[Skip to Content]
[Skip to Content Landing]

Aiming at a Tailored Cure for ERBB2-Positive Metastatic Breast CancerA Review

Educational Objective
To identify the key insights or developments described in this article
1 Credit CME
Abstract

Importance  Metastatic breast cancer (MBC) has traditionally been considered incurable. Accordingly, current treatment algorithms are aimed at maintaining quality of life and improving overall survival, rather than at complete eradication of the disease. Attempts to achieve cure with high-dose chemotherapy were conducted in the 1990s, with no observed long-term benefit compared with conventional chemotherapy. Nonetheless, Erb-B2 receptor tyrosine kinase 2 (ERBB2, formerly HER2)-targeted biologic treatments, developed in the past 2 decades, are currently challenging this paradigm. Indeed, a fraction of patients with ERBB2-positive MBC achieve long-lasting responses to chemotherapy and ERBB2-blockade, resembling a cure. In this setting, the challenge of identifying the optimal curable population has emerged, including identifying populations in whom treatment escalation strategies may be beneficial, while avoiding overtreatment in patients with incurable disease.

Observations  A number of clinical and pathologic features allow physicians to identify patients with ERBB2-positive MBC who are more likely to experience a long-lasting response to chemotherapy and ERBB2-blockade. Long-term responders tend to be de novo metastatic, have a reduced disease burden, and tend to show deep responses to systemic treatment. In pathologic terms, features associated with long-term response are high ERBB2 expression, lack of detrimental genomic aberrations, and antitumor immune activation. This population of patients may potentially derive benefit from a tailored escalation of frontline treatment with novel anti-ERBB2 drugs, such as trastuzumab deruxtecan, tucatinib, or margetuximab. Additional recent therapeutic and diagnostic advancements could further aid in the path toward a cure for ERBB2-positive MBC.

Conclusions and Relevance  Careful implementation of novel diagnostic and treatment tools could potentially expand the population of patients with ERBB2-positive MBC experiencing long-lasting disease response. Trials are in preparation to confirm this paradigm, and hopefully lead to a new era of precision therapy for breast cancer.

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 Credit(s)™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

CME Disclosure Statement: Unless noted, all individuals in control of content reported no relevant financial relationships. If applicable, all relevant financial relationships have been mitigated.

Article Information

Accepted for Publication: October 5, 2021.

Published Online: January 13, 2022. doi:10.1001/jamaoncol.2021.6597

Corresponding Author: Sara M. Tolaney, MD, MPH, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA 02215 (sara_tolaney@dfci.harvard.edu).

Author Contributions: Dr Tarantino had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: Tarantino, Curigliano, Parsons, Krop, Winer, Tolaney.

Acquisition, analysis, or interpretation of data: Tarantino, Curigliano, Lin, Mittendorf, Waks, Tolaney.

Drafting of the manuscript: Tarantino, Curigliano, Mittendorf, Tolaney.

Critical revision of the manuscript for important intellectual content: All authors.

Administrative, technical, or material support: Tarantino, Curigliano, Tolaney.

Supervision: Tarantino, Curigliano, Parsons, Krop, Tolaney.

Conflict of Interest Disclosures: Dr Tarantino has served as an adviser/consultant to AstraZeneca and is supported by an American-Italian Cancer Foundation Post-Doctoral Research Fellowship. Dr Curigliano received honoraria for speaker, consultancy, or advisory roles from Roche, Pfizer, Novartis, Seattle Genetics, Lilly, Ellipses Pharma, Foundation Medicine, Daiichi Sankyo, and Samsung. Dr Parsons is a paid consultant for Foundation Medicine. Dr Lin reports research support (to institution) from Genentech, Merck, Pfizer, and Seattle Genetics; consultant/advisory board: Puma, Seattle Genetics, Daiichi Sankyo, AstraZeneca, Denali Therapeutics, California Institute for Regenerative Medicine, and Prelude Therapeutics. Dr Krop reports research support (to institution) from Genentech/Roche and Pfizer, has received fees from Novartis and Merck for Data Monitoring Board participation, received honoraria from Celltrion, and has received consulting fees from Bristol Myers Squibb, Daiichi/Sankyo, Macrogenics, Context Therapeutics, Taiho Oncology, Genentech/Roche, Seattle Genetics, and AstraZeneca. Dr Mittendorf has received research support from GlaxoSmithKline; honoraria from Physician Education Resource; compensation for serving on advisory boards for AstraZeneca, Exact Sciences, Merck, Peregrine Pharmaceuticals, Roche/Genentech, Sellas Lifesciences, and TapImmune; institutional support from AstraZeneca, EMD Serono, Galena Biopharma, and Roche/Genentech; and has served as an uncompensated steering committee member for Bristol Myers Squibb, Lilly and Roche/Genentech. Dr Waks receives institutional research funding from Genentech/Roche. Dr Winer is a scientific advisory board member for Leap, and reports consultancy fees from Garrick Therapeutics, G1 Therapeutics, Roche Genentech, Genomic Health, GlaxoSmithKline, Jounce, Lilly, Novartis, Seattle Genetics, and Syros, outside the submitted work. Dr Tolaney receives institutional research funding from AstraZeneca, Lilly, Merck, Nektar, Novartis, Pfizer, Genentech/Roche, Immunomedics/Gilead, Exelixis, Bristol Myers Squibb, Eisai, Nanostring, Cyclacel, Odonate, and Seattle Genetics; has served as an adviser/consultant to AstraZeneca, Eli Lilly, Merck, Nektar, Novartis, Pfizer, Genentech/Roche, Immunomedics/Gilead, Bristol Myers Squibb, Eisai, Nanostring, Puma, Sanofi, Puma, Silverback Therapeutics, G1 Therapeutics, Athenex, OncoPep, Kyowa Kirin Pharmaceuticals, Daiichi-Sankyo, Ellipsis, Infinity, 4D Pharma, Samsung Bioepsis, Inc, Chugai Pharmaceuticals, BeyondSpring Pharmaceuticals, OncXerna, OncoSec Medical Incorporated, Certara, Mersana Therapeutics, CytomX, Seattle Genetics.

Additional Contributions: We thank Kate Bifolck, BA, for her editorial and submission assistance (full-time employee of Dana-Farber Cancer Institute).

References
1.
Harbeck  N , Penault-Llorca  F , Cortes  J ,  et al.  Breast cancer.   Nat Rev Dis Primers. 2019;5(1):66. doi:10.1038/s41572-019-0111-2PubMedGoogle ScholarCrossref
2.
DeVita  VT  Jr , Chu  E .  A history of cancer chemotherapy.   Cancer Res. 2008;68(21):8643-8653. doi:10.1158/0008-5472.CAN-07-6611PubMedGoogle ScholarCrossref
3.
Stadtmauer  EA , O’Neill  A , Goldstein  LJ ,  et al; Philadelphia Bone Marrow Transplant Group.  Conventional-dose chemotherapy compared with high-dose chemotherapy plus autologous hematopoietic stem-cell transplantation for metastatic breast cancer.   N Engl J Med. 2000;342(15):1069-1076. doi:10.1056/NEJM200004133421501PubMedGoogle ScholarCrossref
4.
Cardoso  F , Paluch-Shimon  S , Senkus  E ,  et al.  5th ESO-ESMO international consensus guidelines for advanced breast cancer (ABC 5).   Ann Oncol. 2020;31(12):1623-1649. doi:10.1016/j.annonc.2020.09.010PubMedGoogle ScholarCrossref
5.
Swain  SM , Miles  D , Kim  S-B ,  et al; CLEOPATRA study group.  Pertuzumab, trastuzumab, and docetaxel for HER2-positive metastatic breast cancer (CLEOPATRA): end-of-study results from a double-blind, randomised, placebo-controlled, phase 3 study.   Lancet Oncol. 2020;21(4):519-530. doi:10.1016/S1470-2045(19)30863-0PubMedGoogle ScholarCrossref
6.
Slamon  DJ , Leyland-Jones  B , Shak  S ,  et al.  Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2.   N Engl J Med. 2001;344(11):783-792. doi:10.1056/NEJM200103153441101PubMedGoogle ScholarCrossref
7.
Miles  D , Ciruelos  E , Schneeweiss  A ,  et al; PERUSE investigators.  Final results from the PERUSE study of first-line pertuzumab plus trastuzumab plus a taxane for HER2-positive locally recurrent or metastatic breast cancer, with a multivariable approach to guide prognostication.   Ann Oncol. 2021;32(10):1245-1255. doi:10.1016/j.annonc.2021.06.024PubMedGoogle ScholarCrossref
8.
Battisti  NML , Tong  D , Ring  A , Smith  I .  Long-term outcome with targeted therapy in advanced/metastatic HER2-positive breast cancer: the Royal Marsden experience.   Breast Cancer Res Treat. 2019;178(2):401-408. doi:10.1007/s10549-019-05406-6PubMedGoogle ScholarCrossref
9.
Wong  Y , Raghavendra  AS , Hatzis  C ,  et al.  Long-term survival of de novo stage IV human epidermal growth receptor 2 (HER2) positive breast cancers treated with HER2-targeted therapy.   Oncologist. 2019;24(3):313-318. doi:10.1634/theoncologist.2018-0213PubMedGoogle ScholarCrossref
10.
Yeo  B , Kotsori  K , Mohammed  K , Walsh  G , Smith  IE .  Long-term outcome of HER2 positive metastatic breast cancer patients treated with first-line trastuzumab.   Breast. 2015;24(6):751-757. doi:10.1016/j.breast.2015.09.008PubMedGoogle ScholarCrossref
11.
Tripathy  D , Brufsky  A , Cobleigh  M ,  et al.  De novo versus recurrent HER2-positive metastatic breast cancer: patient characteristics, treatment, and survival from the SystHERs registry.   Oncologist. 2020;25(2):e214-e222. doi:10.1634/theoncologist.2019-0446PubMedGoogle ScholarCrossref
12.
Perou  CM , Sørlie  T , Eisen  MB ,  et al.  Molecular portraits of human breast tumours.   Nature. 2000;406(6797):747-752. doi:10.1038/35021093PubMedGoogle ScholarCrossref
13.
Prat  A , Carey  LA , Adamo  B ,  et al.  Molecular features and survival outcomes of the intrinsic subtypes within HER2-positive breast cancer.   J Natl Cancer Inst. 2014;106(8):dju152. doi:10.1093/jnci/dju152PubMedGoogle ScholarCrossref
14.
Harano  K , Lei  X , Gonzalez-Angulo  AM ,  et al.  Clinicopathological and surgical factors associated with long-term survival in patients with HER2-positive metastatic breast cancer.   Breast Cancer Res Treat. 2016;159(2):367-374. doi:10.1007/s10549-016-3933-6PubMedGoogle ScholarCrossref
15.
den Brok  WD , Speers  CH , Gondara  L , Baxter  E , Tyldesley  SK , Lohrisch  CA .  Survival with metastatic breast cancer based on initial presentation, de novo versus relapsed.   Breast Cancer Res Treat. 2017;161(3):549-556. doi:10.1007/s10549-016-4080-9PubMedGoogle ScholarCrossref
16.
Malmgren  JA , Mayer  M , Atwood  MK , Kaplan  HG .  Differential presentation and survival of de novo and recurrent metastatic breast cancer over time: 1990-2010.   Breast Cancer Res Treat. 2018;167(2):579-590. doi:10.1007/s10549-017-4529-5PubMedGoogle ScholarCrossref
17.
Yardley  DA , Tripathy  D , Brufsky  AM ,  et al.  Long-term survivor characteristics in HER2-positive metastatic breast cancer from registHER.   Br J Cancer. 2014;110(11):2756-2764. doi:10.1038/bjc.2014.174PubMedGoogle ScholarCrossref
18.
Hopkins  AM , Rowland  A , McKinnon  RA , Sorich  MJ .  Predictors of long-term disease control and survival for HER2-positive advanced breast cancer patients treated with pertuzumab, trastuzumab, and docetaxel.   Front Oncol. 2019;9:789. doi:10.3389/fonc.2019.00789PubMedGoogle ScholarCrossref
19.
Yates  LR , Gerstung  M , Knappskog  S ,  et al.  Subclonal diversification of primary breast cancer revealed by multiregion sequencing.   Nat Med. 2015;21(7):751-759. doi:10.1038/nm.3886PubMedGoogle ScholarCrossref
20.
Witzel  I , Müller  V , Abenhardt  W ,  et al.  Long-term tumor remission under trastuzumab treatment for HER2 positive metastatic breast cancer—results from the HER-OS patient registry.   BMC Cancer. 2014;14(1):806. doi:10.1186/1471-2407-14-806PubMedGoogle ScholarCrossref
21.
Baselga  J , Lewis Phillips  GD , Verma  S ,  et al.  Relationship between Tumor Biomarkers and Efficacy in EMILIA, a Phase III Study of Trastuzumab Emtansine in HER2-Positive Metastatic Breast Cancer.   Clin Cancer Res. 2016;22(15):3755-3763. doi:10.1158/1078-0432.CCR-15-2499PubMedGoogle ScholarCrossref
22.
Kim  S-B , Wildiers  H , Krop  IE ,  et al.  Relationship between tumor biomarkers and efficacy in TH3RESA, a phase III study of trastuzumab emtansine (T-DM1) vs. treatment of physician’s choice in previously treated HER2-positive advanced breast cancer.   Int J Cancer. 2016;139(10):2336-2342. doi:10.1002/ijc.30276PubMedGoogle ScholarCrossref
23.
Burris  HA  III , Rugo  HS , Vukelja  SJ ,  et al.  Phase II study of the antibody drug conjugate trastuzumab-DM1 for the treatment of human epidermal growth factor receptor 2 (HER2)-positive breast cancer after prior HER2-directed therapy.   J Clin Oncol. 2011;29(4):398-405. doi:10.1200/JCO.2010.29.5865PubMedGoogle ScholarCrossref
24.
Esteva  FJ , Guo  H , Zhang  S ,  et al.  PTEN, PIK3CA, p-AKT, and p-p70S6K status: association with trastuzumab response and survival in patients with HER2-positive metastatic breast cancer.   Am J Pathol. 2010;177(4):1647-1656. doi:10.2353/ajpath.2010.090885PubMedGoogle ScholarCrossref
25.
Luen  SJ , Salgado  R , Fox  S ,  et al.  Tumour-infiltrating lymphocytes in advanced HER2-positive breast cancer treated with pertuzumab or placebo in addition to trastuzumab and docetaxel: a retrospective analysis of the CLEOPATRA study.   Lancet Oncol. 2017;18(1):52-62. doi:10.1016/S1470-2045(16)30631-3PubMedGoogle ScholarCrossref
26.
Tarantino  P , Trapani  D , Curigliano  G .  Mastering the use of novel anti-HER2 treatment options.   JCO Oncol Pract. 2021;17(10):605-606. doi:10.1200/OP.21.00216PubMedGoogle ScholarCrossref
27.
Tarantino  P , Prat  A , Cortes  J , Cardoso  F , Curigliano  G .  Third-line treatment of HER2-positive advanced breast cancer: from no standard to a Pandora’s box.   Biochim Biophys Acta Rev Cancer. 2021;1875(1):188487. doi:10.1016/j.bbcan.2020.188487PubMedGoogle ScholarCrossref
28.
Modi  S , Saura  C , Yamashita  T ,  et al; DESTINY-Breast01 Investigators.  Trastuzumab deruxtecan in previously treated HER2-positive breast cancer.   N Engl J Med. 2020;382(7):610-621. doi:10.1056/NEJMoa1914510PubMedGoogle ScholarCrossref
29.
Cortes  J , Kim  S-B , Chung  W-P ,  et al.  LBA1—Trastuzumab deruxtecan (T-DXd) vs trastuzumab emtansine (T-DM1) in patients (Pts) with HER2+ metastatic breast cancer (mBC): Results of the randomized phase III DESTINY-Breast03 study.   Ann Oncol. 2021;32(suppl_5):S1283-S1346.Google Scholar
30.
Murthy  RK , Loi  S , Okines  A ,  et al.  Tucatinib, trastuzumab, and capecitabine for HER2-positive metastatic breast cancer.   N Engl J Med. 2020;382(7):597-609. doi:10.1056/NEJMoa1914609PubMedGoogle ScholarCrossref
31.
Lin  NU , Borges  V , Anders  C ,  et al.  Intracranial efficacy and survival with tucatinib plus trastuzumab and capecitabine for previously treated HER2-positive breast cancer with brain metastases in the HER2CLIMB trial.   J Clin Oncol. 2020:JCO.20.00775. doi:10.1200/JCO.20.00775Google ScholarCrossref
32.
Stemmler  H-J , Schmitt  M , Willems  A , Bernhard  H , Harbeck  N , Heinemann  V .  Ratio of trastuzumab levels in serum and cerebrospinal fluid is altered in HER2-positive breast cancer patients with brain metastases and impairment of blood-brain barrier.   Anticancer Drugs. 2007;18(1):23-28. doi:10.1097/01.cad.0000236313.50833.eePubMedGoogle ScholarCrossref
33.
Swain  SM , Baselga  J , Miles  D ,  et al.  Incidence of central nervous system metastases in patients with HER2-positive metastatic breast cancer treated with pertuzumab, trastuzumab, and docetaxel: results from the randomized phase III study CLEOPATRA.   Ann Oncol. 2014;25(6):1116-1121. doi:10.1093/annonc/mdu133PubMedGoogle ScholarCrossref
34.
Pestalozzi  BC , Holmes  E , de Azambuja  E ,  et al.  CNS relapses in patients with HER2-positive early breast cancer who have and have not received adjuvant trastuzumab: a retrospective substudy of the HERA trial (BIG 1-01).   Lancet Oncol. 2013;14(3):244-248. doi:10.1016/S1470-2045(13)70017-2PubMedGoogle ScholarCrossref
35.
von Minckwitz  G , Huang  C-S , Mano  MS ,  et al; KATHERINE Investigators.  Trastuzumab emtansine for residual invasive HER2-positive breast cancer.   N Engl J Med. 2019;380(7):617-628. doi:10.1056/NEJMoa1814017PubMedGoogle ScholarCrossref
36.
Rugo  HS , Im  SA , Cardoso  F ,  et al; SOPHIA Study Group.  Efficacy of margetuximab vs trastuzumab in patients with pretreated ERBB2-positive advanced breast cancer: a phase 3 randomized clinical trial.   JAMA Oncol. 2021;7(4):573-584. doi:10.1001/jamaoncol.2020.7932PubMedGoogle ScholarCrossref
37.
Tarantino  P , Morganti  S , Curigliano  G.   Targeting HER2 in breast cancer: new drugs and paradigms on the horizon.   Explor Target Anti-tumor Ther. 2021;2(2):139-155. doi:10.37349/etat.2021.00037Google ScholarCrossref
38.
Salgado  R , Denkert  C , Campbell  C ,  et al.  Tumor-infiltrating lymphocytes and associations with pathological complete response and event-free survival in HER2-positive early-stage breast cancer treated with lapatinib and trastuzumab: a secondary analysis of the NeoALTTO Trial.   JAMA Oncol. 2015;1(4):448-454. doi:10.1001/jamaoncol.2015.0830PubMedGoogle ScholarCrossref
39.
Nuciforo  P , Prat  A , Llombart  A ,  et al  Tumor-infiltrating lymphocytes (TILs) in HER2-positive (HER2+) early breast cancer treated with neoadjuvant lapatinib and trastuzumab without chemotherapy in the PAMELA Trial.   Ann Oncol. 2017;28:v46. doi:10.1093/annonc/mdx362.006Google ScholarCrossref
40.
Hiam-Galvez  KJ , Allen  BM , Spitzer  MH .  Systemic immunity in cancer.   Nat Rev Cancer. 2021;21(6):345-359. doi:10.1038/s41568-021-00347-zPubMedGoogle ScholarCrossref
41.
Michielin  O , Atkins  MB , Koon  HB , Dummer  R , Ascierto  PA .  Evolving impact of long-term survival results on metastatic melanoma treatment.   J Immunother Cancer. 2020;8(2):e000948. doi:10.1136/jitc-2020-000948PubMedGoogle ScholarCrossref
42.
Chapman  PB , Einhorn  LH , Meyers  ML ,  et al.  Phase III multicenter randomized trial of the Dartmouth regimen versus dacarbazine in patients with metastatic melanoma.   J Clin Oncol. 1999;17(9):2745-2751. doi:10.1200/JCO.1999.17.9.2745PubMedGoogle ScholarCrossref
43.
Larkin  J , Chiarion-Sileni  V , Gonzalez  R ,  et al.  Five-year survival with combined nivolumab and ipilimumab in advanced melanoma.   N Engl J Med. 2019;381(16):1535-1546. doi:10.1056/NEJMoa1910836PubMedGoogle ScholarCrossref
44.
Wolchok  JD , Chiarion-Sileni  V , Gonzalez  R ,  et al.  CheckMate 067: 6.5-year outcomes in patients (pts) with advanced melanoma.   J Clin Oncol. 2021;39(suppl_15):9506-9506. doi:10.1200/JCO.2021.39.15_suppl.9506Google ScholarCrossref
45.
Reck  M , Rodríguez-Abreu  D , Robinson  AG ,  et al.  Five-year outcomes with pembrolizumab versus chemotherapy for metastatic non–small-cell lung cancer with PD-L1 tumor proportion score ≥ 50%.   J Clin Oncol. 2021;39(21):2339-2349. doi:10.1200/jco.21.00174Google ScholarCrossref
46.
Albiges  L , Tannir  NM , Burotto  M ,  et al.  Nivolumab plus ipilimumab versus sunitinib for first-line treatment of advanced renal cell carcinoma: extended 4-year follow-up of the phase III CheckMate 214 trial.   ESMO Open. 2020;5(6):e001079. doi:10.1136/esmoopen-2020-001079PubMedGoogle ScholarCrossref
47.
Nghiem  P , Bhatia  S , Brohl  AS ,  et al.  Avelumab in patients with previously treated Merkel cell carcinoma (JAVELIN Merkel 200): Updated overall survival data after more than five years of follow up.   J Clin Oncol. 2021;39(suppl_15):9517-9517. doi:10.1200/JCO.2021.39.15_suppl.9517Google ScholarCrossref
48.
Clynes  RA , Towers  TL , Presta  LG , Ravetch  JV .  Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets.   Nat Med. 2000;6(4):443-446. doi:10.1038/74704PubMedGoogle ScholarCrossref
49.
Park  S , Jiang  Z , Mortenson  ED ,  et al.  The therapeutic effect of anti-HER2/neu antibody depends on both innate and adaptive immunity.   Cancer Cell. 2010;18(2):160-170. doi:10.1016/j.ccr.2010.06.014PubMedGoogle ScholarCrossref
50.
Stagg  J , Loi  S , Divisekera  U ,  et al.  Anti-ErbB-2 mAb therapy requires type I and II interferons and synergizes with anti-PD-1 or anti-CD137 mAb therapy.   Proc Natl Acad Sci U S A. 2011;108(17):7142-7147. doi:10.1073/pnas.1016569108PubMedGoogle ScholarCrossref
51.
Emens  LA , Esteva  FJ , Beresford  M ,  et al.  Trastuzumab emtansine plus atezolizumab versus trastuzumab emtansine plus placebo in previously treated, HER2-positive advanced breast cancer (KATE2): a phase 2, multicentre, randomised, double-blind trial.   Lancet Oncol. 2020;21(10):1283-1295. doi:10.1016/S1470-2045(20)30465-4PubMedGoogle ScholarCrossref
52.
Loi  S , Giobbie-Hurder  A , Gombos  A ,  et al; International Breast Cancer Study Group and the Breast International Group.  Pembrolizumab plus trastuzumab in trastuzumab-resistant, advanced, HER2-positive breast cancer (PANACEA): a single-arm, multicentre, phase 1b-2 trial.   Lancet Oncol. 2019;20(3):371-382. doi:10.1016/S1470-2045(18)30812-XPubMedGoogle ScholarCrossref
53.
Huober  J , Barrios  CH , Niikura  N ,  et al  VP6-2021: IMpassion050: A phase III study of neoadjuvant atezolizumab + pertuzumab + trastuzumab + chemotherapy (neoadj A + PH + CT) in high-risk, HER2-positive early breast cancer (EBC).   Ann Oncol. 2021;32(8):1061-1062. doi:10.1016/j.annonc.2021.05.800Google ScholarCrossref
54.
Criscitiello  C , Giuliano  M , Curigliano  G ,  et al.  Surgery of the primary tumor in de novo metastatic breast cancer: To do or not to do?   Eur J Surg Oncol. 2015;41(10):1288-1292. doi:10.1016/j.ejso.2015.07.013PubMedGoogle ScholarCrossref
55.
Cardoso  M-J , Mokbel  K .  Locoregional therapy in de novo metastatic breast cancer. The unanswered question.   Breast. 2021;58:170-172. doi:10.1016/j.breast.2021.05.002PubMedGoogle ScholarCrossref
56.
Khan  SA , Zhao  F , Solin  LJ ,  et al.  A randomized phase III trial of systemic therapy plus early local therapy versus systemic therapy alone in women with de novo stage IV breast cancer: A trial of the ECOG-ACRIN Research Group (E2108).   J Clin Oncol. 2020;38(suppl_18):LBA2-LBA2. doi:10.1200/JCO.2020.38.18_suppl.LBA2Google ScholarCrossref
57.
Lo  SS , Fakiris  AJ , Chang  EL ,  et al.  Stereotactic body radiation therapy: a novel treatment modality.   Nat Rev Clin Oncol. 2010;7(1):44-54. doi:10.1038/nrclinonc.2009.188PubMedGoogle ScholarCrossref
58.
Ignatiadis  M , Sledge  GW , Jeffrey  SS .  Liquid biopsy enters the clinic—implementation issues and future challenges.   Nat Rev Clin Oncol. 2021;18(5):297-312. doi:10.1038/s41571-020-00457-xPubMedGoogle ScholarCrossref
59.
Janni  WJ , Yab  TC , Hayes  DF ,  et al. Abstract GS4-08: Clinical utility of repeated circulating tumor cell (CTC) enumeration as early treatment monitoring tool in metastatic breast cancer (MBC)—a global pooled analysis with individual patient data. In: General Session Abstracts. American Association for Cancer Research. 2021:GS4-08-GS4-08. doi:10.1158/1538-7445.SABCS20-GS4-08
60.
Guan  X , Liu  B , Niu  Y ,  et al.  Longitudinal HER2 amplification tracked in circulating tumor DNA for therapeutic effect monitoring and prognostic evaluation in patients with breast cancer.   Breast. 2020;49:261-266. doi:10.1016/j.breast.2019.12.010PubMedGoogle ScholarCrossref
61.
Ma  F , Zhu  W , Guan  Y ,  et al.  ctDNA dynamics: a novel indicator to track resistance in metastatic breast cancer treated with anti-HER2 therapy.   Oncotarget. 2016;7(40):66020-66031. doi:10.18632/oncotarget.11791PubMedGoogle ScholarCrossref
62.
Ngai  LL , Kelder  A , Janssen  JJWM , Ossenkoppele  GJ , Cloos  J .  MRD tailored therapy in AML: what we have learned so far.   Front Oncol. 2021;10:603636. doi:10.3389/fonc.2020.603636PubMedGoogle ScholarCrossref
63.
Richter  J , Lübking  A , Söderlund  S ,  et al.  Molecular status 36 months after TKI discontinuation in CML is highly predictive for subsequent loss of MMR-final report from AFTER-SKI.   Leukemia. 2021;35(8):2416-2418. doi:10.1038/s41375-021-01173-wPubMedGoogle ScholarCrossref
AMA CME Accreditation Information

Credit Designation Statement: The American Medical Association designates this Journal-based CME activity activity for a maximum of 1.00  AMA PRA Category 1 Credit(s)™. Physicians should claim only the credit commensurate with the extent of their participation in the activity.

Successful completion of this CME activity, which includes participation in the evaluation component, enables the participant to earn up to:

  • 1.00 Medical Knowledge MOC points in the American Board of Internal Medicine's (ABIM) Maintenance of Certification (MOC) program;;
  • 1.00 Self-Assessment points in the American Board of Otolaryngology – Head and Neck Surgery’s (ABOHNS) Continuing Certification program;
  • 1.00 MOC points in the American Board of Pediatrics’ (ABP) Maintenance of Certification (MOC) program;
  • 1.00 Lifelong Learning points in the American Board of Pathology’s (ABPath) Continuing Certification program; and
  • 1.00 credit toward the CME [and Self-Assessment requirements] of the American Board of Surgery’s Continuous Certification program

It is the CME activity provider's responsibility to submit participant completion information to ACCME for the purpose of granting MOC credit.

Close
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
Close
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close

Name Your Search

Save Search
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Close
Close

Lookup An Activity

or

My Saved Searches

You currently have no searches saved.

Close

My Saved Courses

You currently have no courses saved.

Close