[Skip to Content]
[Skip to Content Landing]

Association of Smoking, Alcohol Consumption, Blood Pressure, Body Mass Index, and Glycemic Risk Factors With Age-Related Macular DegenerationA Mendelian Randomization Study

Educational Objective
To assess whether smoking, alcohol consumption, blood pressure, body mass index, and glycemic traits are associated with increased risk of advanced age-related macular degeneration (AMD).
1 Credit CME
Key Points

Question  Are smoking, alcohol intake, blood pressure, body mass index, and glycemic traits associated with age-related macular degeneration (AMD)?

Findings  In this mendelian randomization study, genetically predicted smoking initiation and lifetime smoking were associated with elevated risk of advanced AMD, genetically predicted smoking cessation was associated with decreased risk of advanced AMD, and genetically predicted alcohol intake was associated with increased risk of geographic atrophy.

Meaning  These findings support a potential causal association of alcohol consumption with an increased risk of geographic atrophy, smoking initiation and lifetime smoking with an increased risk of advanced AMD, and smoking cessation with a decreased risk of advanced AMD.

Abstract

Importance  Advanced age-related macular degeneration (AMD) is a leading cause of blindness in Western countries. Causal, modifiable risk factors need to be identified to develop preventive measures for advanced AMD.

Objective  To assess whether smoking, alcohol consumption, blood pressure, body mass index, and glycemic traits are associated with increased risk of advanced AMD.

Design, Setting, Participants  This study used 2-sample mendelian randomization. Genetic instruments composed of variants associated with risk factors at genome-wide significance (P < 5 × 10−8) were obtained from published genome-wide association studies. Summary-level statistics for these instruments were obtained for advanced AMD from the International AMD Genomics Consortium 2016 data set, which consisted of 16 144 individuals with AMD and 17 832 control individuals. Data were analyzed from July 2020 to September 2021.

Exposures  Smoking initiation, smoking cessation, lifetime smoking, age at smoking initiation, alcoholic drinks per week, body mass index, systolic and diastolic blood pressure, type 2 diabetes, glycated hemoglobin, fasting glucose, and fasting insulin.

Main Outcomes and Measures  Advanced AMD and its subtypes, geographic atrophy (GA), and neovascular AMD.

Results  A 1-SD increase in logodds of genetically predicted smoking initiation was associated with higher risk of advanced AMD (odds ratio [OR], 1.26; 95% CI, 1.13-1.40; P < .001), while a 1-SD increase in logodds of genetically predicted smoking cessation (former vs current smoking) was associated with lower risk of advanced AMD (OR, 0.66; 95% CI, 0.50-0.87; P = .003). Genetically predicted increased lifetime smoking was associated with increased risk of advanced AMD (OR per 1-SD increase in lifetime smoking behavior, 1.32; 95% CI, 1.09-1.59; P = .004). Genetically predicted alcohol consumption was associated with higher risk of GA (OR per 1-SD increase of log-transformed alcoholic drinks per week, 2.70; 95% CI, 1.48-4.94; P = .001). There was insufficient evidence to suggest that genetically predicted blood pressure, body mass index, and glycemic traits were associated with advanced AMD.

Conclusions and Relevance  This study provides genetic evidence that increased alcohol intake may be a causal risk factor for GA. As there are currently no known treatments for GA, this finding has important public health implications. These results also support previous observational studies associating smoking behavior with risk of advanced AMD, thus reinforcing existing public health messages regarding the risk of blindness associated with smoking.

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 Credit(s)™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

CME Disclosure Statement: Unless noted, all individuals in control of content reported no relevant financial relationships. If applicable, all relevant financial relationships have been mitigated.

Article Information

Accepted for Publication: September 20, 2021.

Published Online: November 4, 2021. doi:10.1001/jamaophthalmol.2021.4601

Open Access: This is an open access article distributed under the terms of the CC-BY License. © 2021 Kuan V et al. JAMA Ophthalmology.

Corresponding Author: Valerie Kuan, PhD, Institute of Health Informatics, University College London, 222 Euston Rd, London NW1 2DA, United Kingdom (v.kuan@ucl.ac.uk).

Author Contributions: Dr Kuan had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: Kuan, Hingorani, Tufail, Sofat.

Acquisition, analysis, or interpretation of data: Kuan, Warwick, Tufail, Cipriani, Burgess, Sofat.

Drafting of the manuscript: Kuan, Warwick.

Critical revision of the manuscript for important intellectual content: Kuan, Hingorani, Tufail, Cipriani, Burgess, Sofat.

Statistical analysis: Kuan, Warwick, Cipriani, Burgess.

Obtained funding: Cipriani, Sofat.

Administrative, technical, or material support: Kuan, Tufail.

Supervision: Hingorani, Tufail, Sofat.

Conflict of Interest Disclosures: Dr Kuan reports grants from Dunhill Medical Trust. Dr Tufail reports personal fees from Apellis, Bayer, Genentech/Roche, IVERIC Bio, and Heidelberg Engineering, and personal fees and grants from Novartis. No other disclosures were reported.

Funding/Support: Dr Kuan is funded by the Dunhill Medical Trust (RPGF1806\67). Dr Warwick is supported by the Wellcome Trust (220558/Z/20/Z). Dr Hingorani is supported by a BHF Research Accelerator Award (AA/18/6/34223). Dr Tufail is supported by the National Institute for Health Research to Moorfields Eye Hospital and the Biomedical Research Centre for Ophthalmology. Dr Burgess is supported by Sir Henry Dale Fellowship, jointly funded by the Wellcome Trust and the Royal Society (204623/Z/16/Z) Dr Sofat is supported by the National Institute for Health Research, University College London Hospitals Biomedical Research Centre. This research was supported by the NIHR Cambridge Biomedical Research Centre (BRC-1215-20014).

Role of the Funder/Sponsor: The funders had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; or decision to submit the manuscript for publication.

The International AMD Genomics Consortium (IAMDGC): The group members are listed in Supplement 2.

Disclaimer: The views expressed are those of the authors and not necessarily those of the National Institute for Health Research or the Department of Health and Social Care.

References
1.
Li  JQ , Welchowski  T , Schmid  M , Mauschitz  MM , Holz  FG , Finger  RP .  Prevalence and incidence of age-related macular degeneration in Europe: a systematic review and meta-analysis.   Br J Ophthalmol. 2020;104(8):1077-1084. doi:10.1136/bjophthalmol-2019-314422PubMedGoogle ScholarCrossref
2.
Pennington  KL , DeAngelis  MM .  Epidemiology of age-related macular degeneration (AMD): associations with cardiovascular disease phenotypes and lipid factors.   Eye Vis (Lond). 2016;3:34. doi:10.1186/s40662-016-0063-5PubMedGoogle ScholarCrossref
3.
Mitchell  P , Liew  G , Gopinath  B , Wong  TY .  Age-related macular degeneration.   Lancet. 2018;392(10153):1147-1159. doi:10.1016/S0140-6736(18)31550-2PubMedGoogle ScholarCrossref
4.
Wong  WL , Su  X , Li  X ,  et al.  Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis.   Lancet Glob Health. 2014;2(2):e106-e116. doi:10.1016/S2214-109X(13)70145-1PubMedGoogle ScholarCrossref
5.
Resnikoff  S , Pascolini  D , Etya’ale  D ,  et al.  Global data on visual impairment in the year 2002.   Bull World Health Organ. 2004;82(11):844-851.PubMedGoogle Scholar
6.
Ferris  FL  III , Wilkinson  CP , Bird  A ,  et al; Beckman Initiative for Macular Research Classification Committee.  Clinical classification of age-related macular degeneration.   Ophthalmology. 2013;120(4):844-851. doi:10.1016/j.ophtha.2012.10.036PubMedGoogle ScholarCrossref
7.
Finger  RP , Daien  V , Eldem  BM ,  et al.  Anti-vascular endothelial growth factor in neovascular age-related macular degeneration—a systematic review of the impact of anti-VEGF on patient outcomes and healthcare systems.   BMC Ophthalmol. 2020;20(1):294. doi:10.1186/s12886-020-01554-2PubMedGoogle ScholarCrossref
8.
Rofagha  S , Bhisitkul  RB , Boyer  DS , Sadda  SR , Zhang  K ; SEVEN-UP Study Group.  Seven-year outcomes in ranibizumab-treated patients in ANCHOR, MARINA, and HORIZON: a multicenter cohort study (SEVEN-UP).   Ophthalmology. 2013;120(11):2292-2299. doi:10.1016/j.ophtha.2013.03.046PubMedGoogle ScholarCrossref
9.
Lanzetta  P , Loewenstein  A ; Vision Academy Steering Committee.  Fundamental principles of an anti-VEGF treatment regimen: optimal application of intravitreal anti-vascular endothelial growth factor therapy of macular diseases.   Graefes Arch Clin Exp Ophthalmol. 2017;255(7):1259-1273. doi:10.1007/s00417-017-3647-4PubMedGoogle ScholarCrossref
10.
Smith  W , Assink  J , Klein  R ,  et al.  Risk factors for age-related macular degeneration: pooled findings from three continents.   Ophthalmology. 2001;108(4):697-704. doi:10.1016/S0161-6420(00)00580-7PubMedGoogle ScholarCrossref
11.
Mitchell  P , Wang  JJ , Smith  W , Leeder  SR .  Smoking and the 5-year incidence of age-related maculopathy: the Blue Mountains Eye Study.   Arch Ophthalmol. 2002;120(10):1357-1363. doi:10.1001/archopht.120.10.1357PubMedGoogle ScholarCrossref
12.
Lambert  NG , ElShelmani  H , Singh  MK ,  et al.  Risk factors and biomarkers of age-related macular degeneration.   Prog Retin Eye Res. 2016;54:64-102. doi:10.1016/j.preteyeres.2016.04.003PubMedGoogle ScholarCrossref
13.
Adams  MK , Chong  EW , Williamson  E ,  et al.  20/20—Alcohol and age-related macular degeneration: the Melbourne Collaborative Cohort Study.   Am J Epidemiol. 2012;176(4):289-298. doi:10.1093/aje/kws004PubMedGoogle ScholarCrossref
14.
Boekhoorn  SS , Vingerling  JR , Hofman  A , de Jong  PT .  Alcohol consumption and risk of aging macula disorder in a general population: the Rotterdam Study.   Arch Ophthalmol. 2008;126(6):834-839. doi:10.1001/archopht.126.6.834PubMedGoogle ScholarCrossref
15.
Fraser-Bell  S , Wu  J , Klein  R , Azen  SP , Varma  R .  Smoking, alcohol intake, estrogen use, and age-related macular degeneration in Latinos: the Los Angeles Latino Eye Study.   Am J Ophthalmol. 2006;141(1):79-87. doi:10.1016/j.ajo.2005.08.024PubMedGoogle ScholarCrossref
16.
Knudtson  MD , Klein  R , Klein  BE .  Alcohol consumption and the 15-year cumulative incidence of age-related macular degeneration.   Am J Ophthalmol. 2007;143(6):1026-1029. doi:10.1016/j.ajo.2007.01.036PubMedGoogle ScholarCrossref
17.
Zhang  QY , Tie  LJ , Wu  SS ,  et al.  Overweight, obesity, and risk of age-related macular degeneration.   Invest Ophthalmol Vis Sci. 2016;57(3):1276-1283. doi:10.1167/iovs.15-18637PubMedGoogle ScholarCrossref
18.
Howard  KP , Klein  BE , Lee  KE , Klein  R .  Measures of body shape and adiposity as related to incidence of age-related eye diseases: observations from the Beaver Dam Eye Study.   Invest Ophthalmol Vis Sci. 2014;55(4):2592-2598. doi:10.1167/iovs.15-18637Google ScholarCrossref
19.
Chakravarthy  U , Wong  TY , Fletcher  A ,  et al.  Clinical risk factors for age-related macular degeneration: a systematic review and meta-analysis.   BMC Ophthalmol. 2010;10:31. doi:10.1186/1471-2415-10-31PubMedGoogle ScholarCrossref
20.
Katsi  VK , Marketou  ME , Vrachatis  DA ,  et al.  Essential hypertension in the pathogenesis of age-related macular degeneration: a review of the current evidence.   J Hypertens. 2015;33(12):2382-2388. doi:10.1097/HJH.0000000000000766PubMedGoogle ScholarCrossref
21.
Ghaem Maralani  H , Tai  BC , Wong  TY ,  et al.  Metabolic syndrome and risk of age-related macular degeneration.   Retina. 2015;35(3):459-466. doi:10.1097/IAE.0000000000000338PubMedGoogle ScholarCrossref
22.
Cougnard-Grégoire  A , Delyfer  MN , Korobelnik  JF ,  et al.  Long-term blood pressure and age-related macular degeneration: the ALIENOR study.   Invest Ophthalmol Vis Sci. 2013;54(3):1905-1912. doi:10.1167/iovs.12-10192PubMedGoogle ScholarCrossref
23.
Chakravarthy  U , Bailey  CC , Scanlon  PH ,  et al.  Progression from early/intermediate to advanced forms of age-related macular degeneration in a large UK cohort: rates and risk factors.   Ophthalmol Retina. 2020;4(7):662-672. doi:10.1016/j.oret.2020.01.012PubMedGoogle ScholarCrossref
24.
Bikbov  MM , Zainullin  RM , Gilmanshin  TR ,  et al.  Prevalence and associated factors of age-related macular degeneration in a Russian population: the Ural Eye and Medical Study.   Am J Ophthalmol. 2020;210:146-157. doi:10.1016/j.ajo.2019.10.004PubMedGoogle ScholarCrossref
25.
Chen  X , Rong  SS , Xu  Q ,  et al.  Diabetes mellitus and risk of age-related macular degeneration: a systematic review and meta-analysis.   PLoS One. 2014;9(9):e108196. doi:10.1371/journal.pone.0108196PubMedGoogle Scholar
26.
Heesterbeek  TJ , Lorés-Motta  L , Hoyng  CB , Lechanteur  YTE , den Hollander  AI .  Risk factors for progression of age-related macular degeneration.   Ophthalmic Physiol Opt. 2020;40(2):140-170. doi:10.1111/opo.12675PubMedGoogle ScholarCrossref
27.
Colijn  JM , den Hollander  AI , Demirkan  A ,  et al; European Eye Epidemiology Consortium; EYE-RISK Consortium.  Increased high-density lipoprotein levels associated with age-related macular degeneration: evidence from the EYE-RISK and European Eye Epidemiology Consortia.   Ophthalmology. 2019;126(3):393-406. doi:10.1016/j.ophtha.2018.09.045PubMedGoogle ScholarCrossref
28.
Age-Related Eye Disease Study Research Group.  A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss: AREDS report no. 8.   Arch Ophthalmol. 2001;119(10):1417-1436. doi:10.1001/archopht.119.10.1417PubMedGoogle ScholarCrossref
29.
Age-Related Eye Disease Study 2 Research Group.  Lutein + zeaxanthin and omega-3 fatty acids for age-related macular degeneration: the Age-Related Eye Disease Study 2 (AREDS2) randomized clinical trial.   JAMA. 2013;309(19):2005-2015. doi:10.1001/jama.2013.4997PubMedGoogle ScholarCrossref
30.
Chew  EY , Clemons  TE , Sangiovanni  JP ,  et al; Age-Related Eye Disease Study 2 (AREDS2) Research Group.  Secondary analyses of the effects of lutein/zeaxanthin on age-related macular degeneration progression: AREDS2 report no. 3.   JAMA Ophthalmol. 2014;132(2):142-149. doi:10.1001/jamaophthalmol.2013.7376PubMedGoogle Scholar
31.
Smith  GD , Timpson  N , Ebrahim  S .  Strengthening causal inference in cardiovascular epidemiology through mendelian randomization.   Ann Med. 2008;40(7):524-541. doi:10.1080/07853890802010709PubMedGoogle ScholarCrossref
32.
Hingorani  A , Humphries  S .  Nature’s randomised trials.   Lancet. 2005;366(9501):1906-1908. doi:10.1016/S0140-6736(05)67767-7PubMedGoogle ScholarCrossref
33.
Burgess  S , Davey Smith  G .  Mendelian randomization implicates high-density lipoprotein cholesterol-associated mechanisms in etiology of age-related macular degeneration.   Ophthalmology. 2017;124(8):1165-1174. doi:10.1016/j.ophtha.2017.03.042PubMedGoogle ScholarCrossref
34.
Fan  Q , Maranville  JC , Fritsche  L ,  et al.  HDL-cholesterol levels and risk of age-related macular degeneration: a multiethnic genetic study using mendelian randomization.   Int J Epidemiol. 2017;46(6):1891-1902. doi:10.1093/ije/dyx189PubMedGoogle ScholarCrossref
35.
Fritsche  LG , Igl  W , Bailey  JN ,  et al.  A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants.   Nat Genet. 2016;48(2):134-143. doi:10.1038/ng.3448PubMedGoogle ScholarCrossref
36.
Bowden  J , Davey Smith  G , Haycock  PC , Burgess  S .  Consistent estimation in mendelian randomization with some invalid instruments using a weighted median estimator.   Genet Epidemiol. 2016;40(4):304-314. doi:10.1002/gepi.21965PubMedGoogle ScholarCrossref
37.
Bowden  J , Davey Smith  G , Burgess  S .  Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression.   Int J Epidemiol. 2015;44(2):512-525. doi:10.1093/ije/dyv080PubMedGoogle ScholarCrossref
38.
Verbanck  M , Chen  CY , Neale  B , Do  R .  Detection of widespread horizontal pleiotropy in causal relationships inferred from mendelian randomization between complex traits and diseases.   Nat Genet. 2018;50(5):693-698. doi:10.1038/s41588-018-0099-7PubMedGoogle ScholarCrossref
39.
Wootton  RE , Richmond  RC , Stuijfzand  BG ,  et al.  Evidence for causal effects of lifetime smoking on risk for depression and schizophrenia: a mendelian randomisation study.   Psychol Med. 2020;50(14):2435-2443. doi:10.1017/S0033291719002678PubMedGoogle ScholarCrossref
40.
Bowden  J , Holmes  MV .  Meta-analysis and mendelian randomization: a review.   Res Synth Methods. 2019;10(4):486-496. Published online April 23, 2019. doi:10.1002/jrsm.1346PubMedGoogle ScholarCrossref
41.
Seddon  JM , Silver  RE , Kwong  M , Rosner  B .  Risk prediction for progression of macular degeneration: 10 common and rare genetic variants, demographic, environmental, and macular covariates.   Invest Ophthalmol Vis Sci. 2015;56(4):2192-2202. doi:10.1167/iovs.14-15841PubMedGoogle ScholarCrossref
42.
Wang  JJ , Rochtchina  E , Smith  W ,  et al.  Combined effects of complement factor H genotypes, fish consumption, and inflammatory markers on long-term risk for age-related macular degeneration in a cohort.   Am J Epidemiol. 2009;169(5):633-641. doi:10.1093/aje/kwn358PubMedGoogle ScholarCrossref
43.
Jonasson  F , Fisher  DE , Eiriksdottir  G ,  et al.  Five-year incidence, progression, and risk factors for age-related macular degeneration: the age, gene/environment susceptibility study.   Ophthalmology. 2014;121(9):1766-1772. doi:10.1016/j.ophtha.2014.03.013PubMedGoogle ScholarCrossref
44.
Vingerling  JR , Hofman  A , Grobbee  DE , de Jong  PT .  Age-related macular degeneration and smoking. the Rotterdam Study.   Arch Ophthalmol. 1996;114(10):1193-1196. doi:10.1001/archopht.1996.01100140393005PubMedGoogle ScholarCrossref
45.
Khandhadia  S , Lotery  A .  Oxidation and age-related macular degeneration: insights from molecular biology.   Expert Rev Mol Med. 2010;12:e34. doi:10.1017/S146239941000164XPubMedGoogle Scholar
46.
Alberg  A .  The influence of cigarette smoking on circulating concentrations of antioxidant micronutrients.   Toxicology. 2002;180(2):121-137. doi:10.1016/S0300-483X(02)00386-4PubMedGoogle ScholarCrossref
47.
Chang  MA , Bressler  SB , Munoz  B , West  SK .  Racial differences and other risk factors for incidence and progression of age-related macular degeneration: Salisbury Eye Evaluation (SEE) project.   Invest Ophthalmol Vis Sci. 2008;49(6):2395-2402. doi:10.1167/iovs.07-1584PubMedGoogle ScholarCrossref
48.
Khan  JC , Thurlby  DA , Shahid  H ,  et al; Genetic Factors in AMD Study.  Smoking and age related macular degeneration: the number of pack years of cigarette smoking is a major determinant of risk for both geographic atrophy and choroidal neovascularisation.   Br J Ophthalmol. 2006;90(1):75-80. doi:10.1136/bjo.2005.073643PubMedGoogle ScholarCrossref
49.
Thornton  J , Edwards  R , Mitchell  P , Harrison  RA , Buchan  I , Kelly  SP .  Smoking and age-related macular degeneration: a review of association.   Eye (Lond). 2005;19(9):935-944. doi:10.1038/sj.eye.6701978PubMedGoogle ScholarCrossref
50.
Ciulla  TA , Harris  A , Martin  BJ .  Ocular perfusion and age-related macular degeneration.   Acta Ophthalmol Scand. 2001;79(2):108-115. doi:10.1034/j.1600-0420.2001.079002108.xPubMedGoogle ScholarCrossref
51.
Suñer  IJ , Espinosa-Heidmann  DG , Marin-Castano  ME , Hernandez  EP , Pereira-Simon  S , Cousins  SW .  Nicotine increases size and severity of experimental choroidal neovascularization.   Invest Ophthalmol Vis Sci. 2004;45(1):311-317. doi:10.1167/iovs.03-0733PubMedGoogle ScholarCrossref
52.
Akishima  S , Matsushita  S , Sato  F ,  et al.  Cigarette-smoke-induced vasoconstriction of peripheral arteries: evaluation by synchrotron radiation microangiography.   Circ J. 2007;71(3):418-422. doi:10.1253/circj.71.418PubMedGoogle ScholarCrossref
53.
Aiello  LP , Northrup  JM , Keyt  BA , Takagi  H , Iwamoto  MA .  Hypoxic regulation of vascular endothelial growth factor in retinal cells.   Arch Ophthalmol. 1995;113(12):1538-1544. doi:10.1001/archopht.1995.01100120068012PubMedGoogle ScholarCrossref
54.
Kunchithapautham  K , Atkinson  C , Rohrer  B .  Smoke exposure causes endoplasmic reticulum stress and lipid accumulation in retinal pigment epithelium through oxidative stress and complement activation.   J Biol Chem. 2014;289(21):14534-14546. doi:10.1074/jbc.M114.564674PubMedGoogle ScholarCrossref
55.
Wang  L , Kondo  N , Cano  M ,  et al.  Nrf2 signaling modulates cigarette smoke-induced complement activation in retinal pigmented epithelial cells.   Free Radic Biol Med. 2014;70:155-166. doi:10.1016/j.freeradbiomed.2014.01.015PubMedGoogle ScholarCrossref
56.
Gibson  J , Hakobyan  S , Cree  AJ ,  et al.  Variation in complement component C1 inhibitor in age-related macular degeneration.   Immunobiology. 2012;217(2):251-255. doi:10.1016/j.imbio.2011.07.015PubMedGoogle ScholarCrossref
57.
Bird  AC .  Therapeutic targets in age-related macular disease.   J Clin Invest. 2010;120(9):3033-3041. doi:10.1172/JCI42437PubMedGoogle ScholarCrossref
58.
Ambati  J , Atkinson  JP , Gelfand  BD .  Immunology of age-related macular degeneration.   Nat Rev Immunol. 2013;13(6):438-451. doi:10.1038/nri3459PubMedGoogle ScholarCrossref
59.
Chong  EW , Kreis  AJ , Wong  TY , Simpson  JA , Guymer  RH .  Alcohol consumption and the risk of age-related macular degeneration: a systematic review and meta-analysis.   Am J Ophthalmol. 2008;145(4):707-715. doi:10.1016/j.ajo.2007.12.005PubMedGoogle ScholarCrossref
60.
Dinu  M , Pagliai  G , Casini  A , Sofi  F .  Food groups and risk of age-related macular degeneration: a systematic review with meta-analysis.   Eur J Nutr. 2019;58(5):2123-2143. doi:10.1007/s00394-018-1771-5PubMedGoogle ScholarCrossref
61.
Obisesan  TO , Hirsch  R , Kosoko  O , Carlson  L , Parrott  M .  Moderate wine consumption is associated with decreased odds of developing age-related macular degeneration in NHANES-1.   J Am Geriatr Soc. 1998;46(1):1-7. doi:10.1111/j.1532-5415.1998.tb01005.xPubMedGoogle ScholarCrossref
62.
Das  SK , Vasudevan  DM .  Alcohol-induced oxidative stress.   Life Sci. 2007;81(3):177-187. doi:10.1016/j.lfs.2007.05.005PubMedGoogle ScholarCrossref
63.
Cederbaum  AI .  Role of lipid peroxidation and oxidative stress in alcohol toxicity .  Free Radic Biol Med. 1989;7(5):537-539. doi:10.1016/0891-5849(89)90029-4PubMedGoogle ScholarCrossref
64.
Klein  R , Myers  CE , Klein  BE .  Vasodilators, blood pressure-lowering medications, and age-related macular degeneration: the Beaver Dam Eye Study.   Ophthalmology. 2014;121(8):1604-1611. doi:10.1016/j.ophtha.2014.03.005PubMedGoogle ScholarCrossref
65.
Cummings  M , Cunha-Vaz  J .  Treatment of neovascular age-related macular degeneration in patients with diabetes.   Clin Ophthalmol. 2008;2(2):369-375. doi:10.2147/OPTH.S2560PubMedGoogle Scholar
66.
Sander  B , Larsen  M , Moldow  B , Lund-Andersen  H .  Diabetic macular edema: passive and active transport of fluorescein through the blood-retina barrier.   Invest Ophthalmol Vis Sci. 2001;42(2):433-438.PubMedGoogle Scholar
67.
Burgess  S , Scott  RA , Timpson  NJ , Davey Smith  G , Thompson  SG ; EPIC- InterAct Consortium.  Using published data in mendelian randomization: a blueprint for efficient identification of causal risk factors.   Eur J Epidemiol. 2015;30(7):543-552. doi:10.1007/s10654-015-0011-zPubMedGoogle ScholarCrossref
68.
Lawlor  DA .  Commentary: two-sample mendelian randomization: opportunities and challenges.   Int J Epidemiol. 2016;45(3):908-915. doi:10.1093/ije/dyw127PubMedGoogle ScholarCrossref
69.
Burgess  S , Davey Smith  G , Davies  NM ,  et al.  Guidelines for performing mendelian randomization investigations.   Wellcome Open Res. 2020;4:186. doi:10.12688/wellcomeopenres.15555.2PubMedGoogle ScholarCrossref
70.
Didelez  V , Sheehan  N .  Mendelian randomization as an instrumental variable approach to causal inference.   Stat Methods Med Res. 2007;16(4):309-330. doi:10.1177/0962280206077743PubMedGoogle ScholarCrossref
71.
VanderWeele  TJ , Tchetgen Tchetgen  EJ , Cornelis  M , Kraft  P .  Methodological challenges in mendelian randomization.   Epidemiology. 2014;25(3):427-435. doi:10.1097/EDE.0000000000000081PubMedGoogle ScholarCrossref
72.
Davies  NM , Holmes  MV , Davey Smith  G .  Reading mendelian randomisation studies: a guide, glossary, and checklist for clinicians.   BMJ. 2018;362:k601. doi:10.1136/bmj.k601PubMedGoogle Scholar
73.
Burgess  S , Bowden  J , Fall  T , Ingelsson  E , Thompson  SG .  Sensitivity analyses for robust causal inference from mendelian randomization analyses with multiple genetic variants.   Epidemiology. 2017;28(1):30-42. doi:10.1097/EDE.0000000000000559PubMedGoogle ScholarCrossref
74.
Slob  EAW , Burgess  S .  A comparison of robust mendelian randomization methods using summary data.   Genet Epidemiol. 2020;44(4):313-329. doi:10.1002/gepi.22295PubMedGoogle ScholarCrossref
AMA CME Accreditation Information

Credit Designation Statement: The American Medical Association designates this Journal-based CME activity activity for a maximum of 1.00  AMA PRA Category 1 Credit(s)™. Physicians should claim only the credit commensurate with the extent of their participation in the activity.

Successful completion of this CME activity, which includes participation in the evaluation component, enables the participant to earn up to:

  • 1.00 Medical Knowledge MOC points in the American Board of Internal Medicine's (ABIM) Maintenance of Certification (MOC) program;;
  • 1.00 Self-Assessment points in the American Board of Otolaryngology – Head and Neck Surgery’s (ABOHNS) Continuing Certification program;
  • 1.00 MOC points in the American Board of Pediatrics’ (ABP) Maintenance of Certification (MOC) program;
  • 1.00 Lifelong Learning points in the American Board of Pathology’s (ABPath) Continuing Certification program; and
  • 1.00 credit toward the CME [and Self-Assessment requirements] of the American Board of Surgery’s Continuous Certification program

It is the CME activity provider's responsibility to submit participant completion information to ACCME for the purpose of granting MOC credit.

Close
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
Close
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close

Name Your Search

Save Search
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Close
Close

Lookup An Activity

or

My Saved Searches

You currently have no searches saved.

Close

My Saved Courses

You currently have no courses saved.

Close