[Skip to Content]
[Skip to Content Landing]

Human Leukocyte Antigen Class I Antigen-Processing Machinery Upregulation by Anticancer Therapies in the Era of Checkpoint InhibitorsA Review

Educational Objective
To identify the key insights or developments described in this article
1 Credit CME
Abstract

Importance  Although typically impressive, objective responses to immune checkpoint inhibitors (ICIs) occur in only 12.5% of patients with advanced cancer. The majority of patients do not respond due to cell-intrinsic resistance mechanisms, including human leukocyte antigen (HLA) class I antigen-processing machinery (APM) defects. The APM defects, which have a negative effect on neoantigen presentation to cytotoxic T lymphocytes (CTLs), are present in the majority of malignant tumors. These defects are caused by gene variations in less than 25% of cases and by dysregulated signaling and/or epigenetic changes in most of the remaining cases, making them frequently correctable. This narrative review summarizes the growing clinical evidence that chemotherapy, targeted therapies, and, to a lesser extent, radiotherapy can correct HLA class I APM defects in cancer cells and improve responses to ICIs.

Observations  Most chemotherapeutics enhance HLA class I APM component expression and function in cancer cells, tumor CTL infiltration, and responses to ICIs in preclinical and clinical models. Despite preclinical evidence, radiotherapy does not appear to upregulate HLA class I expression in patients and does not enhance the efficacy of ICIs in clinical settings. The latter findings underscore the need to optimize the dose and schedule of radiation and timing of ICI administration to maximize their immunogenic synergy. By increasing DNA and chromatin accessibility, epigenetic agents (histone deacetylase inhibitors, DNA methyltransferase inhibitors, and EZH2 inhibitors) enhance HLA class I APM component expression and function in many cancer types, a crucial contributor to their synergy with ICIs in patients. Furthermore, epidermal growth factor receptor (EGFR) inhibitors and BRAF/mitogen-activated protein kinase kinase inhibitors are effective at upregulating HLA class I expression in EGFR- and BRAF-variant tumors, respectively; these changes may contribute to the clinical responses induced by these inhibitors in combination with ICIs.

Conclusions and Relevance  This narrative review summarizes evidence indicating that chemotherapy and targeted therapies are effective at enhancing HLA class I APM component expression and function in cancer cells. The resulting increased immunogenicity and recognition and elimination of cancer cells by cognate CTLs contributes to the antitumor activity of these therapies as well as to their synergy with ICIs.

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 Credit(s)™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

CME Disclosure Statement: Unless noted, all individuals in control of content reported no relevant financial relationships. If applicable, all relevant financial relationships have been mitigated.

Article Information

Accepted for Publication: June 16, 2021.

Published Online: December 23, 2021. doi:10.1001/jamaoncol.2021.5970

Corresponding Author: Soldano Ferrone, MD, PhD, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, Jackson 9, Boston, MA 02114 (sferrone@mgh.harvard.edu).

Author Contributions: Dr Ferrone had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: All authors.

Acquisition, analysis, or interpretation of data: Sadagopan, Michelakos, Boyiadzis, S. Ferrone.

Drafting of the manuscript: Sadagopan, Boyiadzis, S. Ferrone.

Critical revision of the manuscript for important intellectual content: All authors.

Administrative, technical, or material support: Michelakos, Boyiadzis, S. Ferrone.

Supervision: Boyiadzis, C. Ferrone, S. Ferrone.

Conflict of Interest Disclosures: Dr S. Ferrone reported receiving research grants from Merck during the conduct of the study. No other disclosures were reported.

Funding/Support: This work was supported by grants R01DE028172, R01CA230275, R03CA219603, and R03CA253319 from the National Institutes of Health (Drs S. Ferrone and C. Ferrone) and grant W81XWH-20-1-0315 from the Department of Defense (Dr S. Ferrone).

Role of the Funder/Sponsor: The funding institutions had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

References
1.
Wolchok  JD , Kluger  H , Callahan  MK ,  et al.  Nivolumab plus ipilimumab in advanced melanoma.   N Engl J Med. 2013;369(2):122-133. doi:10.1056/NEJMoa1302369 PubMedGoogle ScholarCrossref
2.
Topalian  SL , Hodi  FS , Brahmer  JR ,  et al.  Safety, activity, and immune correlates of anti-PD-1 antibody in cancer.   N Engl J Med. 2012;366(26):2443-2454. doi:10.1056/NEJMoa1200690 PubMedGoogle ScholarCrossref
3.
Hodi  FS , O’Day  SJ , McDermott  DF ,  et al.  Improved survival with ipilimumab in patients with metastatic melanoma.   N Engl J Med. 2010;363(8):711-723. doi:10.1056/NEJMoa1003466 PubMedGoogle ScholarCrossref
4.
Haslam  A , Prasad  V .  Estimation of the percentage of US patients with cancer who are eligible for and respond to checkpoint inhibitor immunotherapy drugs.   JAMA Netw Open. 2019;2(5):e192535. doi:10.1001/jamanetworkopen.2019.2535 PubMedGoogle Scholar
5.
Keenan  TE , Burke  KP , Van Allen  EM .  Genomic correlates of response to immune checkpoint blockade.   Nat Med. 2019;25(3):389-402. doi:10.1038/s41591-019-0382-x PubMedGoogle ScholarCrossref
6.
Cai  L , Michelakos  T , Yamada  T ,  et al. Structural and functional defects in HLA class I antigen processing machinery in cancer cells: molecular mechanisms and clinical relevance. In: Butterfield  L , Kaufman  H , Marincola  F , eds.  Cancer Immunotherapy Principles and Practice. 2nd ed. Springer Publishing Co; 2021. doi:10.1891/9780826137432.0005
7.
Cai  L , Michelakos  T , Yamada  T ,  et al.  Defective HLA class I antigen processing machinery in cancer.   Cancer Immunol Immunother. 2018;67(6):999-1009. doi:10.1007/s00262-018-2131-2 PubMedGoogle ScholarCrossref
8.
Gettinger  S , Choi  J , Hastings  K ,  et al.  Impaired HLA class I antigen processing and presentation as a mechanism of acquired resistance to immune checkpoint inhibitors in lung cancer.   Cancer Discov. 2017;7(12):1420-1435. doi:10.1158/2159-8290.CD-17-0593 PubMedGoogle ScholarCrossref
9.
Zaretsky  JM , Garcia-Diaz  A , Shin  DS ,  et al.  Mutations associated with acquired resistance to PD-1 blockade in melanoma.   N Engl J Med. 2016;375(9):819-829. doi:10.1056/NEJMoa1604958 PubMedGoogle ScholarCrossref
10.
Paulson  KG , Voillet  V , McAfee  MS ,  et al.  Acquired cancer resistance to combination immunotherapy from transcriptional loss of class I HLA.   Nat Commun. 2018;9(1):3868. doi:10.1038/s41467-018-06300-3 PubMedGoogle ScholarCrossref
11.
Cathro  HP , Smolkin  ME , Theodorescu  D , Jo  VY , Ferrone  S , Frierson  HF  Jr .  Relationship between HLA class I antigen processing machinery component expression and the clinicopathologic characteristics of bladder carcinomas.   Cancer Immunol Immunother. 2010;59(3):465-472. doi:10.1007/s00262-009-0765-9PubMedGoogle ScholarCrossref
12.
Park  HS , Cho  U , Im  SY ,  et al.  Loss of human leukocyte antigen class I expression is associated with poor prognosis in patients with advanced breast cancer.   J Pathol Transl Med. 2019;53(2):75-85. doi:10.4132/jptm.2018.10.11PubMedGoogle ScholarCrossref
13.
Mehta  AM , Jordanova  ES , Kenter  GG , Ferrone  S , Fleuren  GJ .  Association of antigen processing machinery and HLA class I defects with clinicopathological outcome in cervical carcinoma.   Cancer Immunol Immunother. 2008;57(2):197-206. doi:10.1007/s00262-007-0362-8PubMedGoogle ScholarCrossref
14.
Sekar  RR , De La Calle  CM , Patil  D ,  et al.  Major histocompatibility complex I upregulation in clear cell renal cell carcinoma is associated with increased survival.   Asian J Urol. 2016;3(2):75-81. doi:10.1016/j.ajur.2016.02.001PubMedGoogle ScholarCrossref
15.
Benevolo  M , Mottolese  M , Piperno  G ,  et al.  HLA-A, -B, -C expression in colon carcinoma mimics that of the normal colonic mucosa and is prognostically relevant.   Am J Surg Pathol. 2007;31(1):76-84. doi:10.1097/01.pas.0000213343.55605.b9PubMedGoogle ScholarCrossref
16.
Peng  RQ , Chen  YB , Ding  Y ,  et al.  Expression of calreticulin is associated with infiltration of T-cells in stage IIIB colon cancer.   World J Gastroenterol. 2010;16(19):2428-2434. doi:10.3748/wjg.v16.i19.2428PubMedGoogle ScholarCrossref
17.
Iwayama  Y , Tsuruma  T , Mizuguchi  T ,  et al.  Prognostic value of HLA class I expression in patients with colorectal cancer.   World J Surg Oncol. 2015;13:36. doi:10.1186/s12957-015-0456-2PubMedGoogle ScholarCrossref
18.
Sandel  MH , Speetjens  FM , Menon  AG ,  et al.  Natural killer cells infiltrating colorectal cancer and MHC class I expression.   Mol Immunol. 2005;42(4):541-546. doi:10.1016/j.molimm.2004.07.039PubMedGoogle ScholarCrossref
19.
Simpson  JAD , Al-Attar  A , Watson  NFS , Scholefield  JH , Ilyas  M , Durrant  LG .  Intratumoral T cell infiltration, MHC class I and STAT1 as biomarkers of good prognosis in colorectal cancer.   Gut. 2010;59(7):926-933. doi:10.1136/gut.2009.194472PubMedGoogle ScholarCrossref
20.
Sokol  L , Koelzer  VH , Rau  TT , Karamitopoulou  E , Zlobec  I , Lugli  A .  Loss of tapasin correlates with diminished CD8(+) T-cell immunity and prognosis in colorectal cancer.   J Transl Med. 2015;13:279. doi:10.1186/s12967-015-0647-1PubMedGoogle ScholarCrossref
21.
Watson  NFS , Ramage  JM , Madjd  Z ,  et al.  Immunosurveillance is active in colorectal cancer as downregulation but not complete loss of MHC class I expression correlates with a poor prognosis.   Int J Cancer. 2006;118(1):6-10. doi:10.1002/ijc.21303PubMedGoogle ScholarCrossref
22.
Yakabe  K , Murakami  A , Nishimoto  Y , Kajimura  T , Sueoka  K , Sugino  N .  Clinical implications of human leukocyte antigen class I expression in endometrial cancer.   Mol Clin Oncol. 2015;3(6):1285-1290. doi:10.3892/mco.2015.636PubMedGoogle ScholarCrossref
23.
Yabe  H , Tsukahara  T , Kawaguchi  S ,  et al.  Prognostic significance of HLA class I expression in Ewing’s sarcoma family of tumors.   J Surg Oncol. 2011;103(5):380-385. doi:10.1002/jso.21829PubMedGoogle ScholarCrossref
24.
Hosch  SB , Izbicki  JR , Pichlmeier  U ,  et al.  Expression and prognostic significance of immunoregulatory molecules in esophageal cancer.   Int J Cancer. 1997;74(6):582-587. doi:10.1002/(SICI)1097-0215(19971219)74:6<582::AID-IJC4>3.0.CO;2-QPubMedGoogle ScholarCrossref
25.
Tanaka  K , Tsuchikawa  T , Miyamoto  M ,  et al.  Down-regulation of human leukocyte antigen class I heavy chain in tumors is associated with a poor prognosis in advanced esophageal cancer patients.   Int J Oncol. 2012;40(4):965-974. doi:10.3892/ijo.2011.1274PubMedGoogle ScholarCrossref
26.
Mizukami  Y , Kono  K , Maruyama  T ,  et al.  Downregulation of HLA class I molecules in the tumour is associated with a poor prognosis in patients with oesophageal squamous cell carcinoma.   Br J Cancer. 2008;99(9):1462-1467. doi:10.1038/sj.bjc.6604715PubMedGoogle ScholarCrossref
27.
Zhang  X , Lin  A , Zhang  JG ,  et al.  Alteration of HLA-F and HLA I antigen expression in the tumor is associated with survival in patients with esophageal squamous cell carcinoma.   Int J Cancer. 2013;132(1):82-89. doi:10.1002/ijc.27621PubMedGoogle ScholarCrossref
28.
Ishigami  S , Natsugoe  S , Nakajo  A ,  et al.  HLA-class I expression in gastric cancer.   J Surg Oncol. 2008;97(7):605-608. doi:10.1002/jso.21029PubMedGoogle ScholarCrossref
29.
Leys  CM , Nomura  S , LaFleur  BJ ,  et al.  Expression and prognostic significance of prothymosin-α and ERp57 in human gastric cancer.   Surgery. 2007;141(1):41-50. doi:10.1016/j.surg.2006.05.009PubMedGoogle ScholarCrossref
30.
Wang  XK , Liao  XW , Yang  CK ,  et al.  Diagnostic and prognostic biomarkers of human leukocyte antigen complex for hepatitis B virus-related hepatocellular carcinoma.   J Cancer. 2019;10(21):5173-5190. doi:10.7150/jca.29655PubMedGoogle ScholarCrossref
31.
Bandoh  N , Ogino  T , Katayama  A ,  et al.  HLA class I antigen and transporter associated with antigen processing downregulation in metastatic lesions of head and neck squamous cell carcinoma as a marker of poor prognosis.   Oncol Rep. 2010;23(4):933-939. doi:10.3892/or_00000717PubMedGoogle ScholarCrossref
32.
Matsushita  H , Hasegawa  K , Oda  K ,  et al.  Neoantigen load and HLA-class I expression identify a subgroup of tumors with a T-cell-inflamed phenotype and favorable prognosis in homologous recombination-proficient high-grade serous ovarian carcinoma.   J Immunother Cancer. 2020;8(1):e000375. doi:10.1136/jitc-2019-000375PubMedGoogle Scholar
33.
Ogino  T , Shigyo  H , Ishii  H ,  et al.  HLA class I antigen down-regulation in primary laryngeal squamous cell carcinoma lesions as a poor prognostic marker.   Cancer Res. 2006;66(18):9281-9289. doi:10.1158/0008-5472.CAN-06-0488PubMedGoogle ScholarCrossref
34.
Ogino  T , Bandoh  N , Hayashi  T , Miyokawa  N , Harabuchi  Y , Ferrone  S .  Association of tapasin and HLA class I antigen down-regulation in primary maxillary sinus squamous cell carcinoma lesions with reduced survival of patients.   Clin Cancer Res. 2003;9(11):4043-4051.PubMedGoogle Scholar
35.
Kageshita  T , Hirai  S , Ono  T , Hicklin  DJ , Ferrone  S .  Down-regulation of HLA class I antigen-processing molecules in malignant melanoma: association with disease progression.   Am J Pathol. 1999;154(3):745-754. doi:10.1016/S0002-9440(10)65321-7PubMedGoogle ScholarCrossref
36.
Ichinokawa  K , Nakanishi  Y , Hida  Y ,  et al.  Downregulated expression of human leukocyte antigen class I heavy chain is associated with poor prognosis in non-small-cell lung cancer.   Oncol Lett. 2019;18(1):117-126. doi:10.3892/ol.2019.10293PubMedGoogle Scholar
37.
Kikuchi  E , Yamazaki  K , Torigoe  T ,  et al.  HLA class I antigen expression is associated with a favorable prognosis in early stage non-small cell lung cancer.   Cancer Sci. 2007;98(9):1424-1430. doi:10.1111/j.1349-7006.2007.00558.xPubMedGoogle ScholarCrossref
38.
Tsukahara  T , Kawaguchi  S , Torigoe  T ,  et al.  Prognostic significance of HLA class I expression in osteosarcoma defined by anti-pan HLA class I monoclonal antibody, EMR8-5.   Cancer Sci. 2006;97(12):1374-1380. doi:10.1111/j.1349-7006.2006.00317.xPubMedGoogle ScholarCrossref
39.
Michelakos  T , Cai  L , Villani  V ,  et al.  Tumor microenvironment immune response in pancreatic ductal adenocarcinoma patients treated with neoadjuvant therapy.   J Natl Cancer Inst. 2021;113(2):182-191. doi:10.1093/jnci/djaa073PubMedGoogle ScholarCrossref
40.
Djajadiningrat  RS , Horenblas  S , Heideman  DAM , Sanders  J , de Jong  J , Jordanova  ES .  Classic and nonclassic HLA class I expression in penile cancer and relation to HPV status and clinical outcome.   J Urol. 2015;193(4):1245-1251. doi:10.1016/j.juro.2014.11.057PubMedGoogle ScholarCrossref
41.
Levin  I , Klein  T , Kuperman  O ,  et al.  The expression of HLA class I antigen in prostate cancer in relation to tumor differentiation and patient survival.   Cancer Detect Prev. 1994;18(6):443-445.PubMedGoogle Scholar
42.
Reimers  MS , Engels  CC , Putter  H ,  et al.  Prognostic value of HLA class I, HLA-E, HLA-G and Tregs in rectal cancer: a retrospective cohort study.   BMC Cancer. 2014;14:486. doi:10.1186/1471-2407-14-486PubMedGoogle ScholarCrossref
43.
Speetjens  FM , de Bruin  EC , Morreau  H ,  et al.  Clinical impact of HLA class I expression in rectal cancer.   Cancer Immunol Immunother. 2008;57(5):601-609. doi:10.1007/s00262-007-0396-yPubMedGoogle ScholarCrossref
44.
Rodig  SJ , Gusenleitner  D , Jackson  DG ,  et al.  MHC proteins confer differential sensitivity to CTLA-4 and PD-1 blockade in untreated metastatic melanoma.   Sci Transl Med. 2018;10(450):eaar3342. doi:10.1126/scitranslmed.aar3342 PubMedGoogle Scholar
45.
Such  L , Zhao  F , Liu  D ,  et al.  Targeting the innate immunoreceptor RIG-I overcomes melanoma-intrinsic resistance to T cell immunotherapy.   J Clin Invest. 2020;130(8):4266-4281. doi:10.1172/JCI131572 PubMedGoogle Scholar
46.
Wang  Z , Chen  J , Hu  J ,  et al.  cGAS/STING axis mediates a topoisomerase II inhibitor-induced tumor immunogenicity.   J Clin Invest. 2019;129(11):4850-4862. doi:10.1172/JCI127471 PubMedGoogle ScholarCrossref
47.
Gravett  AM , Trautwein  N , Stevanović  S , Dalgleish  AG , Copier  J .  Gemcitabine alters the proteasome composition and immunopeptidome of tumour cells.   Oncoimmunology. 2018;7(6):e1438107. doi:10.1080/2162402X.2018.1438107 PubMedGoogle Scholar
48.
Yamamura  Y , Tsuchikawa  T , Miyauchi  K ,  et al.  The key role of calreticulin in immunomodulation induced by chemotherapeutic agents.   Int J Clin Oncol. 2015;20(2):386-394. doi:10.1007/s10147-014-0719-x PubMedGoogle ScholarCrossref
49.
Hodge  JW , Garnett  CT , Farsaci  B ,  et al.  Chemotherapy-induced immunogenic modulation of tumor cells enhances killing by cytotoxic T lymphocytes and is distinct from immunogenic cell death.   Int J Cancer. 2013;133(3):624-636. doi:10.1002/ijc.28070 PubMedGoogle ScholarCrossref
50.
Wan  S , Pestka  S , Jubin  RG , Lyu  YL , Tsai  YC , Liu  LF .  Chemotherapeutics and radiation stimulate MHC class I expression through elevated interferon-beta signaling in breast cancer cells.   PLoS One. 2012;7(3):e32542. doi:10.1371/journal.pone.0032542 PubMedGoogle Scholar
51.
Pellicciotta  I , Yang  CPH , Goldberg  GL , Shahabi  S .  Epothilone B enhances class I HLA and HLA-A2 surface molecule expression in ovarian cancer cells.   Gynecol Oncol. 2011;122(3):625-631. doi:10.1016/j.ygyno.2011.05.007 PubMedGoogle ScholarCrossref
52.
Peng  J , Hamanishi  J , Matsumura  N ,  et al.  Chemotherapy induces programmed cell death-ligand 1 overexpression via the nuclear factor-κB to foster an immunosuppressive tumor microenvironment in ovarian cancer.   Cancer Res. 2015;75(23):5034-5045. doi:10.1158/0008-5472.CAN-14-3098 PubMedGoogle ScholarCrossref
53.
Tsuchikawa  T , Miyamoto  M , Yamamura  Y , Shichinohe  T , Hirano  S , Kondo  S .  The immunological impact of neoadjuvant chemotherapy on the tumor microenvironment of esophageal squamous cell carcinoma.   Ann Surg Oncol. 2012;19(5):1713-1719. doi:10.1245/s10434-011-1906-x PubMedGoogle ScholarCrossref
54.
Iwai  T , Sugimoto  M , Wakita  D , Yorozu  K , Kurasawa  M , Yamamoto  K .  Topoisomerase I inhibitor, irinotecan, depletes regulatory T cells and up-regulates MHC class I and PD-L1 expression, resulting in a supra-additive antitumor effect when combined with anti-PD-L1 antibodies.   Oncotarget. 2018;9(59):31411-31421. doi:10.18632/oncotarget.25830 PubMedGoogle ScholarCrossref
55.
Voorwerk  L , Slagter  M , Horlings  HM ,  et al.  Immune induction strategies in metastatic triple-negative breast cancer to enhance the sensitivity to PD-1 blockade: the TONIC trial.   Nat Med. 2019;25(6):920-928. doi:10.1038/s41591-019-0432-4 PubMedGoogle ScholarCrossref
56.
Kuo  CS , Wang  CC , Huang  YC ,  et al.  Comparison of a combination of chemotherapy and immune checkpoint inhibitors and immune checkpoint inhibitors alone for the treatment of advanced and metastatic non-small cell lung cancer.   Thorac Cancer. 2019;10(5):1158-1166. doi:10.1111/1759-7714.13057 PubMedGoogle ScholarCrossref
57.
West  H , McCleod  M , Hussein  M ,  et al.  Atezolizumab in combination with carboplatin plus nab-paclitaxel chemotherapy compared with chemotherapy alone as first-line treatment for metastatic non-squamous non-small-cell lung cancer (IMpower130): a multicentre, randomised, open-label, phase 3 trial.   Lancet Oncol. 2019;20(7):924-937. doi:10.1016/S1470-2045(19)30167-6 PubMedGoogle ScholarCrossref
58.
Gandhi  L , Rodríguez-Abreu  D , Gadgeel  S ,  et al; KEYNOTE-189 Investigators.  Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer.   N Engl J Med. 2018;378(22):2078-2092. doi:10.1056/NEJMoa1801005 PubMedGoogle ScholarCrossref
59.
Paz-Ares  L , Luft  A , Vicente  D ,  et al; KEYNOTE-407 Investigators.  Pembrolizumab plus chemotherapy for squamous non-small-cell lung cancer.   N Engl J Med. 2018;379(21):2040-2051. doi:10.1056/NEJMoa1810865 PubMedGoogle ScholarCrossref
60.
Wang  WJ , Qin  SH , Zhang  JW , Jiang  YY , Zhang  JN , Zhao  L .  Combination doxorubicin and interferon-α therapy stimulates immunogenicity of murine pancreatic cancer Panc02 cells via up-regulation of NKG2D ligands and MHC class I.   Asian Pac J Cancer Prev. 2014;15(22):9667-9672. doi:10.7314/APJCP.2014.15.22.9667 PubMedGoogle ScholarCrossref
61.
de Biasi  AR , Villena-Vargas  J , Adusumilli  PS .  Cisplatin-induced antitumor immunomodulation: a review of preclinical and clinical evidence.   Clin Cancer Res. 2014;20(21):5384-5391. doi:10.1158/1078-0432.CCR-14-1298 PubMedGoogle ScholarCrossref
62.
Matsuoka  H , Eura  M , Chikamatsu  K ,  et al.  Low doses of anticancer drugs increase susceptibility of tumor cells to lysis by autologous killer cells.   Anticancer Res. 1995;15(1):87-92. doi:10.1080/2162402X.2017.1316438PubMedGoogle Scholar
63.
Harrington  KJ , Brody  J , Ingham  M ,  et al.  Preliminary results of the first-in-human (FIH) study of MK-1454, an agonist of stimulator of interferon genes (STING), as monotherapy or in combination with pembrolizumab (pembro) in patients with advanced solid tumors or lymphomas.   Ann Oncol. 2018;29:viii712. doi:10.1093/annonc/mdy424.015Google Scholar
64.
Matsumiya  T , Stafforini  DM .  Function and regulation of retinoic acid-inducible gene-I.   Crit Rev Immunol. 2010;30(6):489-513. doi:10.1615/CritRevImmunol.v30.i6.10 PubMedGoogle ScholarCrossref
65.
Yin  W , Song  Y , Liu  Q , Wu  Y , He  R .  Topical treatment of all-trans retinoic acid inhibits murine melanoma partly by promoting CD8+ T-cell immunity.   Immunology. 2017;152(2):287-297. doi:10.1111/imm.12768 PubMedGoogle ScholarCrossref
66.
Ipilimumab and all-trans retinoic acid combination treatment of advanced melanoma. ClinicalTrials.gov identifier: NCT02403778. Updated September 29, 2021. Accessed November 8, 2021. https://clinicaltrials.gov/ct2/show/NCT02403778
67.
Zevini  A , Olagnier  D , Hiscott  J .  Crosstalk between cytoplasmic RIG-I and STING sensing pathways.   Trends Immunol. 2017;38(3):194-205. doi:10.1016/j.it.2016.12.004 PubMedGoogle ScholarCrossref
68.
Chesney  J , Puzanov  I , Collichio  F ,  et al.  Randomized, open-label phase II study evaluating the efficacy and safety of talimogene laherparepvec in combination with ipilimumab versus ipilimumab alone in patients with advanced, unresectable melanoma.   J Clin Oncol. 2018;36(17):1658-1667. doi:10.1200/JCO.2017.73.7379 PubMedGoogle ScholarCrossref
69.
Ranoa  DRE , Parekh  AD , Pitroda  SP ,  et al.  Cancer therapies activate RIG-I-like receptor pathway through endogenous non-coding RNAs.   Oncotarget. 2016;7(18):26496-26515. doi:10.18632/oncotarget.8420 PubMedGoogle ScholarCrossref
70.
Santin  AD , Hiserodt  JC , Fruehauf  J , DiSaia  PJ , Pecorelli  S , Granger  GA .  Effects of irradiation on the expression of surface antigens in human ovarian cancer.   Gynecol Oncol. 1996;60(3):468-474. doi:10.1006/gyno.1996.0075 PubMedGoogle ScholarCrossref
71.
Gameiro  SR , Jammeh  ML , Wattenberg  MM , Tsang  KY , Ferrone  S , Hodge  JW .  Radiation-induced immunogenic modulation of tumor enhances antigen processing and calreticulin exposure, resulting in enhanced T-cell killing.   Oncotarget. 2014;5(2):403-416. doi:10.18632/oncotarget.1719 PubMedGoogle ScholarCrossref
72.
Gameiro  SR , Malamas  AS , Bernstein  MB ,  et al.  Tumor cells surviving exposure to proton or photon radiation share a common immunogenic modulation signature, rendering them more sensitive to T cell-mediated killing.   Int J Radiat Oncol Biol Phys. 2016;95(1):120-130. doi:10.1016/j.ijrobp.2016.02.022 PubMedGoogle ScholarCrossref
73.
Jager  MJ , van der Pol  JP , de Wolff-Rouendaal  D , de Jong  PTVM , Ruiter  DJ .  Decreased expression of HLA class II antigens on human uveal melanoma cells after in vivo X-ray irradiation.   Am J Ophthalmol. 1988;105(1):78-86. doi:10.1016/0002-9394(88)90125-0 PubMedGoogle ScholarCrossref
74.
Chang  CC , Ferrone  S .  Immune selective pressure and HLA class I antigen defects in malignant lesions.   Cancer Immunol Immunother. 2007;56(2):227-236. doi:10.1007/s00262-006-0183-1 PubMedGoogle ScholarCrossref
75.
Sharma  A , Bode  B , Wenger  RH ,  et al.  γ-Radiation promotes immunological recognition of cancer cells through increased expression of cancer-testis antigens in vitro and in vivo.   PLoS One. 2011;6(11):e28217. doi:10.1371/journal.pone.0028217 PubMedGoogle Scholar
76.
McBride  S , Sherman  E , Tsai  CJ ,  et al.  Randomized phase II trial of nivolumab with stereotactic body radiotherapy versus nivolumab alone in metastatic head and neck squamous cell carcinoma.   J Clin Oncol. 2021;39(1):30-37. doi:10.1200/JCO.20.00290 PubMedGoogle ScholarCrossref
77.
Seung  LP , Weichselbaum  RR , Toledano  A , Schreiber  K , Schreiber  H .  Radiation can inhibit tumor growth indirectly while depleting circulating leukocytes.   Radiat Res. 1996;146(6):612-618. doi:10.2307/3579376 PubMedGoogle ScholarCrossref
78.
Formenti  SC , Demaria  S .  Systemic effects of local radiotherapy.   Lancet Oncol. 2009;10(7):718-726. doi:10.1016/S1470-2045(09)70082-8 PubMedGoogle ScholarCrossref
79.
Grassberger  C , Ellsworth  SG , Wilks  MQ , Keane  FK , Loeffler  JS .  Assessing the interactions between radiotherapy and antitumour immunity.   Nat Rev Clin Oncol. 2019;16(12):729-745. doi:10.1038/s41571-019-0238-9 PubMedGoogle ScholarCrossref
80.
Zhang  B , Bowerman  NA , Salama  JK ,  et al.  Induced sensitization of tumor stroma leads to eradication of established cancer by T cells.   J Exp Med. 2007;204(1):49-55. doi:10.1084/jem.20062056 PubMedGoogle ScholarCrossref
81.
Burr  ML , Sparbier  CE , Chan  KL ,  et al.  An evolutionarily conserved function of polycomb silences the MHC class I antigen presentation pathway and enables immune evasion in cancer.   Cancer Cell. 2019;36(4):385-401.e8. doi:10.1016/j.ccell.2019.08.008 PubMedGoogle ScholarCrossref
82.
Ye  Q , Shen  Y , Wang  X ,  et al.  Hypermethylation of HLA class I gene is associated with HLA class I down-regulation in human gastric cancer.   Tissue Antigens. 2010;75(1):30-39. doi:10.1111/j.1399-0039.2009.01390.x PubMedGoogle ScholarCrossref
83.
Khan  ANH , Gregorie  CJ , Tomasi  TB .  Histone deacetylase inhibitors induce TAP, LMP, tapasin genes and MHC class I antigen presentation by melanoma cells.   Cancer Immunol Immunother. 2008;57(5):647-654. doi:10.1007/s00262-007-0402-4 PubMedGoogle ScholarCrossref
84.
Fazio  C , Covre  A , Cutaia  O ,  et al.  Immunomodulatory properties of DNA hypomethylating agents: selecting the optimal epigenetic partner for cancer immunotherapy.   Front Pharmacol. 2018;9:1443. doi:10.3389/fphar.2018.01443 PubMedGoogle ScholarCrossref
85.
Di Giacomo  AM , Covre  A , Finotello  F ,  et al.  Guadecitabine plus ipilimumab in unresectable melanoma: the NIBIT-M4 clinical trial.   Clin Cancer Res. 2019;25(24):7351-7362. doi:10.1158/1078-0432.CCR-19-1335 PubMedGoogle Scholar
86.
Roulois  D , Loo Yau  H , Singhania  R ,  et al.  DNA-demethylating agents target colorectal cancer cells by inducing viral mimicry by endogenous transcripts.   Cell. 2015;162(5):961-973. doi:10.1016/j.cell.2015.07.056 PubMedGoogle ScholarCrossref
87.
Goel  S , DeCristo  MJ , Watt  AC ,  et al.  CDK4/6 Inhibition triggers anti-tumour immunity.   Nature. 2017;548(7668):471-475. doi:10.1038/nature23465 PubMedGoogle ScholarCrossref
88.
Ritter  C , Fan  K , Paschen  A ,  et al.  Epigenetic priming restores the HLA class-I antigen processing machinery expression in Merkel cell carcinoma.   Sci Rep. 2017;7(1):2290. doi:10.1038/s41598-017-02608-0 PubMedGoogle ScholarCrossref
89.
Ugurel  S , Spassova  I , Wohlfarth  J ,  et al.  MHC class-I downregulation in PD-1/PD-L1 inhibitor refractory Merkel cell carcinoma and its potential reversal by histone deacetylase inhibition: a case series.   Cancer Immunol Immunother. 2019;68(6):983-990. doi:10.1007/s00262-019-02341-9 PubMedGoogle ScholarCrossref
90.
Zhou  L , Mudianto  T , Ma  X , Riley  R , Uppaluri  R .  Targeting EZH2 enhances antigen presentation, antitumor immunity, and circumvents anti–PD-1 resistance in head and neck cancer.   Clin Cancer Res. 2020;26(1):290-300. doi:10.1158/1078-0432.CCR-19-1351 PubMedGoogle ScholarCrossref
91.
Sheahan A, Morel KL, Burkhart DL, Baca S. Targeting EZH2 increases therapeutic efficacy of check-point blockade in models of prostate cancer. Paper presented at: the AACR-NCI-EORTC International Conference on Molecular Targets and Cancer Therapeutics; October 26-30, 2019; Boston, MA. Accessed September 30, 2020. doi:10.1158/1535-7163.TARG-19-B006
92.
Gameiro  SR , Malamas  AS , Tsang  KY , Ferrone  S , Hodge  JW .  Inhibitors of histone deacetylase 1 reverse the immune evasion phenotype to enhance T-cell mediated lysis of prostate and breast carcinoma cells.   Oncotarget. 2016;7(7):7390-7402. doi:10.18632/oncotarget.7180PubMedGoogle ScholarCrossref
93.
Mora-García  MdeL , Duenas-González  A , Hernández-Montes  J ,  et al.  Up-regulation of HLA class-I antigen expression and antigen-specific CTL response in cervical cancer cells by the demethylating agent hydralazine and the histone deacetylase inhibitor valproic acid.   J Transl Med. 2006;4:55. doi:10.1186/1479-5876-4-55PubMedGoogle ScholarCrossref
94.
Shan  YS , Fang  JH , Lai  MD ,  et al.  Establishment of an orthotopic transplantable gastric cancer animal model for studying the immunological effects of new cancer therapeutic modules.   Mol Carcinog. 2011;50(10):739-750. doi:10.1002/mc.20668PubMedGoogle ScholarCrossref
95.
Yang  W , Li  Y , Gao  R , Xiu  Z , Sun  T .  MHC class I dysfunction of glioma stem cells escapes from CTL-mediated immune response via activation of Wnt/β-catenin signaling pathway.   Oncogene. 2020;39(5):1098-1111. doi:10.1038/s41388-019-1045-6PubMedGoogle ScholarCrossref
96.
Komatsu  Y , Hayashi  H .  Histone deacetylase inhibitors up-regulate the expression of cell surface MHC class-I molecules in B16/BL6 cells.   J Antibiot (Tokyo). 1998;51(1):89-91. doi:10.7164/antibiotics.51.89PubMedGoogle ScholarCrossref
97.
Setiadi  AF , Omilusik  K , David  MD ,  et al.  Epigenetic enhancement of antigen processing and presentation promotes immune recognition of tumors.   Cancer Res. 2008;68(23):9601-9607. doi:10.1158/0008-5472.CAN-07-5270PubMedGoogle ScholarCrossref
98.
Woan  KV , Lienlaf  M , Perez-Villaroel  P ,  et al.  Targeting histone deacetylase 6 mediates a dual anti-melanoma effect: enhanced antitumor immunity and impaired cell proliferation.   Mol Oncol. 2015;9(7):1447-1457. doi:10.1016/j.molonc.2015.04.002PubMedGoogle ScholarCrossref
99.
Kortenhorst  MSQ , Wissing  MD , Rodríguez  R ,  et al.  Analysis of the genomic response of human prostate cancer cells to histone deacetylase inhibitors.   Epigenetics. 2013;8(9):907-920. doi:10.4161/epi.25574PubMedGoogle ScholarCrossref
100.
Kitamura  H , Torigoe  T , Asanuma  H , Honma  I , Sato  N , Tsukamoto  T .  Down-regulation of HLA class I antigens in prostate cancer tissues and up-regulation by histone deacetylase inhibition.   J Urol. 2007;178(2):692-696. doi:10.1016/j.juro.2007.03.109PubMedGoogle ScholarCrossref
101.
Fonsatti  E , Nicolay  HJM , Sigalotti  L ,  et al.  Functional up-regulation of human leukocyte antigen class I antigens expression by 5-aza-2′-deoxycytidine in cutaneous melanoma: immunotherapeutic implications.   Clin Cancer Res. 2007;13(11):3333-3338. doi:10.1158/1078-0432.CCR-06-3091PubMedGoogle ScholarCrossref
102.
Rodríguez  T , Méndez  R , Del Campo  A ,  et al.  Distinct mechanisms of loss of IFN-gamma mediated HLA class I inducibility in two melanoma cell lines.   BMC Cancer. 2007;7:34. doi:10.1186/1471-2407-7-34PubMedGoogle ScholarCrossref
103.
Coral  S , Sigalotti  L , Gasparollo  A ,  et al.  Prolonged upregulation of the expression of HLA class I antigens and costimulatory molecules on melanoma cells treated with 5-aza-2′-deoxycytidine (5-AZA-CdR).   J Immunother. 1999;22(1):16-24. doi:10.1097/00002371-199901000-00003PubMedGoogle ScholarCrossref
104.
Fonsatti  E , Sigalotti  L , Coral  S , Colizzi  F , Altomonte  M , Maio  M .  Methylation-regulated expression of HLA class I antigens in melanoma.   Int J Cancer. 2003;105(3):430-431. doi:10.1002/ijc.11077PubMedGoogle ScholarCrossref
105.
Coral  S , Sigalotti  L , Colizzi  F ,  et al.  Phenotypic and functional changes of human melanoma xenografts induced by DNA hypomethylation: immunotherapeutic implications.   J Cell Physiol. 2006;207(1):58-66. doi:10.1002/jcp.20540PubMedGoogle ScholarCrossref
106.
Gasparollo  A , Coral  S , Ciullo  M ,  et al.  Unbalanced expression of HLA-A and -B antigens: a specific feature of cutaneous melanoma and other non-hemopoietic malignancies reverted by IFN-γ.   Int J Cancer. 2001;91(4):500-507. doi:10.1002/1097-0215(200002)9999:9999<::AID-IJC1076>3.0.CO;2-IPubMedGoogle ScholarCrossref
107.
Serrano  A , Tanzarella  S , Lionello  I ,  et al.  Repression of HLA class I antigens and restoration of antigen-specific CTL response in melanoma cells following 5-aza-2′-deoxycytidine treatment.   Int J Cancer. 2001;94(2):243-251. doi:10.1002/ijc.1452PubMedGoogle ScholarCrossref
108.
Coral  S , Parisi  G , Nicolay  HJ ,  et al.  Immunomodulatory activity of SGI-110, a 5-aza-2′-deoxycytidine-containing demethylating dinucleotide.   Cancer Immunol Immunother. 2013;62(3):605-614. doi:10.1007/s00262-012-1365-7PubMedGoogle ScholarCrossref
109.
Santamaria  M , Molina  I , Muñoz  E , Lopez  A , Toro  M , Peña  J .  Identification and characterization of a human cell line with dendritic cell features.   Virchows Arch B Cell Pathol Incl Mol Pathol. 1988;56(2):77-83. doi:10.1007/BF02890005PubMedGoogle Scholar
110.
Carlow  DA , Kerbel  RS , Feltis  JT , Elliott  BE .  Enhanced expression of class I major histocompatibility complex gene (Dk) products on immunogenic variants of a spontaneous murine carcinoma.   J Natl Cancer Inst. 1985;75(2):291-301. doi:10.1093/jnci/75.2.291PubMedGoogle Scholar
111.
Sultan  M , Vidovic  D , Paine  AS ,  et al.  Epigenetic silencing of TAP1 in aldefluor+ breast cancer stem cells contributes to their enhanced immune evasion.   Stem Cells. 2018;36(5):641-654. doi:10.1002/stem.2780PubMedGoogle ScholarCrossref
112.
Jiang  Q , Pan  HY , Ye  DX , Zhang  P , Zhong  LP , Zhang  ZY .  Downregulation of tapasin expression in primary human oral squamous cell carcinoma: association with clinical outcome.   Tumour Biol. 2010;31(5):451-459. doi:10.1007/s13277-010-0054-4PubMedGoogle ScholarCrossref
113.
Nie  Y , Yang  G , Song  Y ,  et al.  DNA hypermethylation is a mechanism for loss of expression of the HLA class I genes in human esophageal squamous cell carcinomas.   Carcinogenesis. 2001;22(10):1615-1623. doi:10.1093/carcin/22.10.1615PubMedGoogle ScholarCrossref
114.
Bonal  FJ , Pareja  E , Martin  J , Romero  C , Garrido  F .  Repression of class I H-2K, H-2D antigens on GR9 methylcholanthrene-induced tumour cell clones is related to the level of DNA methylation.   J Immunogenet. 1986;13(2-3):179-186. doi:10.1111/j.1744-313X.1986.tb01099.xPubMedGoogle ScholarCrossref
115.
Aboud  M , Amitai  H , Huleihel  M , Har-vardi  I , Gopas  J , Segal  S .  Differential transcriptional control of the H-2K and H-2D loci of the major histocompatibility complex in fibrosarcoma cells.   Immunol Invest. 1991;20(5-6):475-485. doi:10.3109/08820139109082628PubMedGoogle ScholarCrossref
116.
Ananthaswamy  HN .  Regulated expression of tumor-specific and MHC class I antigens in an ultraviolet radiation-induced murine skin cancer.   J Invest Dermatol. 1988;90(3):263-266. doi:10.1111/1523-1747.ep12455869PubMedGoogle ScholarCrossref
117.
Natsume  A , Wakabayashi  T , Tsujimura  K ,  et al.  The DNA demethylating agent 5-aza-2′-deoxycytidine activates NY-ESO-1 antigenicity in orthotopic human glioma.   Int J Cancer. 2008;122(11):2542-2553. doi:10.1002/ijc.23407PubMedGoogle ScholarCrossref
118.
Konkankit  VV , Kim  W , Koya  RC ,  et al.  Decitabine immunosensitizes human gliomas to NY-ESO-1 specific T lymphocyte targeting through the Fas/Fas ligand pathway.   J Transl Med. 2011;9:192. doi:10.1186/1479-5876-9-192PubMedGoogle ScholarCrossref
119.
Tripathi  SC , Peters  HL , Taguchi  A ,  et al.  Immunoproteasome deficiency is a feature of non-small cell lung cancer with a mesenchymal phenotype and is associated with a poor outcome.   Proc Natl Acad Sci U S A. 2016;113(11):E1555-E1564. doi:10.1073/pnas.1521812113PubMedGoogle ScholarCrossref
120.
Adair  SJ , Hogan  KT .  Treatment of ovarian cancer cell lines with 5-aza-2′-deoxycytidine upregulates the expression of cancer-testis antigens and class I major histocompatibility complex-encoded molecules.   Cancer Immunol Immunother. 2009;58(4):589-601. doi:10.1007/s00262-008-0582-6PubMedGoogle ScholarCrossref
121.
Cremisi  C .  Effect of 5-azacytidine treatment on mouse embryonal carcinoma cells.   J Cell Physiol. 1983;116(2):181-190. doi:10.1002/jcp.1041160209PubMedGoogle ScholarCrossref
122.
Srivastava  RM , Trivedi  S , Concha-Benavente  F ,  et al.  Stat1-induced HLA class I upregulation enhances immunogenicity and clinical response to anti-EGFR mab cetuximab therapy in HNC patients.   Cancer Immunol Res. 2015;3(8):936-945. doi:10.1158/2326-6066.CIR-15-0053 PubMedGoogle ScholarCrossref
123.
Watanabe  S , Hayashi  H , Haratani  K ,  et al.  Mutational activation of the epidermal growth factor receptor down-regulates major histocompatibility complex class I expression via the extracellular signal-regulated kinase in non-small cell lung cancer.   Cancer Sci. 2019;110(1):52-60. doi:10.1111/cas.13860PubMedGoogle ScholarCrossref
124.
He  S , Yin  T , Li  D ,  et al.  Enhanced interaction between natural killer cells and lung cancer cells: involvement in gefitinib-mediated immunoregulation.   J Transl Med. 2013;11:186. doi:10.1186/1479-5876-11-186PubMedGoogle ScholarCrossref
125.
Garrido  G , Rabasa  A , Garrido  C ,  et al.  Upregulation of HLA class I expression on tumor cells by the anti-EGFR antibody nimotuzumab.   Front Pharmacol. 2017;8:595. doi:10.3389/fphar.2017.00595PubMedGoogle ScholarCrossref
126.
Pollack  BP , Sapkota  B , Cartee  TV .  Epidermal growth factor receptor inhibition augments the expression of MHC class I and II genes.   Clin Cancer Res. 2011;17(13):4400-4413. doi:10.1158/1078-0432.CCR-10-3283PubMedGoogle ScholarCrossref
127.
Mimura  K , Shiraishi  K , Mueller  A ,  et al.  The MAPK pathway is a predominant regulator of HLA-A expression in esophageal and gastric cancer.   J Immunol. 2013;191(12):6261-6272. doi:10.4049/jimmunol.1301597 PubMedGoogle ScholarCrossref
128.
Sabbatino  F , Wang  Y , Scognamiglio  G ,  et al.  Antitumor activity of BRAF inhibitor and IFNα; combination in BRAF-mutant melanoma.   J Natl Cancer Inst. 2016;108(7). doi:10.1093/jnci/djv435 PubMedGoogle Scholar
129.
Frazao  A , Colombo  M , Fourmentraux-Neves  E ,  et al.  Shifting the balance of activating and inhibitory natural killer receptor ligands on BRAFV600E melanoma lines with vemurafenib.   Cancer Immunol Res. 2017;5(7):582-593. doi:10.1158/2326-6066.CIR-16-0380PubMedGoogle ScholarCrossref
130.
Sottile  R , Pangigadde  PN , Tan  T ,  et al.  HLA class I downregulation is associated with enhanced NK-cell killing of melanoma cells with acquired drug resistance to BRAF inhibitors.   Eur J Immunol. 2016;46(2):409-419. doi:10.1002/eji.201445289PubMedGoogle ScholarCrossref
131.
Kakavand  H , Rawson  RV , Pupo  GM ,  et al.  PD-L1 expression and immune escape in melanoma resistance to MAPK inhibitors.   Clin Cancer Res. 2017;23(20):6054-6061. doi:10.1158/1078-0432.CCR-16-1688 PubMedGoogle ScholarCrossref
132.
Inoue  M , Mimura  K , Izawa  S ,  et al.  Expression of MHC class I on breast cancer cells correlates inversely with HER2 expression.   Oncoimmunology. 2012;1(7):1104-1110. doi:10.4161/onci.21056PubMedGoogle ScholarCrossref
133.
Sers  C , Kuner  R , Falk  CS ,  et al.  Down-regulation of HLA Class I and NKG2D ligands through a concerted action of MAPK and DNA methyltransferases in colorectal cancer cells.   Int J Cancer. 2009;125(7):1626-1639. doi:10.1002/ijc.24557PubMedGoogle ScholarCrossref
134.
Angell  TE , Lechner  MG , Jang  JK , LoPresti  JS , Epstein  AL .  MHC class I loss is a frequent mechanism of immune escape in papillary thyroid cancer that is reversed by interferon and selumetinib treatment in vitro.   Clin Cancer Res. 2014;20(23):6034-6044. doi:10.1158/1078-0432.CCR-14-0879PubMedGoogle ScholarCrossref
135.
Quintana  E , Schulze  CJ , Myers  DR ,  et al.  Allosteric inhibition of SHP2 stimulates antitumor immunity by transforming the immunosuppressive environment.   Cancer Res. 2020;80(13):2889-2902. doi:10.1158/0008-5472.CAN-19-3038PubMedGoogle ScholarCrossref
136.
Deb Pal  A , Banerjee  S .  Epstein-Barr virus latent membrane protein 2A mediated activation of Sonic Hedgehog pathway induces HLA class Ia downregulation in gastric cancer cells.   Virology. 2015;484:22-32. doi:10.1016/j.virol.2015.05.007 PubMedGoogle ScholarCrossref
137.
Yamamoto  K , Venida  A , Yano  J ,  et al.  Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-I.   Nature. 2020;581(7806):100-105. doi:10.1038/s41586-020-2229-5 PubMedGoogle ScholarCrossref
138.
Li  B , Lei  Z , Lichty  BD ,  et al.  Autophagy facilitates major histocompatibility complex class I expression induced by IFN-γ in B16 melanoma cells.   Cancer Immunol Immunother. 2010;59(2):313-321. doi:10.1007/s00262-009-0752-1 PubMedGoogle ScholarCrossref
139.
Brea  EJ , Oh  CY , Manchado  E ,  et al.  Kinase regulation of human MHC class i molecule expression on cancer cells.   Cancer Immunol Res. 2016;4(11):936-947. doi:10.1158/2326-6066.CIR-16-0177 PubMedGoogle ScholarCrossref
140.
Kang  SH , Keam  B , Ahn  YO ,  et al.  Inhibition of MEK with trametinib enhances the efficacy of anti-PD-L1 inhibitor by regulating anti-tumor immunity in head and neck squamous cell carcinoma.   Oncoimmunology. 2018;8(1):e1515057. doi:10.1080/2162402X.2018.1515057 PubMedGoogle Scholar
141.
Gibbons  DL , Chow  LQ , Kim  DW ,  et al.  Efficacy, safety and tolerability of MEDI4736 (durvalumab [D]), a human IgG1 anti-programmed cell death-ligand-1 (PD-L1) antibody, combined with gefitinib (G): a phase I expansion in TKI-naïve patients (pts) with EGFR mutant NSCLC.   J Thorac Oncol. 2016;11(4):S79. doi:10.1016/S1556-0864(16)30171-X Google ScholarCrossref
142.
Atkins  MB , Plimack  ER , Puzanov  I ,  et al.  Axitinib in combination with pembrolizumab in patients with advanced renal cell cancer: a non-randomised, open-label, dose-finding, and dose-expansion phase 1b trial.   Lancet Oncol. 2018;19(3):405-415. doi:10.1016/S1470-2045(18)30081-0 PubMedGoogle ScholarCrossref
143.
Hwu  P , Hamid  O , Gonzalez  R ,  et al  Preliminary safety and clinical activity of atezolizumab combined with cobimetinib and vemurafenib in BRAF V600-mutant metastatic melanoma.   Ann Oncol. 2016;27:vi380. doi:10.1093/annonc/mdw379.05 Google ScholarCrossref
144.
Zeh  HJ , Bahary  N , Boone  BA ,  et al.  A randomized phase II preoperative study of autophagy inhibition with high-dose hydroxychloroquine and gemcitabine/nab-paclitaxel in pancreatic cancer patients.   Clin Cancer Res. 2020;26(13):3126-3134. doi:10.1158/1078-0432.CCR-19-4042 PubMedGoogle ScholarCrossref
145.
Liu  X , Bao  X , Hu  M ,  et al.  Inhibition of PCSK9 potentiates immune checkpoint therapy for cancer.   Nature. 2020;588(7839):693-698. doi:10.1038/s41586-020-2911-7 PubMedGoogle ScholarCrossref
AMA CME Accreditation Information

Credit Designation Statement: The American Medical Association designates this Journal-based CME activity activity for a maximum of 1.00  AMA PRA Category 1 Credit(s)™. Physicians should claim only the credit commensurate with the extent of their participation in the activity.

Successful completion of this CME activity, which includes participation in the evaluation component, enables the participant to earn up to:

  • 1.00 Medical Knowledge MOC points in the American Board of Internal Medicine's (ABIM) Maintenance of Certification (MOC) program;;
  • 1.00 Self-Assessment points in the American Board of Otolaryngology – Head and Neck Surgery’s (ABOHNS) Continuing Certification program;
  • 1.00 MOC points in the American Board of Pediatrics’ (ABP) Maintenance of Certification (MOC) program;
  • 1.00 Lifelong Learning points in the American Board of Pathology’s (ABPath) Continuing Certification program; and
  • 1.00 CME points in the American Board of Surgery’s (ABS) Continuing Certification program

It is the CME activity provider's responsibility to submit participant completion information to ACCME for the purpose of granting MOC credit.

Close
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
Close
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close

Name Your Search

Save Search
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Close
Close

Lookup An Activity

or

My Saved Searches

You currently have no searches saved.

Close

My Saved Courses

You currently have no courses saved.

Close