[Skip to Content]
[Skip to Content Landing]

Diagnostic Test Accuracy of Ultrasonography vs Computed Tomography for Papillary Thyroid Cancer Cervical Lymph Node MetastasisA Systematic Review and Meta-analysis

Educational Objective
To compare thyroid ultrasonography vs computed tomography in the preoperative evaluation of papillary thyroid cancer.
1 Credit CME
Key Points

Question  What is the most effective preoperative imaging to detect regional metastasis in papillary thyroid cancer?

Findings  In this systematic review and meta-analysis of 31 942 individuals, no difference between ultrasonography (US) and computed tomography (CT) was found for detection of lateral compartment cervical node metastasis in individuals with papillary thyroid cancer. For detection of central compartment metastasis, CT was more sensitive, while US was more specific.

Meaning  Computed tomography in assessment of cervical lymph node metastasis for papillary thyroid cancer may be warranted, possibly as an adjunct to US; further study is necessary to refine the role of CT imaging in this clinical scenario.

Abstract

Importance  The use of ultrasonography (US) vs cross-sectional imaging for preoperative evaluation of papillary thyroid cancer is debated.

Objective  To compare thyroid US and computed tomography (CT) in the preoperative evaluation of papillary thyroid cancer for cervical lymph node metastasis (CLNM), as well as extrathyroidal disease extension.

Data Sources  MEDLINE and Embase were searched from January 1, 2000, to July 18, 2020.

Study Selection  Studies reporting on the diagnostic accuracy of US and/or CT in individuals with treatment-naive papillary thyroid cancer for CLNM and/or extrathyroidal disease extension were included. The reference standard was defined as histopathology/cytology or imaging follow-up. Independent title and abstract review (2515 studies) followed by full-text review (145 studies) was completed by multiple investigators.

Data Extraction and Synthesis  PRISMA guidelines were followed. Methodologic and diagnostic accuracy data were abstracted independently by multiple investigators. Risk of bias assessment was conducted using the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool independently and in duplicate. Bivariate random-effects model meta-analysis and multivariable meta-regression modeling was used.

Main Outcomes and Measures  Diagnostic test accuracy of US and CT of the neck for lateral and central compartment CLNM, as well as for extrathyroidal disease extension, determined prior to study commencement.

Results  A total of 47 studies encompassing 31 942 observations for thyroid cancer (12 771 with CLNM; 1747 with extrathyroidal thyroid extension) were included; 21 and 26 studies were at low and high risk for bias, respectively. Based on comparative design studies, US and CT demonstrated no significant difference in sensitivity (73% [95% CI, 64%-80%] and 77% [95% CI, 67%-85%], respectively; P = .11) or specificity (89% [95% CI, 80%-94%] and 88% [95% CI, 79%-94%], respectively; P = .79) for lateral compartment CLNM. For central compartment metastasis, sensitivity was higher in CT (39% [95% CI, 27%-52%]) vs US (28% [95% CI, 21%-36%]; P = .004), while specificity was higher in US (95% [95% CI, 92%-98%]) vs CT (87% [95% CI, 77%-93%]; P < .001). Ultrasonography demonstrated a sensitivity of 91% (95% CI, 81%-96%) and specificity of 47% (95% CI, 35%-60%) for extrathyroidal extension.

Conclusions and Relevance  The findings of this systematic review and meta-analysis suggest that further study is warranted of the role of CT for papillary thyroid cancer staging, possibly as an adjunct to US.

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 Credit(s)™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

CME Disclosure Statement: Unless noted, all individuals in control of content reported no relevant financial relationships. If applicable, all relevant financial relationships have been mitigated.

Article Information

Accepted for Publication: September 26, 2021.

Published Online: November 24, 2021. doi:10.1001/jamaoto.2021.3387

Corresponding Author: Srinivasan Harish, MBBS, Department of Radiology, McMaster University, and Department of Diagnostic Imaging, St Joseph’s Healthcare, 50 Charlton Ave E, Hamilton, ON L8N 4A6, Canada (sharish@stjoes.ca).

Author Contributions: Dr M. Alabousi had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: M. Alabousi, A. Alabousi, Young, Gupta, Harish.

Acquisition, analysis, or interpretation of data: M. Alabousi, A. Alabousi, Adham, Pozdnyakov, Ramadan, Chaudhari, Young.

Drafting of the manuscript: M. Alabousi, A. Alabousi, Adham, Ramadan, Chaudhari.

Critical revision of the manuscript for important intellectual content: M. Alabousi, A. Alabousi, Pozdnyakov, Young, Gupta, Harish.

Statistical analysis: M. Alabousi, Pozdnyakov, Ramadan, Chaudhari.

Administrative, technical, or material support: Pozdnyakov.

Supervision: A. Alabousi, Young, Gupta, Harish.

Conflict of Interest Disclosures: None reported.

References
1.
Shi  X , Liu  R , Basolo  F ,  et al.  Differential clinicopathological risk and prognosis of major papillary thyroid cancer variants.   J Clin Endocrinol Metab. 2016;101(1):264-274. doi:10.1210/jc.2015-2917 PubMedGoogle ScholarCrossref
2.
Haddad  RI , Nasr  C , Bischoff  L ,  et al.  NCCN Guidelines Insights: thyroid carcinoma, version 2.2018.   J Natl Compr Canc Netw. 2018;16(12):1429-1440. doi:10.6004/jnccn.2018.0089PubMedGoogle ScholarCrossref
3.
Yeh  MW , Bauer  AJ , Bernet  VA ,  et al; American Thyroid Association Surgical Affairs Committee Writing Task Force.  American Thyroid Association statement on preoperative imaging for thyroid cancer surgery.   Thyroid. 2015;25(1):3-14. doi:10.1089/thy.2014.0096PubMedGoogle ScholarCrossref
4.
Mitchell  AL , Gandhi  A , Scott-Coombes  D , Perros  P .  Management of thyroid cancer: United Kingdom national multidisciplinary guidelines.   J Laryngol Otol. 2016;130(S2)(suppl 2):S150-S160. doi:10.1017/S0022215116000578PubMedGoogle ScholarCrossref
5.
Haugen  BR , Alexander  EK , Bible  KC ,  et al.  2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer.   Thyroid. 2016;26(1):1-133. doi:10.1089/thy.2015.0020PubMedGoogle ScholarCrossref
6.
Bongers  PJ , Verzijl  R , Dzingala  M ,  et al.  Preoperative computed tomography changes surgical management for clinically low-risk well-differentiated thyroid cancer.   Ann Surg Oncol. 2019;26(13):4439-4444. doi:10.1245/s10434-019-07618-yPubMedGoogle ScholarCrossref
7.
Carmel-Neiderman  NN , Mizrachi  A , Yaniv  D ,  et al.  Prophylactic central neck dissection has no advantage in patients with metastatic papillary thyroid cancer to the lateral neck.   J Surg Oncol. 2021;123(2):456-461. doi:10.1002/jso.26299PubMedGoogle ScholarCrossref
8.
The Cochrane Collaboration. Cochrane handbook for systematic reviews of diagnostic test accuracy. Accessed December 1, 2018. https://methods.cochrane.org/sdt/handbook-dta-reviews
9.
McGrath  TA , Alabousi  M , Skidmore  B ,  et al.  Recommendations for reporting of systematic reviews and meta-analyses of diagnostic test accuracy: a systematic review.   Syst Rev. 2017;6(1):194. doi:10.1186/s13643-017-0590-8 PubMedGoogle ScholarCrossref
10.
McInnes  MDF , Moher  D , Thombs  BD ,  et al; and the PRISMA-DTA Group.  Preferred Reporting Items for a Systematic Review and Meta-analysis of Diagnostic Test Accuracy Studies: the PRISMA-DTA statement.   JAMA. 2018;319(4):388-396. doi:10.1001/jama.2017.19163 PubMedGoogle ScholarCrossref
11.
Moher  D , Liberati  A , Tetzlaff  J , Altman  DG ; PRISMA Group.  Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement.   Int J Surg. 2010;8(5):336-341. doi:10.1016/j.ijsu.2010.02.007 PubMedGoogle ScholarCrossref
12.
Whiting  PF , Rutjes  AWS , Westwood  ME ,  et al; QUADAS-2 Group.  QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies.   Ann Intern Med. 2011;155(8):529-536. doi:10.7326/0003-4819-155-8-201110180-00009 PubMedGoogle ScholarCrossref
13.
Reitsma  JB , Glas  AS , Rutjes  AWS , Scholten  RJPM , Bossuyt  PM , Zwinderman  AH .  Bivariate analysis of sensitivity and specificity produces informative summary measures in diagnostic reviews.   J Clin Epidemiol. 2005;58(10):982-990. doi:10.1016/j.jclinepi.2005.02.022 PubMedGoogle ScholarCrossref
14.
McGrath  TA , McInnes  MDF , Langer  FW , Hong  J , Korevaar  DA , Bossuyt  PMM .  Treatment of multiple test readers in diagnostic accuracy systematic reviews-meta-analyses of imaging studies.   Eur J Radiol. 2017;93:59-64. doi:10.1016/j.ejrad.2017.05.032 PubMedGoogle ScholarCrossref
15.
Dwamena  B . MIDAS: Stata module for meta-analytical integration of diagnostic test accuracy studies. 2009. https://econpapers.repec.org/software/bocbocode/s456880.htm
16.
Harbord  RM , Whiting  P .  Metandi: meta-analysis of diagnostic accuracy using hierarchical logistic regression.   Stata J. 2009;9(2):211-229. doi:10.1177/1536867X0900900203Google ScholarCrossref
17.
Vogelgesang  F , Schlattmann  P , Dewey  M .  The evaluation of bivariate mixed models in meta-analyses of diagnostic accuracy studies with SAS, Stata and R.   Methods Inf Med. 2018;57(3):111-119. doi:10.3414/ME17-01-0021 PubMedGoogle ScholarCrossref
18.
Nyaga  VN , Arbyn  M , Aerts  M .  Metaprop: a Stata command to perform meta-analysis of binomial data.   Arch Public Health. 2014;72(1):39. doi:10.1186/2049-3258-72-39 PubMedGoogle ScholarCrossref
19.
Wei  X , Li  Y , Zhang  S , Gao  M .  Prediction of thyroid extracapsular extension with cervical lymph node metastases (ECE-LN) by CEUS and BRAF expression in papillary thyroid carcinoma.   Tumour Biol. 2014;35(9):8559-8564. doi:10.1007/s13277-014-2119-2 PubMedGoogle ScholarCrossref
20.
Xiang  D , Hong  Y , Zhang  B ,  et al.  Contrast-enhanced ultrasound (CEUS) facilitated US in detecting lateral neck lymph node metastasis of thyroid cancer patients: diagnosis value and enhancement patterns of malignant lymph nodes.   Eur Radiol. 2014;24(10):2513-2519. doi:10.1007/s00330-014-3288-5 PubMedGoogle ScholarCrossref
21.
Wei  Q , Wu  D , Luo  H , Wang  X , Zhang  R , Liu  Y .  Features of lymph node metastasis of papillary thyroid carcinoma in ultrasonography and CT and the significance of their combination in the diagnosis and prognosis of lymph node metastasis.   J BUON. 2018;23(4):1041-1048.PubMedGoogle Scholar
22.
Jeong  HS , Baek  CH , Son  YI ,  et al.  Integrated 18F-FDG PET/CT for the initial evaluation of cervical node level of patients with papillary thyroid carcinoma: comparison with ultrasound and contrast-enhanced CT.   Clin Endocrinol (Oxf). 2006;65(3):402-407. doi:10.1111/j.1365-2265.2006.02612.x PubMedGoogle ScholarCrossref
23.
Hwang  HS , Orloff  LA .  Efficacy of preoperative neck ultrasound in the detection of cervical lymph node metastasis from thyroid cancer.   Laryngoscope. 2011;121(3):487-491. doi:10.1002/lary.21227 PubMedGoogle ScholarCrossref
24.
Hu  S , Zhang  H , Sun  Z ,  et al.  Preoperative assessment of extrathyroidal extension of papillary thyroid carcinomas by ultrasound and magnetic resonance imaging: a comparative study.   Radiol Med. 2020;125(9):870-876. doi:10.1007/s11547-020-01184-0PubMedGoogle ScholarCrossref
25.
Hong  YR , Luo  ZY , Mo  GQ , Wang  P , Ye  Q , Huang  PT .  Role of contrast-enhanced ultrasound in the pre-operative diagnosis of cervical lymph node metastasis in patients with papillary thyroid carcinoma.   Ultrasound Med Biol. 2017;43(11):2567-2575. doi:10.1016/j.ultrasmedbio.2017.07.010 PubMedGoogle ScholarCrossref
26.
Gweon  HM , Son  EJ , Youk  JH , Kim  JA , Park  CS .  Preoperative assessment of extrathyroidal extension of papillary thyroid carcinoma: comparison of 2- and 3-dimensional sonography.   J Ultrasound Med. 2014;33(5):819-825. doi:10.7863/ultra.33.5.819PubMedGoogle ScholarCrossref
27.
González  HE , Cruz  F , O’Brien  A ,  et al.  Impact of preoperative ultrasonographic staging of the neck in papillary thyroid carcinoma.   Arch Otolaryngol Head Neck Surg. 2007;133(12):1258-1262. doi:10.1001/archotol.133.12.1258 PubMedGoogle ScholarCrossref
28.
Lesnik  D , Cunnane  ME , Zurakowski  D ,  et al.  Papillary thyroid carcinoma nodal surgery directed by a preoperative radiographic map utilizing CT scan and ultrasound in all primary and reoperative patients.   Head Neck. 2014;36(2):191-202. doi:10.1002/hed.23277 PubMedGoogle ScholarCrossref
29.
Lee  DW , Ji  YB , Sung  ES ,  et al.  Roles of ultrasonography and computed tomography in the surgical management of cervical lymph node metastases in papillary thyroid carcinoma.   Eur J Surg Oncol. 2013;39(2):191-196. doi:10.1016/j.ejso.2012.07.119 PubMedGoogle ScholarCrossref
30.
Lee  CY , Kim  SJ , Ko  KR , Chung  KW , Lee  JH .  Predictive factors for extrathyroidal extension of papillary thyroid carcinoma based on preoperative sonography.   J Ultrasound Med. 2014;33(2):231-238. doi:10.7863/ultra.33.2.231PubMedGoogle ScholarCrossref
31.
Kim  SK , Woo  JW , Park  I ,  et al.  Computed tomography-detected central lymph node metastasis in ultrasonography node-negative papillary thyroid carcinoma: is it really significant?   Ann Surg Oncol. 2017;24(2):442-449. doi:10.1245/s10434-016-5552-1 PubMedGoogle ScholarCrossref
32.
Kim  H , Kim  JA , Son  EJ ,  et al.  Preoperative prediction of the extrathyroidal extension of papillary thyroid carcinoma with ultrasonography versus MRI: a retrospective cohort study.   Int J Surg. 2014;12(5):544-548. doi:10.1016/j.ijsu.2014.03.003PubMedGoogle ScholarCrossref
33.
Kim  E , Park  JS , Son  KR , Kim  JH , Jeon  SJ , Na  DG .  Preoperative diagnosis of cervical metastatic lymph nodes in papillary thyroid carcinoma: comparison of ultrasound, computed tomography, and combined ultrasound with computed tomography.   Thyroid. 2008;18(4):411-418. doi:10.1089/thy.2007.0269 PubMedGoogle ScholarCrossref
34.
Khokhar  MT , Day  KM , Sangal  RB ,  et al.  Preoperative high-resolution ultrasound for the assessment of malignant central compartment lymph nodes in papillary thyroid cancer.   Thyroid. 2015;25(12):1351-1354. doi:10.1089/thy.2015.0176PubMedGoogle ScholarCrossref
35.
Kamaya  A , Tahvildari  AM , Patel  BN , Willmann  JK , Jeffrey  RB , Desser  TS .  Sonographic detection of extracapsular extension in papillary thyroid cancer.   J Ultrasound Med. 2015;34(12):2225-2230. doi:10.7863/ultra.15.02006 PubMedGoogle ScholarCrossref
36.
Jiao  WP , Zhang  L .  Using ultrasonography to evaluate the relationship between capsular invasion or extracapsular extension and lymph node metastasis in papillary thyroid carcinomas.   Chin Med J (Engl). 2017;130(11):1309-1313. doi:10.4103/0366-6999.206339 PubMedGoogle ScholarCrossref
37.
Stulak  JM , Grant  CS , Farley  DR ,  et al.  Value of preoperative ultrasonography in the surgical management of initial and reoperative papillary thyroid cancer.   Arch Surg. 2006;141(5):489-494. doi:10.1001/archsurg.141.5.489 PubMedGoogle ScholarCrossref
38.
Shim  MJ , Roh  JL , Gong  G ,  et al.  Preoperative detection and predictors of level V lymph node metastasis in patients with papillary thyroid carcinoma.   Br J Surg. 2013;100(4):497-503. doi:10.1002/bjs.9024 PubMedGoogle ScholarCrossref
39.
Roh  JL , Park  JY , Kim  JM , Song  CJ .  Use of preoperative ultrasonography as guidance for neck dissection in patients with papillary thyroid carcinoma.   J Surg Oncol. 2009;99(1):28-31. doi:10.1002/jso.21164 PubMedGoogle ScholarCrossref
40.
Patel  NU , McKinney  K , Kreidler  SM ,  et al.  Ultrasound-based clinical prediction rule model for detecting papillary thyroid cancer in cervical lymph nodes: a pilot study.   J Clin Ultrasound. 2016;44(3):143-151. doi:10.1002/jcu.22309PubMedGoogle ScholarCrossref
41.
Park  JS , Son  KR , Na  DG , Kim  E , Kim  S .  Performance of preoperative sonographic staging of papillary thyroid carcinoma based on the sixth edition of the AJCC/UICC TNM classification system.   AJR Am J Roentgenol. 2009;192(1):66-72. doi:10.2214/AJR.07.3731PubMedGoogle ScholarCrossref
42.
Park  JE , Lee  JH , Ryu  KH ,  et al.  Improved diagnostic accuracy using arterial phase CT for lateral cervical lymph node metastasis from papillary thyroid cancer.   AJNR Am J Neuroradiol. 2017;38(4):782-788. doi:10.3174/ajnr.A5054 PubMedGoogle ScholarCrossref
43.
Na  DK , Choi  YJ , Choi  SH , Kook  SH , Park  HJ .  Evaluation of cervical lymph node metastasis in thyroid cancer patients using real-time CT-navigated ultrasonography: preliminary study.   Ultrasonography. 2015;34(1):39-44. doi:10.14366/usg.14030 PubMedGoogle ScholarCrossref
44.
Yoo  RE , Kim  JH , Hwang  I ,  et al.  Added value of computed tomography to ultrasonography for assessing LN metastasis in preoperative patients with thyroid cancer: node-by-node correlation.   Cancers (Basel). 2020;12(5):E1190. doi:10.3390/cancers12051190 PubMedGoogle Scholar
45.
Gao  L , Wang  J , Jiang  Y ,  et al.  The number of central lymph nodes on preoperative ultrasound predicts central neck lymph node metastasis in papillary thyroid carcinoma: a prospective cohort study.   Int J Endocrinol. 2020;2020:2698659. doi:10.1155/2020/2698659 PubMedGoogle Scholar
46.
Li  L , Cheng  SN , Zhao  YF , Wang  XY , Luo  DH , Wang  Y .  Diagnostic accuracy of single-source dual-energy computed tomography and ultrasonography for detection of lateral cervical lymph node metastases of papillary thyroid carcinoma.   J Thorac Dis. 2019;11(12):5032-5041. doi:10.21037/jtd.2019.12.45 PubMedGoogle ScholarCrossref
47.
Liu  B , Qin  H , Zhang  B ,  et al.  Significance of clearing differentiated thyroid carcinoma lymph node by high-frequency color Doppler ultrasonography.   Oncol Lett. 2017;13(1):253-257. doi:10.3892/ol.2016.5450 PubMedGoogle ScholarCrossref
48.
Lee  CY , Snyder  SK , Lairmore  TC , Dupont  SC , Jupiter  DC .  Utility of surgeon-performed ultrasound assessment of the lateral neck for metastatic papillary thyroid cancer.   J Oncol. 2012;2012:973124. doi:10.1155/2012/973124 PubMedGoogle Scholar
49.
Zhang  J , Fei  M , Dong  Y , Xu  S , Zhan  W .  Preoperative ultrasonographic staging of papillary thyroid carcinoma with the eighth American Joint Committee on Cancer tumor-node-metastasis staging system.   Ultrasound Q. 2020;36(2):158-163. doi:10.1097/RUQ.0000000000000469 PubMedGoogle ScholarCrossref
50.
Yoo  YH , Kim  JA , Son  EJ ,  et al.  Sonographic findings predictive of central lymph node metastasis in patients with papillary thyroid carcinoma: influence of associated chronic lymphocytic thyroiditis on the diagnostic performance of sonography.   J Ultrasound Med. 2013;32(12):2145-2151. doi:10.7863/ultra.32.12.2145PubMedGoogle ScholarCrossref
51.
Yi  YS , Kim  SS , Kim  WJ ,  et al.  Comparison of two- and three-dimensional sonography for the prediction of the extrathyroidal extension of papillary thyroid carcinomas.   Korean J Intern Med. 2016;31(2):313-322. doi:10.3904/kjim.2014.363 PubMedGoogle ScholarCrossref
52.
Tao  L , Zhou  W , Zhan  W , Li  W , Wang  Y , Fan  J .  Preoperative prediction of cervical lymph node metastasis in papillary thyroid carcinoma via conventional and contrast-enhanced ultrasound.   J Ultrasound Med. 2020;39(10):2071-2080. doi:10.1002/jum.15315PubMedGoogle ScholarCrossref
53.
Sugitani  I , Fujimoto  Y , Yamada  K , Yamamoto  N .  Prospective outcomes of selective lymph node dissection for papillary thyroid carcinoma based on preoperative ultrasonography.   World J Surg. 2008;32(11):2494-2502. doi:10.1007/s00268-008-9711-9 PubMedGoogle ScholarCrossref
54.
Soler  ZM , Hamilton  BE , Schuff  KG , Samuels  MH , Cohen  JI .  Utility of computed tomography in the detection of subclinical nodal disease in papillary thyroid carcinoma.   Arch Otolaryngol Head Neck Surg. 2008;134(9):973-978. doi:10.1001/archotol.134.9.973 PubMedGoogle ScholarCrossref
55.
Ramundo  V , Di Gioia  CRT , Falcone  R ,  et al.  Diagnostic performance of neck ultrasonography in the preoperative evaluation for extrathyroidal extension of suspicious thyroid nodules.   World J Surg. 2020;44(8):2669-2674. doi:10.1007/s00268-020-05482-6PubMedGoogle ScholarCrossref
56.
Mizrachi  A , Feinmesser  R , Bachar  G , Hilly  O , Cohen  M .  Value of ultrasound in detecting central compartment lymph node metastases in differentiated thyroid carcinoma.   Eur Arch Otorhinolaryngol. 2014;271(5):1215-1218. doi:10.1007/s00405-013-2636-4PubMedGoogle ScholarCrossref
57.
Lee  Y , Kim  JH , Baek  JH ,  et al.  Value of CT added to ultrasonography for the diagnosis of lymph node metastasis in patients with thyroid cancer.   Head Neck. 2018;40(10):2137-2148. doi:10.1002/hed.25202 PubMedGoogle ScholarCrossref
58.
Lee  DY , Kwon  TK , Sung  MW , Kim  KH , Hah  JH .  Prediction of extrathyroidal extension using ultrasonography and computed tomography.   Int J Endocrinol. 2014;2014:351058. doi:10.1155/2014/351058 PubMedGoogle Scholar
59.
Eun  NL , Son  EJ , Kim  JA , Gweon  HM , Kang  JH , Youk  JH .  Comparison of the diagnostic performances of ultrasonography, CT and fine needle aspiration cytology for the prediction of lymph node metastasis in patients with lymph node dissection of papillary thyroid carcinoma: a retrospective cohort study.   Int J Surg. 2018;51:145-150. doi:10.1016/j.ijsu.2017.12.036PubMedGoogle ScholarCrossref
60.
Du  J , Bai  X , Lu  Y ,  et al.  Diagnostic efficacy of ultrasonographic characteristics of thyroid carcinoma in predicting cervical lymph node metastasis.   Ultrasound Med Biol. 2015;42(1):68-74. doi:10.1016/j.ultrasmedbio.2015.08.023 PubMedGoogle ScholarCrossref
61.
Chong  A , Ha  JM , Han  YH ,  et al.  Preoperative lymph node staging by FDG PET/CT with contrast enhancement for thyroid cancer: a multicenter study and comparison with neck CT.   Clin Exp Otorhinolaryngol. 2017;10(1):121-128. doi:10.21053/ceo.2015.01424 PubMedGoogle ScholarCrossref
62.
Choi  JS , Lee  HS , Kim  EK , Moon  HJ , Kwak  JY .  The influence of body mass index on the diagnostic performance of pre-operative staging ultrasound in papillary thyroid carcinoma.   Clin Endocrinol (Oxf). 2015;83(4):550-555. doi:10.1111/cen.12638 PubMedGoogle ScholarCrossref
63.
Chen  L , Chen  L , Liu  J , Wang  B , Zhang  H .  Value of qualitative and quantitative contrast-enhanced ultrasound analysis in preoperative diagnosis of cervical lymph node metastasis from papillary thyroid carcinoma.   J Ultrasound Med. 2020;39(1):73-81. doi:10.1002/jum.15074PubMedGoogle ScholarCrossref
64.
Ahn  JE , Lee  JH , Yi  JS ,  et al.  Diagnostic accuracy of CT and ultrasonography for evaluating metastatic cervical lymph nodes in patients with thyroid cancer.   World J Surg. 2008;32(7):1552-1558. doi:10.1007/s00268-008-9588-7 PubMedGoogle ScholarCrossref
65.
Abboud  B , Smayra  T , Jabbour  H , Ghorra  C , Abadjian  G .  Correlations of neck ultrasound and pathology in cervical lymph node of papillary thyroid carcinoma.   Acta Chir Belg. 2020;120(4):238-244. doi:10.1080/00015458.2019.1592988 PubMedGoogle ScholarCrossref
66.
Liu  Z , Xun  X , Wang  Y ,  et al.  MRI and ultrasonography detection of cervical lymph node metastases in differentiated thyroid carcinoma before reoperation.   Am J Transl Res. 2014;6(2):147-154.PubMedGoogle Scholar
AMA CME Accreditation Information

Credit Designation Statement: The American Medical Association designates this Journal-based CME activity activity for a maximum of 1.00  AMA PRA Category 1 Credit(s)™. Physicians should claim only the credit commensurate with the extent of their participation in the activity.

Successful completion of this CME activity, which includes participation in the evaluation component, enables the participant to earn up to:

  • 1.00 Medical Knowledge MOC points in the American Board of Internal Medicine's (ABIM) Maintenance of Certification (MOC) program;;
  • 1.00 Self-Assessment points in the American Board of Otolaryngology – Head and Neck Surgery’s (ABOHNS) Continuing Certification program;
  • 1.00 MOC points in the American Board of Pediatrics’ (ABP) Maintenance of Certification (MOC) program;
  • 1.00 Lifelong Learning points in the American Board of Pathology’s (ABPath) Continuing Certification program; and
  • 1.00 CME points in the American Board of Surgery’s (ABS) Continuing Certification program

It is the CME activity provider's responsibility to submit participant completion information to ACCME for the purpose of granting MOC credit.

Close
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
Close
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close

Name Your Search

Save Search
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Close
Close

Lookup An Activity

or

My Saved Searches

You currently have no searches saved.

Close

My Saved Courses

You currently have no courses saved.

Close