[Skip to Content]
[Skip to Content Landing]

Management of Cutaneous Immune-Related Adverse Events in Patients With Cancer Treated With Immune Checkpoint InhibitorsA Systematic Review

Educational Objective
To learn the cutaneous eruptions that are associated with immune checkpoint inhibitor therapy.
1 Credit CME
Key Points

Question  What are the most effective treatments for each subtype of cutaneous adverse events associated with immune checkpoint inhibitor therapy?

Findings  In this systematic review, common treatment strategies included topical corticosteroids and systemic immunomodulators, including oral/intravenous corticosteroids, antimetabolite agents, calcineurin inhibitors, and tumor necrosis factor–α inhibitors, as well as systemic antipruritics for symptomatic relief.

Meaning  The study findings build on recent literature by providing a systematic review of all published studies since the advent of immunotherapy and describing reported novel treatments of dermatologic adverse events, potentially becoming instrumental in creating new guidelines for clinicians to tailor the treatment and management of these events.

Abstract

Importance  There exists a paucity of literature that summarizes the effective management of cutaneous immune-related adverse events (cirAEs) in patients with cancer who are receiving immune checkpoint inhibitors (ICIs). Most published articles are small case series from a single institution. To our knowledge, the spectrum of possible treatments has not been systematically reviewed to highlight the breadth of options when caring for patients with cirAEs.

Objective  To further characterize the development of subtypes of cirAEs in patients with cancer treated with ICIs and provide recommendations on optimal treatment regimens based on the current literature.

Evidence Review  A search was performed in PubMed, Embase European, Web of Science, and Google Scholar on June 26, 2020, according to Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) reporting guidelines, limited to the years 2010 to 2020. Articles that met predetermined inclusion criteria (published between January 1, 2010, and June 1, 2020; written in the English language; and original articles, brief reports, case reports, and research letters that reported primarily on cirAE management) were selected, and data were abstracted. Articles that met the scope of the review were also added from reference lists. When possible, the results of studies that addressed a similar question were combined quantitatively.

Findings  In total, 138 studies (87 from the aforementioned literature search and 51 additional studies pulled from the reference lists of included articles) were included that reported on 879 cirAEs. The subtypes of cirAEs included maculopapular, pruritus, lichenoid, immunobullous, psoriasiform, granulomatous, erythema multiforme or Stevens Johnson Syndrome, drug rash with eosinophilia and systemic symptoms, connective tissue disease, hair, oral, and miscellaneous. Treatments for cirAEs included a combination of topical corticosteroids, systemic corticosteroids, steroid-sparing agents, and discontinuation or cessation of immunotherapy.

Conclusions and Relevance  This systematic review found that treatment with ICIs was associated with many types of skin toxic effects, each with unique treatment options beyond current published guidelines. Further research into key differences between subtypes is critical to improve the care provided to patients with cancer.

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 Credit(s)™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

CME Disclosure Statement: Unless noted, all individuals in control of content reported no relevant financial relationships. If applicable, all relevant financial relationships have been mitigated.

Article Information

Accepted for Publication: March 30, 2021.

Published Online: October 28, 2021. doi:10.1001/jamaoncol.2021.4318

Corresponding Author: Steven T. Chen, MD, MPH, MS-HPEd, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, 50 Staniford St, Ste 200, Boston, MA 02114 (stchen@partners.org).

Author Contributions: Drs Nadelmann and Chen had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. Drs Nadelmann and Yeh contributed equally to this work.

Concept and design: All authors.

Acquisition, analysis, or interpretation of data: All authors.

Drafting of the manuscript: All authors.

Critical revision of the manuscript for important intellectual content: All authors.

Statistical analysis: Nadelmann.

Administrative, technical, or material support: Nadelmann, Chen.

Supervision: Yeh, Chen.

Conflict of Interest Disclosures: Dr Chen has received honoraria from Pfizer for serving on an advisory board for digital media. No other disclosures were reported.

Funding/Support: Dr Chen is supported by a Medical Dermatology Career Development Award from the Dermatology Foundation.

Role of the Funder/Sponsor: The funding organizations had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Additional Contributions: We thank Kerry Reynolds, MD, Massachusetts General Hospital, for her work caring for patients with immune-related adverse events and for motivating this article. She was not compensated for her contributions.

References
1.
Haslam  A , Gill  J , Prasad  V .  Estimation of the percentage of US patients with cancer who are eligible for immune checkpoint inhibitor drugs.   JAMA Netw Open. 2020;3(3):e200423. doi:10.1001/jamanetworkopen.2020.0423PubMedGoogle Scholar
2.
Coleman  E , Ko  C , Dai  F , Tomayko  MM , Kluger  H , Leventhal  JS .  Inflammatory eruptions associated with immune checkpoint inhibitor therapy: a single-institution retrospective analysis with stratification of reactions by toxicity and implications for management.   J Am Acad Dermatol. 2019;80(4):990-997. doi:10.1016/j.jaad.2018.10.062PubMedGoogle ScholarCrossref
3.
Johnson  DB , Friedman  DL , Berry  E ,  et al.  Survivorship in immune therapy: assessing chronic immune toxicities, health outcomes, and functional status among long-term ipilimumab survivors at a single referral center.   Cancer Immunol Res. 2015;3(5):464-469. doi:10.1158/2326-6066.CIR-14-0217PubMedGoogle ScholarCrossref
4.
Eryılmaz  MK , Mutlu  H , Salim  DK ,  et al.  Ipilimumab may increase the severity of cutaneous toxicity related to radiotherapy.   J Oncol Pharm Pract. 2016;22(3):533-536. doi:10.1177/1078155215572930PubMedGoogle ScholarCrossref
5.
Zhao  ZM , Liu  SC , Xu  XJ , Zhang  ZF , Nie  KK , Ji  YX .  Treatment of skin reaction induced by nivolumab combined with radiotherapy in non–small cell lung cancer: a case report.   Chin Med Sci J. 2018;33(3):183-187.PubMedGoogle Scholar
6.
Phillips  GS , Wu  J , Hellmann  MD ,  et al.  Treatment outcomes of immune-related cutaneous adverse events.   J Clin Oncol. 2019;37(30):2746-2758. doi:10.1200/JCO.18.02141PubMedGoogle ScholarCrossref
7.
Voskens  CJ , Goldinger  SM , Loquai  C ,  et al.  The price of tumor control: an analysis of rare side effects of anti-CTLA-4 therapy in metastatic melanoma from the ipilimumab network.   PLoS One. 2013;8(1):e53745. doi:10.1371/journal.pone.0053745PubMedGoogle Scholar
8.
Dika  E , Ravaioli  GM , Fanti  PA ,  et al.  Cutaneous adverse effects during ipilimumab treatment for metastatic melanoma: a prospective study.   Eur J Dermatol. 2017;27(3):266-270. doi:10.1684/ejd.2017.3023PubMedGoogle Scholar
9.
Hofmann  L , Forschner  A , Loquai  C ,  et al.  Cutaneous, gastrointestinal, hepatic, endocrine, and renal side-effects of anti-PD-1 therapy.   Eur J Cancer. 2016;60:190-209. doi:10.1016/j.ejca.2016.02.025PubMedGoogle ScholarCrossref
10.
Komori  T , Honda  T , Irie  H , Otsuka  A , Kabashima  K .  Lichen planus in irradiated skin during nivolumab treatment.   Acta Derm Venereol. 2017;97(3):391-392. doi:10.2340/00015555-2545PubMedGoogle ScholarCrossref
11.
Schaberg  KB , Novoa  RA , Wakelee  HA ,  et al.  Immunohistochemical analysis of lichenoid reactions in patients treated with anti-PD-L1 and anti-PD-1 therapy.   J Cutan Pathol. 2016;43(4):339-346. doi:10.1111/cup.12666PubMedGoogle ScholarCrossref
12.
Shi  VJ , Rodic  N , Gettinger  S ,  et al.  Clinical and histologic features of lichenoid mucocutaneous eruptions due to anti-programmed cell death 1 and anti-programmed cell death ligand 1 immunotherapy.   JAMA Dermatol. 2016;152(10):1128-1136. doi:10.1001/jamadermatol.2016.2226PubMedGoogle ScholarCrossref
13.
Chou  S , Hwang  SJ , Carlos  G , Wakade  D , Fernandez-Penas  P .  Histologic assessment of lichenoid dermatitis observed in patients with advanced malignancies on antiprogrammed cell death-1 (anti-PD-1) therapy with or without ipilimumab.   Am J Dermatopathol. 2017;39(1):23-27. doi:10.1097/DAD.0000000000000587PubMedGoogle ScholarCrossref
14.
Chou  S , Zhao  C , Hwang  SJE , Fernandez-Penas  P .  PD-1 inhibitor-associated lichenoid inflammation with incidental suprabasilar acantholysis or vesiculation—report of 4 cases.   J Cutan Pathol. 2017;44(10):851-856. doi:10.1111/cup.13013PubMedGoogle ScholarCrossref
15.
Tetzlaff  MT , Jazaeri  AA , Torres-Cabala  CA ,  et al.  Erythema nodosum-like panniculitis mimicking disease recurrence: a novel toxicity from immune checkpoint blockade therapy—report of 2 patients.   J Cutan Pathol. 2017;44(12):1080-1086. doi:10.1111/cup.13044PubMedGoogle ScholarCrossref
16.
Boozalis  E , Kwatra  SG , Marrone  KA .  Bilateral lower extremity skin eruptions in an HIV-positive man receiving pembrolizumab monotherapy for non–small cell lung cancer.   JAMA Oncol. 2019;5(2):261-262. doi:10.1001/jamaoncol.2018.4485PubMedGoogle ScholarCrossref
17.
Donaldson  M , Owen  JL , Chae  YK , Choi  JN .  Management of persistent pruritus and lichenoid reaction secondary to nivolumab with narrowband ultraviolet B phototherapy.   Front Oncol. 2018;8:405. doi:10.3389/fonc.2018.00405PubMedGoogle ScholarCrossref
18.
Shen  J , Chang  J , Mendenhall  M , Cherry  G , Goldman  JW , Kulkarni  RP .  Diverse cutaneous adverse eruptions caused by anti-programmed cell death-1 (PD-1) and anti-programmed cell death ligand-1 (PD-L1) immunotherapies: clinical features and management.   Ther Adv Med Oncol. 2018;10:1758834017751634. doi:10.1177/1758834017751634PubMedGoogle Scholar
19.
Cardis  MA , Jiang  H , Strauss  J , Gulley  JL , Brownell  I .  Diffuse lichen planus-like keratoses and clinical pseudo-progression associated with avelumab treatment for Merkel cell carcinoma, a case report.   BMC Cancer. 2019;19(1):539. doi:10.1186/s12885-019-5759-1PubMedGoogle ScholarCrossref
20.
Fixsen  E , Patel  J , Selim  MA , Kheterpal  M .  Resolution of pembrolizumab-associated steroid-refractory lichenoid dermatitis with cyclosporine.   Oncologist. 2019;24(3):e103-e105. doi:10.1634/theoncologist.2018-0531PubMedGoogle ScholarCrossref
21.
Lee  M , Seetharamu  N .  An atypical presentation of lichen planus–like reaction from pembrolizumab.   Case Rep Dermatol Med. 2019;2019:4065437. doi:10.1155/2019/4065437PubMedGoogle Scholar
22.
Martínez-Doménech  Á , García-Legaz Martínez  M , Magdaleno-Tapial  J , Valenzuela-Oñate  C , Pérez-Pastor  G , Pérez-Ferriols  A .  Digital ulcerative lichenoid dermatitis in a patient receiving anti-PD-1 therapy.   Dermatol Online J. 2019;25(9):13030/qt8sm0j7t7. doi:10.5070/D3259045515PubMedGoogle Scholar
23.
Nguyen  ED , Xue  YK , Danesh  M ,  et al.  A case of nivolumab-induced cutaneous toxicity with multiple morphologies.   Dermatopathology (Basel). 2020;6(4):255-259. doi:10.1159/000505353PubMedGoogle Scholar
24.
Strickley  JD , Vence  LM , Burton  SK , Callen  JP .  Nivolumab-induced lichen planus pemphigoides.   Cutis. 2019;103(4):224-226.PubMedGoogle Scholar
25.
Yilmaz  M , Mese  SG , Celik  U .  Nivolumab-induced lichen planus.   J Oncol Pharm Pract. 2020;26(3):758-760. doi:10.1177/1078155219866248PubMedGoogle ScholarCrossref
26.
Ameri  AH , Foreman  RK , Vedak  P , Chen  S , Miller  DM , Demehri  S .  Hypertrophic lichen planus with histological features of squamous cell carcinoma associated with immune checkpoint blockade therapy.   Oncologist. 2020;25(5):366-368. doi:10.1634/theoncologist.2019-0796PubMedGoogle ScholarCrossref
27.
Coscarart  A , Martel  J , Lee  MP , Wang  AR .  Pembrolizumab-induced pseudoepitheliomatous eruption consistent with hypertrophic lichen planus.   J Cutan Pathol. 2020;47(3):275-279. doi:10.1111/cup.13587PubMedGoogle ScholarCrossref
28.
de Lorenzi  C , André  R , Vuilleumier  A , Kaya  G , Abosaleh  M .  Bullous lichen planus and anti-programmed cell death-1 therapy: case report and literature review.   Ann Dermatol Venereol. 2020;147(3):221-227. doi:10.1016/j.annder.2019.07.008PubMedGoogle ScholarCrossref
29.
Marques-Piubelli  ML , Tetzlaff  MT , Nagarajan  P ,  et al.  Hypertrophic lichenoid dermatitis immune-related adverse event during combined immune checkpoint and exportin inhibitor therapy: a diagnostic pitfall for superficially invasive squamous cell carcinoma.   J Cutan Pathol. 2020;47(10):954-959. doi:10.1111/cup.13739PubMedGoogle ScholarCrossref
30.
Joseph  RW , Cappel  M , Goedjen  B ,  et al.  Lichenoid dermatitis in three patients with metastatic melanoma treated with anti-PD-1 therapy.   Cancer Immunol Res. 2015;3(1):18-22. doi:10.1158/2326-6066.CIR-14-0134PubMedGoogle ScholarCrossref
31.
Carlos  G , Anforth  R , Chou  S , Clements  A , Fernandez-Peñas  P .  A case of bullous pemphigoid in a patient with metastatic melanoma treated with pembrolizumab.   Melanoma Res. 2015;25(3):265-268. doi:10.1097/CMR.0000000000000155PubMedGoogle ScholarCrossref
32.
Hwang  SJ , Carlos  G , Chou  S , Wakade  D , Carlino  MS , Fernandez-Penas  P .  Bullous pemphigoid, an autoantibody-mediated disease, is a novel immune-related adverse event in patients treated with anti-programmed cell death 1 antibodies.   Melanoma Res. 2016;26(4):413-416. doi:10.1097/CMR.0000000000000260PubMedGoogle ScholarCrossref
33.
Jour  G , Glitza  IC , Ellis  RM ,  et al.  Autoimmune dermatologic toxicities from immune checkpoint blockade with anti-PD-1 antibody therapy: a report on bullous skin eruptions.   J Cutan Pathol. 2016;43(8):688-696. doi:10.1111/cup.12717PubMedGoogle ScholarCrossref
34.
Parakh  S , Nguyen  R , Opie  JM , Andrews  MC .  Late presentation of generalised bullous pemphigoid-like reaction in a patient treated with pembrolizumab for metastatic melanoma.   Australas J Dermatol. 2017;58(3):e109-e112. doi:10.1111/ajd.12488PubMedGoogle ScholarCrossref
35.
Rofe  O , Bar-Sela  G , Keidar  Z , Sezin  T , Sadik  CD , Bergman  R .  Severe bullous pemphigoid associated with pembrolizumab therapy for metastatic melanoma with complete regression.   Clin Exp Dermatol. 2017;42(3):309-312. doi:10.1111/ced.13042PubMedGoogle ScholarCrossref
36.
Sowerby  L , Dewan  AK , Granter  S , Gandhi  L , LeBoeuf  NR .  Rituximab treatment of nivolumab-induced bullous pemphigoid.   JAMA Dermatol. 2017;153(6):603-605. doi:10.1001/jamadermatol.2017.0091PubMedGoogle ScholarCrossref
37.
Lomax  AJ , Lim  J , Cheng  R ,  et al.  Immune toxicity with checkpoint inhibition for metastatic melanoma: case series and clinical management.   J Skin Cancer. 2018;2018:9602540. doi:10.1155/2018/9602540PubMedGoogle Scholar
38.
Ridpath  AV , Rzepka  PV , Shearer  SM , Scrape  SR , Olencki  TE , Kaffenberger  BH .  Novel use of combination therapeutic plasma exchange and rituximab in the treatment of nivolumab-induced bullous pemphigoid.   Int J Dermatol. 2018;57(11):1372-1374. doi:10.1111/ijd.13970PubMedGoogle ScholarCrossref
39.
Siegel  J , Totonchy  M , Damsky  W ,  et al.  Bullous disorders associated with anti-PD-1 and anti-PD-L1 therapy: a retrospective analysis evaluating the clinical and histopathologic features, frequency, and impact on cancer therapy.   J Am Acad Dermatol. 2018;79(6):1081-1088. doi:10.1016/j.jaad.2018.07.008PubMedGoogle ScholarCrossref
40.
Zumelzu  C , Alexandre  M , Le Roux  C ,  et al.  Mucous membrane pemphigoid, bullous pemphigoid, and anti-programmed death-1/ programmed death-ligand 1: a case report of an elderly woman with mucous membrane pemphigoid developing after pembrolizumab therapy for metastatic melanoma and review of the literature.   Front Med (Lausanne). 2018;5:268. doi:10.3389/fmed.2018.00268PubMedGoogle ScholarCrossref
41.
Garje  R , Chau  JJ , Chung  J , Wanat  K , Zakharia  Y .  Acute flare of bullous pemphigus with pembrolizumab used for treatment of metastatic urothelial cancer.   J Immunother. 2018;41(1):42-44. doi:10.1097/CJI.0000000000000191PubMedGoogle ScholarCrossref
42.
Yatim  A , Bohelay  G , Grootenboer-Mignot  S ,  et al.  Paraneoplastic pemphigus revealed by anti-programmed death-1 pembrolizumab therapy for cutaneous squamous cell carcinoma complicating hidradenitis suppurativa.   Front Med (Lausanne). 2019;6:249. doi:10.3389/fmed.2019.00249PubMedGoogle ScholarCrossref
43.
Munera-Campos  M , Plana-Pla  A , Rivera  N , Boada  A , Ferrándiz  C .  Nivolumab-induced bullous pemphigoid managed without drug withdrawal.   Indian J Dermatol. 2020;65(3):214-216. doi:10.4103/ijd.IJD_321_18PubMedGoogle ScholarCrossref
44.
Virgen  CA , Nguyen  TA , Di Raimondo  C ,  et al.  Bullous pemphigoid associated with cemiplimab therapy in a patient with locally advanced cutaneous squamous cell carcinoma.   JAAD Case Rep. 2020;6(3):195-197. doi:10.1016/j.jdcr.2020.01.008PubMedGoogle ScholarCrossref
45.
Chia  PL , John  T .  Severe psoriasis flare after anti-programmed death ligand 1 (PD-L1) therapy for metastatic non–small cell lung cancer (NSCLC).   J Immunother. 2016;39(5):202-204. doi:10.1097/CJI.0000000000000121PubMedGoogle ScholarCrossref
46.
Coleman  E , Panse  G , Haldas  J , Gettinger  SN , Leventhal  JS .  Pityriasis rubra pilaris-like erythroderma in the setting of pembrolizumab therapy responsive to acitretin.   JAAD Case Rep. 2018;4(7):669-671. doi:10.1016/j.jdcr.2018.06.022PubMedGoogle ScholarCrossref
47.
De Bock  M , Hulstaert  E , Kruse  V , Brochez  L .  Psoriasis vulgaris exacerbation during treatment with a PD-1 checkpoint inhibitor: case report and literature review.   Case Rep Dermatol. 2018;10(2):190-197. doi:10.1159/000491572PubMedGoogle ScholarCrossref
48.
Monsour  EP , Pothen  J , Balaraman  R .  A novel approach to the treatment of pembrolizumab-induced psoriasis exacerbation: a case report.   Cureus. 2019;11(10):e5824. doi:10.7759/cureus.5824PubMedGoogle Scholar
49.
C Guven  D , Kilickap  S , Guner  G , Taban  H , Dizdar  O ; D CG.  Development of de novo psoriasis during nivolumab therapy in a patient with small cell lung cancer.   J Oncol Pharm Pract. 2020;26(1):256-258. doi:10.1177/1078155219877234PubMedGoogle ScholarCrossref
50.
Bonigen  J , Raynaud-Donzel  C , Hureaux  J ,  et al; Groupe de Recherche sur le Psoriasis and the Groupe Cancérologie Cutanée of the Société Française de Dermatologie the GEM Resopso, Apsoderm and the Groupe Français de Pneumo-Cancérologie.  Anti-PD1-induced psoriasis: a study of 21 patients.   J Eur Acad Dermatol Venereol. 2017;31(5):e254-e257. doi:10.1111/jdv.14011PubMedGoogle ScholarCrossref
51.
Ohtsuka  M , Miura  T , Mori  T , Ishikawa  M , Yamamoto  T .  Occurrence of psoriasiform eruption during nivolumab therapy for primary oral mucosal melanoma.   JAMA Dermatol. 2015;151(7):797-799. doi:10.1001/jamadermatol.2015.0249PubMedGoogle ScholarCrossref
52.
Kato  Y , Otsuka  A , Miyachi  Y , Kabashima  K .  Exacerbation of psoriasis vulgaris during nivolumab for oral mucosal melanoma.   J Eur Acad Dermatol Venereol. 2016;30(10):e89-e91. doi:10.1111/jdv.13336PubMedGoogle ScholarCrossref
53.
Ruiz-Bañobre  J , Abdulkader  I , Anido  U , León  L , López-López  R , García-González  J .  Development of de novo psoriasis during nivolumab therapy for metastatic renal cell carcinoma: immunohistochemical analyses and clinical outcome.   APMIS. 2017;125(3):259-263. doi:10.1111/apm.12658PubMedGoogle ScholarCrossref
54.
Matsumura  N , Ohtsuka  M , Kikuchi  N , Yamamoto  T .  Exacerbation of psoriasis during nivolumab therapy for metastatic melanoma.   Acta Derm Venereol. 2016;96(2):259-260. doi:10.2340/00015555-2212PubMedGoogle ScholarCrossref
55.
Totonchy  MB , Ezaldein  HH , Ko  CJ , Choi  JN .  Inverse psoriasiform eruption during pembrolizumab therapy for metastatic melanoma.   JAMA Dermatol. 2016;152(5):590-592. doi:10.1001/jamadermatol.2015.5210PubMedGoogle ScholarCrossref
56.
Sanlorenzo  M , Vujic  I , Daud  A ,  et al.  Pembrolizumab cutaneous adverse events and their association with disease progression.   JAMA Dermatol. 2015;151(11):1206-1212. doi:10.1001/jamadermatol.2015.1916PubMedGoogle ScholarCrossref
57.
Yamamoto  T .  Anti-programmed cell death-1–induced plaque and guttate psoriasis.   Indian J Dermatol. 2018;63(1):88-89. doi:10.4103/ijd.IJD_46_17PubMedGoogle ScholarCrossref
58.
Phadke  SD , Ghabour  R , Swick  BL , Swenson  A , Milhem  M , Zakharia  Y .  Pembrolizumab therapy triggering an exacerbation of preexisting autoimmune disease: a report of 2 patient cases.   J Investig Med High Impact Case Rep. 2016;4(4):2324709616674316. doi:10.1177/2324709616674316PubMedGoogle Scholar
59.
Voudouri  D , Nikolaou  V , Laschos  K ,  et al.  Anti-PD1/PDL1 induced psoriasis.   Curr Probl Cancer. 2017;41(6):407-412. doi:10.1016/j.currproblcancer.2017.10.003PubMedGoogle ScholarCrossref
60.
Murata  S , Kaneko  S , Harada  Y , Aoi  N , Morita  E .  Case of de novo psoriasis possibly triggered by nivolumab.   J Dermatol. 2017;44(1):99-100. doi:10.1111/1346-8138.13450PubMedGoogle ScholarCrossref
61.
Law-Ping-Man  S , Martin  A , Briens  E , Tisseau  L , Safa  G .  Psoriasis and psoriatic arthritis induced by nivolumab in a patient with advanced lung cancer.   Rheumatology (Oxford). 2016;55(11):2087-2089. doi:10.1093/rheumatology/kew281PubMedGoogle ScholarCrossref
62.
Nayar  N , Briscoe  K , Fernandez Penas  P .  Toxic epidermal necrolysis-like reaction with severe satellite cell necrosis associated with nivolumab in a patient with ipilimumab refractory metastatic melanoma.   J Immunother. 2016;39(3):149-152. doi:10.1097/CJI.0000000000000112PubMedGoogle ScholarCrossref
63.
Vivar  KL , Deschaine  M , Messina  J ,  et al.  Epidermal programmed cell death-ligand 1 expression in TEN associated with nivolumab therapy.   J Cutan Pathol. 2017;44(4):381-384. doi:10.1111/cup.12876PubMedGoogle ScholarCrossref
64.
Utsunomiya  A , Oyama  N , Iino  S ,  et al.  A case of erythema multiforme major developed after sequential use of two immune checkpoint inhibitors, nivolumab and ipilimumab, for advanced melanoma: possible implication of synergistic and/or complementary immunomodulatory effects.   Case Rep Dermatol. 2018;10(1):1-6. doi:10.1159/000485910PubMedGoogle ScholarCrossref
65.
Dasanu  CA .  Late-onset Stevens-Johnson syndrome due to nivolumab use for hepatocellular carcinoma.   J Oncol Pharm Pract. 2019;25(8):2052-2055. doi:10.1177/1078155219830166PubMedGoogle ScholarCrossref
66.
Cai  ZR , Lecours  J , Adam  JP ,  et al.  Toxic epidermal necrolysis associated with pembrolizumab.   J Oncol Pharm Pract. 2020;26(5):1259-1265. doi:10.1177/1078155219890659PubMedGoogle ScholarCrossref
67.
Saw  S , Lee  HY , Ng  QS .  Pembrolizumab-induced Stevens-Johnson syndrome in non-melanoma patients.   Eur J Cancer. 2017;81:237-239. doi:10.1016/j.ejca.2017.03.026PubMedGoogle ScholarCrossref
68.
Demirtas  S , El Aridi  L , Acquitter  M , Fleuret  C , Plantin  P .  [Toxic epidermal necrolysis due to anti-PD1 treatment with fatal outcome].   Ann Dermatol Venereol. 2017;144(1):65-66. doi:10.1016/j.annder.2016.11.012PubMedGoogle ScholarCrossref
69.
Haratake  N , Tagawa  T , Hirai  F , Toyokawa  G , Miyazaki  R , Maehara  Y .  Stevens-Johnson syndrome induced by pembrolizumab in a lung cancer patient.   J Thorac Oncol. 2018;13(11):1798-1799. doi:10.1016/j.jtho.2018.05.031PubMedGoogle ScholarCrossref
70.
Hwang  A , Iskandar  A , Dasanu  CA .  Stevens-Johnson syndrome manifesting late in the course of pembrolizumab therapy.   J Oncol Pharm Pract. 2019;25(6):1520-1522. doi:10.1177/1078155218791314PubMedGoogle ScholarCrossref
71.
Griffin  LL , Cove-Smith  L , Alachkar  H , Radford  JA , Brooke  R , Linton  KM .  Toxic epidermal necrolysis (TEN) associated with the use of nivolumab (PD-1 inhibitor) for lymphoma.   JAAD Case Rep. 2018;4(3):229-231. doi:10.1016/j.jdcr.2017.09.028PubMedGoogle ScholarCrossref
72.
Salati  M , Pifferi  M , Baldessari  C ,  et al.  Stevens-Johnson syndrome during nivolumab treatment of NSCLC.   Ann Oncol. 2018;29(1):283-284. doi:10.1093/annonc/mdx640PubMedGoogle ScholarCrossref
73.
Rouyer  L , Bursztejn  AC , Charbit  L , Schmutz  JL , Moawad  S .  Stevens-Johnson syndrome associated with radiation recall dermatitis in a patient treated with nivolumab.   Eur J Dermatol. 2018;28(3):380-381. doi:10.1684/ejd.2018.3295PubMedGoogle Scholar
74.
Shah  KM , Rancour  EA , Al-Omari  A , Rahnama-Moghadam  S .  Striking enhancement at the site of radiation for nivolumab-induced Stevens-Johnson syndrome.   Dermatol Online J. 2018;24(6):13030/qt97g3t63v. doi:10.5070/D3246040713PubMedGoogle Scholar
75.
Chirasuthat  P , Chayavichitsilp  P .  Atezolizumab-induced Stevens-Johnson syndrome in a patient with non–small cell lung carcinoma.   Case Rep Dermatol. 2018;10(2):198-202. doi:10.1159/000492172PubMedGoogle ScholarCrossref
AMA CME Accreditation Information

Credit Designation Statement: The American Medical Association designates this Journal-based CME activity activity for a maximum of 1.00  AMA PRA Category 1 Credit(s)™. Physicians should claim only the credit commensurate with the extent of their participation in the activity.

Successful completion of this CME activity, which includes participation in the evaluation component, enables the participant to earn up to:

  • 1.00 Medical Knowledge MOC points in the American Board of Internal Medicine's (ABIM) Maintenance of Certification (MOC) program;;
  • 1.00 Self-Assessment points in the American Board of Otolaryngology – Head and Neck Surgery’s (ABOHNS) Continuing Certification program;
  • 1.00 MOC points in the American Board of Pediatrics’ (ABP) Maintenance of Certification (MOC) program;
  • 1.00 Lifelong Learning points in the American Board of Pathology’s (ABPath) Continuing Certification program; and
  • 1.00 CME points in the American Board of Surgery’s (ABS) Continuing Certification program

It is the CME activity provider's responsibility to submit participant completion information to ACCME for the purpose of granting MOC credit.

Close
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
Close
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close

Name Your Search

Save Search
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Close
Close

Lookup An Activity

or

My Saved Searches

You currently have no searches saved.

Close

My Saved Courses

You currently have no courses saved.

Close