.38380.674340.E0 PubMedGoogle ScholarCrossref
21.
Honigberg  MC , Chaffin  M , Aragam  K ,  et al.  Genetic variation in cardiometabolic traits and medication targets and the risk of hypertensive disorders of pregnancy.   Circulation. 2020;142(7):711-713. doi:10.1161/CIRCULATIONAHA.120.047936PubMedGoogle ScholarCrossref
22.
Gray  KJ , Kovacheva  VP , Mirzakhani  H ,  et al.  Risk of pre-eclampsia in patients with a maternal genetic predisposition to common medical conditions: a case-control study.   BJOG. 2021;128(1):55-65. doi:10.1111/1471-0528.16441 PubMedGoogle ScholarCrossref
23.
Powe  CE , Kwak  SH .  Genetic studies of gestational diabetes and glucose metabolism in pregnancy.   Curr Diab Rep. 2020;20(12):69. doi:10.1007/s11892-020-01355-3 PubMedGoogle ScholarCrossref
24.
Lane-Cordova  AD , Khan  SS , Grobman  WA , Greenland  P , Shah  SJ .  Long-term cardiovascular risks associated with adverse pregnancy outcomes: JACC review topic of the week.   J Am Coll Cardiol. 2019;73(16):2106-2116. doi:10.1016/j.jacc.2018.12.092 PubMedGoogle ScholarCrossref
25.
Parikh  NI , Gonzalez  JM , Anderson  CAM ,  et al; American Heart Association Council on Epidemiology and Prevention; Council on Arteriosclerosis, Thrombosis and Vascular Biology; Council on Cardiovascular and Stroke Nursing; and the Stroke Council.  Adverse pregnancy outcomes and cardiovascular disease risk: unique opportunities for cardiovascular disease prevention in women.   Circulation. 2021;143(18):e902-e916. doi:10.1161/CIR.0000000000000961PubMedGoogle ScholarCrossref
26.
Centers for Disease Control and prevention (CDC). Pregnancy Mortality Surveillance System: trends in pregnancy-related deaths. Updated November 25, 2020. Accessed March 1, 2021. https://www.cdc.gov/reproductivehealth/maternal-mortality/pregnancy-mortality-surveillance-system.htm#
27.
 ACOG Committee opinion No. 736: optimizing postpartum care.   Obstet Gynecol. 2018;131(736):140-150. doi:10.1097/AOG.0000000000002633Google Scholar
28.
 ACOG practice bulletin No 212: pregnancy and heart disease.   Obstet Gynecol. 2019;133(5):320-356. doi:10.1097/AOG.0000000000003243 Google ScholarCrossref
29.
Cusimano  MC , Pudwell  J , Roddy  M , Cho  CKJ , Smith  GN .  The Maternal Health Clinic: an initiative for cardiovascular risk identification in women with pregnancy-related complications.   Am J Obstet Gynecol. 2014;210(5):438.e1-438.e9. doi:10.1016/j.ajog.2013.12.001 PubMedGoogle ScholarCrossref
30.
Gladstone  RA , Pudwell  J , Pal  RS , Smith  GN .  Referral to cardiology following postpartum cardiovascular risk screening at the Maternal Health Clinic in Kingston, Ontario.   Can J Cardiol. 2019;35(6):761-769. doi:10.1016/j.cjca.2019.03.008 PubMedGoogle ScholarCrossref
31.
Janmohamed  R , Montgomery-Fajic  E , Sia  W ,  et al.  Cardiovascular risk reduction and weight management at a hospital-based postpartum preeclampsia clinic.   J Obstet Gynaecol Can. 2015;37(4):330-337. doi:10.1016/S1701-2163(15)30283-8 PubMedGoogle ScholarCrossref
32.
Celi  AC , Seely  EW , Wang  P , Thomas  AM , Wilkins-Haug  LE .  Caring for women after hypertensive pregnancies and beyond: implementation and integration of a postpartum transition clinic.   Matern Child Health J. 2019;23(11):1459-1466. doi:10.1007/s10995-019-02768-7 PubMedGoogle ScholarCrossref
33.
Wilkins-Haug  L , Celi  A , Thomas  A , Frolkis  J , Seely  EW .  Recognition by women’s health care providers of long-term cardiovascular disease risk after preeclampsia.   Obstet Gynecol. 2015;125(6):1287-1292. doi:10.1097/AOG.0000000000000856 PubMedGoogle ScholarCrossref
34.
Bernstein  JA , Quinn  E , Ameli  O ,  et al.  Follow-up after gestational diabetes: a fixable gap in women’s preventive healthcare.   BMJ Open Diabetes Res Care. 2017;5(1):e000445. doi:10.1136/bmjdrc-2017-000445 PubMedGoogle Scholar
35.
Lewey  J , Levine  LD , Yang  L , Triebwasser  JE , Groeneveld  PW .  Patterns of postpartum ambulatory care follow-up care among women with hypertensive disorders of pregnancy.   J Am Heart Assoc. 2020;9(17):e016357. doi:10.1161/JAHA.120.016357 PubMedGoogle Scholar
36.
Bennett  WL , Chang  HY , Levine  DM ,  et al.  Utilization of primary and obstetric care after medically complicated pregnancies: an analysis of medical claims data.   J Gen Intern Med. 2014;29(4):636-645. doi:10.1007/s11606-013-2744-2 PubMedGoogle ScholarCrossref
37.
Levine  LD , Nkonde-Price  C , Limaye  M , Srinivas  SK .  Factors associated with postpartum follow-up and persistent hypertension among women with severe preeclampsia.   J Perinatol. 2016;36(12):1079-1082. doi:10.1038/jp.2016.137 PubMedGoogle ScholarCrossref
38.
Cairns  AE , Tucker  KL , Leeson  P ,  et al; SNAP-HT Investigators.  Self-management of postnatal hypertension: the SNAP-HT trial.   Hypertension. 2018;72(2):425-432. doi:10.1161/HYPERTENSIONAHA.118.10911 PubMedGoogle ScholarCrossref
39.
Timpka  S , Stuart  JJ , Tanz  LJ , Rimm  EB , Franks  PW , Rich-Edwards  JW .  Lifestyle in progression from hypertensive disorders of pregnancy to chronic hypertension in Nurses’ Health Study II: observational cohort study.   BMJ. 2017;358:j3024. doi:10.1136/bmj.j3024 PubMedGoogle Scholar
40.
Bao  W , Tobias  DK , Bowers  K ,  et al.  Physical activity and sedentary behaviors associated with risk of progression from gestational diabetes mellitus to type 2 diabetes mellitus: a prospective cohort study.   JAMA Intern Med. 2014;174(7):1047-1055. doi:10.1001/jamainternmed.2014.1795 PubMedGoogle ScholarCrossref
41.
Scholten  RR , Thijssen  DJH , Lotgering  FK , Hopman  MTE , Spaanderman  MEA .  Cardiovascular effects of aerobic exercise training in formerly preeclamptic women and healthy parous control subjects.   Am J Obstet Gynecol. 2014;211(5):516.e1-516.e11. doi:10.1016/j.ajog.2014.04.025 PubMedGoogle ScholarCrossref
42.
Rich-Edwards  JW , Stuart  JJ , Skurnik  G ,  et al.  Randomized trial to reduce cardiovascular risk in women with recent preeclampsia.   J Womens Health (Larchmt). 2019;28(11):1493-1504. doi:10.1089/jwh.2018.7523 PubMedGoogle ScholarCrossref
43.
Hewage  SS , Wu  S , Neelakantan  N , Yoong  J .  Systematic review of effectiveness and cost-effectiveness of lifestyle interventions to improve clinical diabetes outcome measures in women with a history of GDM.   Clin Nutr ESPEN. 2020;35:20-29. doi:10.1016/j.clnesp.2019.10.011 PubMedGoogle ScholarCrossref
44.
Guo  J , Chen  JL , Whittemore  R , Whitaker  E .  Postpartum lifestyle interventions to prevent type 2 diabetes among women with history of gestational diabetes: a systematic review of randomized clinical trials.   J Womens Health (Larchmt). 2016;25(1):38-49. doi:10.1089/jwh.2015.5262 PubMedGoogle ScholarCrossref
45.
Goveia  P , Cañon-Montañez  W , Santos  DP ,  et al.  Lifestyle intervention for the prevention of diabetes in women with previous gestational diabetes mellitus: a systematic review and meta-analysis.   Front Endocrinol (Lausanne). 2018;9:583. doi:10.3389/fendo.2018.00583 PubMedGoogle ScholarCrossref
46.
Pedersen  ALW , Terkildsen Maindal  H , Juul  L .  How to prevent type 2 diabetes in women with previous gestational diabetes? a systematic review of behavioural interventions.   Prim Care Diabetes. 2017;11(5):403-413. doi:10.1016/j.pcd.2017.05.002 PubMedGoogle ScholarCrossref
47.
Gilinsky  AS , Kirk  AF , Hughes  AR , Lindsay  RS .  Lifestyle interventions for type 2 diabetes prevention in women with prior gestational diabetes: a systematic review and meta-analysis of behavioural, anthropometric and metabolic outcomes.   Prev Med Rep. 2015;2:448-461. doi:10.1016/j.pmedr.2015.05.009 PubMedGoogle ScholarCrossref
48.
Ratner  RE , Christophi  CA , Metzger  BE ,  et al; Diabetes Prevention Program Research Group.  Prevention of diabetes in women with a history of gestational diabetes: effects of metformin and lifestyle interventions.   J Clin Endocrinol Metab. 2008;93(12):4774-4779. doi:10.1210/jc.2008-0772 PubMedGoogle ScholarCrossref
49.
Knowler  WC , Barrett-Connor  E , Fowler  SE ,  et al; Diabetes Prevention Program Research Group.  Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin.   N Engl J Med. 2002;346(6):393-403. doi:10.1056/NEJMoa012512 PubMedGoogle Scholar
50.
Aroda  VR , Christophi  CA , Edelstein  SL ,  et al; Diabetes Prevention Program Research Group.  The effect of lifestyle intervention and metformin on preventing or delaying diabetes among women with and without gestational diabetes: the Diabetes Prevention Program Outcomes Study 10-year follow-up.   J Clin Endocrinol Metab. 2015;100(4):1646-1653. doi:10.1210/jc.2014-3761 PubMedGoogle ScholarCrossref
51.
American Diabetes Association.  14. Management of diabetes in pregnancy: Standards of Medical Care in Diabetes-2021.   Diabetes Care. 2021;44(suppl 1):S200-S210. doi:10.2337/dc21-S014PubMedGoogle ScholarCrossref
52.
Nicklas  JM , Zera  CA , England  LJ ,  et al.  A web-based lifestyle intervention for women with recent gestational diabetes mellitus: a randomized controlled trial.   Obstet Gynecol. 2014;124(3):563-570. doi:10.1097/AOG.0000000000000420 PubMedGoogle ScholarCrossref
53.
Ferrara  A , Hedderson  MM , Brown  SD ,  et al.  The comparative effectiveness of diabetes prevention strategies to reduce postpartum weight retention in women with gestational diabetes mellitus: the Gestational Diabetes’ Effects on Moms (GEM) cluster randomized controlled trial.   Diabetes Care. 2016;39(1):65-74. doi:10.2337/dc15-1254 PubMedGoogle ScholarCrossref
54.
Holmes  VA , Draffin  CR , Patterson  CC ,  et al; PAIGE Study Group.  Postnatal lifestyle intervention for overweight women with previous gestational diabetes: a randomized controlled trial.   J Clin Endocrinol Metab. 2018;103(7):2478-2487. doi:10.1210/jc.2017-02654 PubMedGoogle ScholarCrossref
55.
Skurnik  G , Roche  AT , Stuart  JJ ,  et al.  Improving the postpartum care of women with a recent history of preeclampsia: a focus group study.   Hypertens Pregnancy. 2016;35(3):371-381. doi:10.3109/10641955.2016.1154967 PubMedGoogle ScholarCrossref
56.
Seely  EW , Rich-Edwards  J , Lui  J ,  et al.  Risk of future cardiovascular disease in women with prior preeclampsia: a focus group study.   BMC Pregnancy Childbirth. 2013;13:240. doi:10.1186/1471-2393-13-240 PubMedGoogle ScholarCrossref
57.
Nicklas  JM , Zera  CA , Seely  EW , Abdul-Rahim  ZS , Rudloff  ND , Levkoff  SE .  Identifying postpartum intervention approaches to prevent type 2 diabetes in women with a history of gestational diabetes.   BMC Pregnancy Childbirth. 2011;11:23. doi:10.1186/1471-2393-11-23 PubMedGoogle ScholarCrossref
58.
Schwarz  EB , Ray  RM , Stuebe  AM ,  et al.  Duration of lactation and risk factors for maternal cardiovascular disease.   Obstet Gynecol. 2009;113(5):974-982. doi:10.1097/01.AOG.0000346884.67796.ca PubMedGoogle ScholarCrossref
59.
Feng  L , Xu  Q , Hu  Z , Pan  H .  Lactation and progression to type 2 diabetes in patients with gestational diabetes mellitus: a systematic review and meta-analysis of cohort studies.   J Diabetes Investig. 2018;9(6):1360-1369. doi:10.1111/jdi.12838 PubMedGoogle ScholarCrossref
60.
Gunderson  EP , Hurston  SR , Ning  X ,  et al; Study of Women, Infant Feeding and Type 2 Diabetes After GDM Pregnancy Investigators.  Lactation and progression to type 2 diabetes mellitus after gestational diabetes mellitus—a prospective cohort study.   Ann Intern Med. 2015;163(12):889-898. doi:10.7326/M15-0807 PubMedGoogle ScholarCrossref
61.
Heart Health 4 New Moms: a randomized trial in the first year after preeclampsia (HH4NM). ClinicalTrials.gov identifier: NCT03749746. Updated December 3, 2020. Accessed April 15, 2021. https://clinicaltrials.gov/ct2/show/NCT03749746
62.
Virtual cardiac wellness program following hypertensive disorders of pregnancy. ClinicalTrials.gov identifier: NCT04998942. Accessed April 15, 2021. https://clinicaltrials.gov/ct2/show/NCT04998942
63.
Lifestyle intervention for women with recent pre-eclampsia or gestational diabetes mellitus (“Mom's Healthy Heart”). ClinicalTrials.gov identifier: NCT03993145. Updated May 12, 2021. Accessed April 15, 2021. https://clinicaltrials.gov/ct2/show/NCT03993145
64.
Fit After Baby: increasing postpartum weight loss in women at increased risk for cardiometabolic disease (FAB). ClinicalTrials.gov identifier: NCT03215173. Updated March 8, 2021. Accessed April 15, 2021. https://clinicaltrials.gov/ct2/show/NCT03215173
65.
Alternative Lifestyle Interventions for Vulnerable Ethnic Groups (ALIVE). ClinicalTrials.gov identifier: NCT04406792. Updated September 22, 2021. Accessed April 15, 2021. https://www.clinicaltrials.gov/ct2/show/NCT04406792
66.
A pragmatic approach to lowering the risk of diabetes mellitus after a diagnosis of gestational diabetes mellitus. ClinicalTrials.gov identifier: NCT04615351. Accessed April 15, 2021. https://clinicaltrials.gov/ct2/show/NCT04615351
67.
Empagliflozin and the Preservation of Beta-cell Function in Women With Recent Gestational Diabetes (EMPA post-GDM). ClinicalTrials.gov identifier: NCT03215069. Accessed April 15, 2021. https://clinicaltrials.gov/ct2/show/NCT03215069
68.
The impact of liraglutide on glucose tolerance and the risk of type 2 diabetes in women with previous pregnancy-induced diabetes. ClinicalTrials.gov identifier: NCT01795248. Updated November 4, 2020. Accessed April 15, 2021. https://clinicaltrials.gov/ct2/show/NCT01795248
69.
Postpartum Low-Dose Aspirin After Preeclampsia for Optimization of Cardiovascular Risk (PAPVASC). ClinicalTrials.gov identifier: NCT04243278. Updated September 21, 2020. Accessed April 15, 2021. https://clinicaltrials.gov/ct2/show/NCT04243278
70.
 ACOG practice bulletin No. 202: gestational hypertension and preeclampsia.   Obstet Gynecol. 2019;133(1):1. doi:10.1097/AOG.0000000000003018Google Scholar
71.
Cairns  AE , Pealing  L , Duffy  JMN ,  et al.  Postpartum management of hypertensive disorders of pregnancy: a systematic review.   BMJ Open. 2017;7(11):e018696. doi:10.1136/bmjopen-2017-018696 PubMedGoogle Scholar
72.
Elkind-Hirsch  KE , Shaler  D , Harris  R .  Postpartum treatment with liraglutide in combination with metformin versus metformin monotherapy to improve metabolic status and reduce body weight in overweight/obese women with recent gestational diabetes: a double-blind, randomized, placebo-controlled study.   J Diabetes Complications. 2020;34(4):107548. doi:10.1016/j.jdiacomp.2020.107548 PubMedGoogle Scholar
73.
Elkind-Hirsch  KE , Seidemann  E , Harris  R .  A randomized trial of dapagliflozin and metformin, alone and combined, in overweight women after gestational diabetes mellitus.   Am J Obstet Gynecol MFM. 2020;2(3):100139. doi:10.1016/j.ajogmf.2020.100139 PubMedGoogle Scholar
74.
Elkind-Hirsch  KE , Paterson  MS , Shaler  D , Gutowski  HC .  Short-term sitagliptin-metformin therapy is more effective than metformin or placebo in prior gestational diabetic women with impaired glucose regulation.   Endocr Pract. 2018;24(4):361-368. doi:10.4158/EP-2017-0251PubMedGoogle ScholarCrossref
75.
Roth  H , LeMarquand  G , Henry  A , Homer  C .  Assessing knowledge gaps of women and healthcare providers concerning cardiovascular risk after hypertensive disorders of pregnancy: a scoping review.   Front Cardiovasc Med. 2019;6:178. doi:10.3389/fcvm.2019.00178 PubMedGoogle ScholarCrossref
76.
Young  B , Hacker  MR , Rana  S .  Physicians’ knowledge of future vascular disease in women with preeclampsia.   Hypertens Pregnancy. 2012;31(1):50-58. doi:10.3109/10641955.2010.544955 PubMedGoogle ScholarCrossref
77.
Sutherland  L , Neale  D , Henderson  J , Clark  J , Levine  D , Bennett  WL .  Provider counseling about and risk perception for future chronic disease among women with gestational diabetes and preeclampsia.   J Womens Health (Larchmt). 2020;29(9):1168-1175. doi:10.1089/jwh.2019.7767 PubMedGoogle ScholarCrossref
78.
Marsiglia  FF , Bermudez-Parsai  M , Coonrod  D .  Familias Sanas: an intervention designed to increase rates of postpartum visits among Latinas.   J Health Care Poor Underserved. 2010;21(3)(suppl):119-131. doi:10.1353/hpu.0.0355 PubMedGoogle Scholar
79.
Philis-Tsimikas  A , Fortmann  AL , Dharkar-Surber  S ,  et al.  Dulce Mothers: an intervention to reduce diabetes and cardiovascular risk in Latinas after gestational diabetes.   Transl Behav Med. 2014;4(1):18-25. doi:10.1007/s13142-014-0253-4 PubMedGoogle ScholarCrossref
80.
Honigberg  MC , Natarajan  P .  Women’s cardiovascular health after hypertensive pregnancy: the long view from labor and delivery becomes clearer.   J Am Coll Cardiol. 2020;75(18):2335-2337. doi:10.1016/j.jacc.2020.01.064 PubMedGoogle ScholarCrossref
81.
Stuart  JJ , Tanz  LJ , Cook  NR ,  et al.  Hypertensive disorders of pregnancy and 10-year cardiovascular risk prediction.   J Am Coll Cardiol. 2018;72(11):1252-1263. doi:10.1016/j.jacc.2018.05.077 PubMedGoogle ScholarCrossref
82.
Markovitz  AR , Stuart  JJ , Horn  J ,  et al.  Does pregnancy complication history improve cardiovascular disease risk prediction? findings from the HUNT study in Norway.   Eur Heart J. 2019;40(14):1113-1120. doi:10.1093/eurheartj/ehy863 PubMedGoogle ScholarCrossref
83.
Sharma  G , Zakaria  S , Michos  ED ,  et al.  Improving cardiovascular workforce competencies in cardio-obstetrics: current challenges and future directions.   J Am Heart Assoc. 2020;9(12):e015569. doi:10.1161/JAHA.119.015569 PubMedGoogle Scholar
AMA CME Accreditation Information

Credit Designation Statement: The American Medical Association designates this Journal-based CME activity activity for a maximum of 1.00  AMA PRA Category 1 Credit(s)™. Physicians should claim only the credit commensurate with the extent of their participation in the activity.

Successful completion of this CME activity, which includes participation in the evaluation component, enables the participant to earn up to:

  • 1.00 Medical Knowledge MOC points in the American Board of Internal Medicine's (ABIM) Maintenance of Certification (MOC) program;;
  • 1.00 Self-Assessment points in the American Board of Otolaryngology – Head and Neck Surgery’s (ABOHNS) Continuing Certification program;
  • 1.00 MOC points in the American Board of Pediatrics’ (ABP) Maintenance of Certification (MOC) program;
  • 1.00 Lifelong Learning points in the American Board of Pathology’s (ABPath) Continuing Certification program; and
  • 1.00 CME points in the American Board of Surgery’s (ABS) Continuing Certification program

It is the CME activity provider's responsibility to submit participant completion information to ACCME for the purpose of granting MOC credit.

Close
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
Close
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close

Name Your Search

Save Search
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Close
Close

Lookup An Activity

or

My Saved Searches

You currently have no searches saved.

Close

My Saved Courses

You currently have no courses saved.

Close