[Skip to Content]
[Skip to Content Landing]

Assessment of a Smartphone-Based Loop-Mediated Isothermal Amplification Assay for Detection of SARS-CoV-2 and Influenza Viruses

Educational Objective
To identify the key insights or developments described in this article
1 Credit CME
Key Points

Question  Can loop-mediated isothermal amplification (LAMP)-based methodology coupled with smartphone detection provide an inexpensive, rapid, sensitive, and reliable platform for COVID-19 and influenza testing?

Findings  In this cohort study of saliva samples from 50 community-based patients, the smartphone-based LAMP assay detected SARS-CoV-2 infection and exhibited concordance with reverse transcriptase–quantitative polymerase chain reaction tests.

Meaning  These findings suggest that the smartphone-based LAMP assay offers an additional tool to detect COVID-19 that can be readily modified in response to novel SARS-CoV-2 variants and other pathogens with pandemic potential including influenza.


Importance  A critical need exists in low-income and middle-income countries for low-cost, low-tech, yet highly reliable and scalable testing for SARS-CoV-2 virus that is robust against circulating variants.

Objective  To assess whether a smartphone-based assay is suitable for SARS-CoV-2 and influenza virus testing without requiring specialized equipment, accessory devices, or custom reagents.

Design, Setting, and Participants  This cohort study enrolled 2 subgroups of participants (symptomatic and asymptomatic) at Santa Barbara Cottage Hospital. The symptomatic group consisted of 20 recruited patients who tested positive for SARS-CoV-2 with symptoms; 30 asymptomatic patients were recruited from the same community, through negative admission screening tests for SARS-CoV-2. The smartphone-based real-time loop-mediated isothermal amplification (smaRT-LAMP) was first optimized for analysis of human saliva samples spiked with either SARS-CoV-2 or influenza A or B virus; these results then were compared with those obtained by side-by-side analysis of spiked samples using the Centers for Disease Control and Prevention (CDC) criterion-standard reverse transcriptase–quantitative polymerase chain reaction (RT-qPCR) assay. Next, both assays were used to test for SARS-CoV-2 and influenza viruses present in blinded clinical saliva samples obtained from 50 hospitalized patients. Statistical analysis was performed from May to June 2021.

Exposures  Testing for SARS-CoV-2 and influenza A and B viruses.

Main Outcomes and Measures  SARS-CoV-2 and influenza infection status and quantitative viral load were determined.

Results  Among the 50 eligible participants with no prior SARS-CoV-2 infection included in the study, 29 were men. The mean age was 57 years (range, 21 to 93 years). SmaRT-LAMP exhibited 100% concordance (50 of 50 patient samples) with the CDC criterion-standard diagnostic for SARS-CoV-2 sensitivity (20 of 20 positive and 30 of 30 negative) and for quantitative detection of viral load. This platform also met the CDC criterion standard for detection of clinically similar influenza A and B viruses in spiked saliva samples (n = 20), and in saliva samples from hospitalized patients (50 of 50 negative). The smartphone-based LAMP assay was rapid (25 minutes), sensitive (1000 copies/mL), low-cost (<$7/test), and scalable (96 samples/phone).

Conclusions and Relevance  In this cohort study of saliva samples from patients, the smartphone-based LAMP assay detected SARS-CoV-2 infection and exhibited concordance with RT-qPCR tests. These findings suggest that this tool could be adapted in response to novel CoV-2 variants and other pathogens with pandemic potential including influenza and may be useful in settings with limited resources.

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 Credit(s)™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

CME Disclosure Statement: Unless noted, all individuals in control of content reported no relevant financial relationships. If applicable, all relevant financial relationships have been mitigated.

Article Information

Accepted for Publication: December 3, 2021.

Published: January 28, 2022. doi:10.1001/jamanetworkopen.2021.45669

Open Access: This is an open access article distributed under the terms of the CC-BY License. © 2022 Heithoff DM et al. JAMA Network Open.

Corresponding Author: Michael J. Mahan, PhD, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, 2119 Biological Sciences II, Santa Barbara, CA 93106 (mahan@ucsb.edu).

Author Contributions: Dr M. Mahan had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: Heithoff, Barnes, S. Mahan, Fox, Ettinger, Fitzgibbons, Fried, Low, Samuel, M. Mahan.

Acquisition, analysis, or interpretation of data: Heithoff, Barnes, S. Mahan, Arn, Ettinger, Bishop, Fitzgibbons, Fried, Low, Samuel, M. Mahan.

Drafting of the manuscript: Heithoff, Barnes, S. Mahan, Ettinger, Fried, Low, Samuel, M. Mahan.

Critical revision of the manuscript for important intellectual content: All authors.

Statistical analysis: Heithoff, Fox, Arn, M. Mahan.

Obtained funding: M. Mahan.

Administrative, technical, or material support: Heithoff, Barnes, S. Mahan, Fox, Ettinger, Fitzgibbons, Fried, Low, Samuel, M. Mahan.

Supervision: Heithoff, Fitzgibbons, Fried, Low, Samuel, M. Mahan.

Conflict of Interest Disclosures: None reported.

Funding/Support: This research was funded by National Institutes of Health (NIH) HL131474 (Drs Fried and M. Mahan), Cottage Health Research Institute (Drs Low and M. Mahan), and U.S. Army Research Office via the Institute for Collaborative Biotechnologies cooperative agreement W911NF-19-2-0026 (Dr M. Mahan) and contract W911NF-19-D-0001-0013 (Drs Low and M. Mahan).

Role of the Funder/Sponsor: The funders had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Additional Contributions: We would like to thank Ken Y. Yoneda, MD, Professor of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of California Davis, for helpful insights regarding patient study design; compensation was not received for this work.

World Health Organization. WHO Coronavirus (COVID-19) Dashboard. Accessed January 5, 2022. https://covid19.who.int/
Ravi  N , Cortade  DL , Ng  E , Wang  SX .  Diagnostics for SARS-CoV-2 detection: a comprehensive review of the FDA-EUA COVID-19 testing landscape.   Biosens Bioelectron. 2020;165:112454. doi:10.1016/j.bios.2020.112454PubMedGoogle Scholar
Vandenberg  O , Martiny  D , Rochas  O , van Belkum  A , Kozlakidis  Z .  Considerations for diagnostic COVID-19 tests.   Nat Rev Microbiol. 2021;19(3):171-183. doi:10.1038/s41579-020-00461-zPubMedGoogle ScholarCrossref
Guglielmi  G .  Rapid coronavirus tests: a guide for the perplexed.   Nature. 2021;590(7845):202-205. doi:10.1038/d41586-021-00332-4PubMedGoogle ScholarCrossref
Thompson  D , Lei  Y.   Mini review: recent progress in RT-LAMP enabled COVID-19 detection.   Sensors Actuators Repts. 2020;2(1):100017. doi:10.1016/j.snr.2020.100017Google Scholar
Kilic  T , Weissleder  R , Lee  H .  Molecular and immunological diagnostic tests of COVID-19–current status and challenges.   iScience. 2020;23(8):101406. doi:10.1016/j.isci.2020.101406PubMedGoogle Scholar
Cheng  MP , Papenburg  J , Desjardins  M ,  et al.  Diagnostic testing for severe acute respiratory syndrome–related coronavirus 2: a narrative review.   Ann Intern Med. 2020;172(11):726-734. doi:10.7326/M20-1301PubMedGoogle ScholarCrossref
Weissleder  R , Lee  H , Ko  J , Pittet  MJ .  COVID-19 diagnostics in context.   Sci Transl Med. 2020;12(546):eabc1931. doi:10.1126/scitranslmed.abc1931PubMedGoogle Scholar
Bloom  J , Jones  E , Gasperini  M ,  et al.  Swab-Seq: a high-throughput platform for massively scaled up SARS-CoV-2 testing.   MedRxiv. 2021. Accessed June 19, 2021. https://www.medrxiv.org/content/10.1101/2020.08.04.20167874Google Scholar
Dao Thi  VL , Herbst  K , Boerner  K ,  et al.  A colorimetric RT-LAMP assay and LAMP-sequencing for detecting SARS-CoV-2 RNA in clinical samples.   Sci Transl Med. 2020;12(556):eabc7075. doi:10.1126/scitranslmed.abc7075PubMedGoogle Scholar
Ludwig  KU , Schmithausen  RM , Li  D ,  et al.  LAMP-Seq enables sensitive, multiplexed COVID-19 diagnostics using molecular barcoding.   Nat Biotechnol. 2021;(39):1556-1562. doi:10.1038/s41587-021-00966-9PubMedGoogle Scholar
Yelagandula  R , Bykov  A , Vogt  A ,  et al; VCDI.  Multiplexed detection of SARS-CoV-2 and other respiratory infections in high throughput by SARSeq.   Nat Commun. 2021;12(1):3132. doi:10.1038/s41467-021-22664-5PubMedGoogle ScholarCrossref
Moehling  TJ , Choi  G , Dugan  LC , Salit  M , Meagher  RJ .  LAMP diagnostics at the point-of-care: emerging trends and perspectives for the developer community.   Expert Rev Mol Diagn. 2021;21(1):43-61. doi:10.1080/14737159.2021.1873769PubMedGoogle ScholarCrossref
Meagher  RJ , Priye  A , Light  YK , Huang  C , Wang  E .  Impact of primer dimers and self-amplifying hairpins on reverse transcription loop-mediated isothermal amplification detection of viral RNA.   Analyst. 2018;143(8):1924-1933. doi:10.1039/C7AN01897EPubMedGoogle ScholarCrossref
Schneider  L , Blakely  H , Tripathi  A .  Mathematical model to reduce loop mediated isothermal amplification (LAMP) false-positive diagnosis.   Electrophoresis. 2019;40(20):2706-2717. doi:10.1002/elps.201900167PubMedGoogle ScholarCrossref
Zou  Y , Mason  MG , Botella  JR .  Evaluation and improvement of isothermal amplification methods for point-of-need plant disease diagnostics.   PLoS One. 2020;15(6):e0235216. doi:10.1371/journal.pone.0235216PubMedGoogle Scholar
Centers for Disease Control and Prevention. Testing guidance for clinicians when SARS-CoV-2 and influenza viruses are co-circulating. Accessed May 4, 2021. https://www.cdc.gov/flu/professionals/diagnosis/testing-guidance-for-clinicians.htm
U.S. Food and Drug Administration. Coronavirus (COVID-19) update: FDA authorizes additional COVID-19 combination diagnostic test ahead of flu season. Accessed July 2, 2020. https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-authorizes-additional-covid-19-combination-diagnostic-test-ahead-flu
United Nations NEWS. WHO calls for urgent action to ramp up production of COVID-19 vaccines for all. Accessed March 26, 2021. https://news.un.org/en/story/2021/03/108651
Belongia  EA , Osterholm  MT .  COVID-19 and flu, a perfect storm.   Science. 2020;368(6496):1163-1164. doi:10.1126/science.abd2220PubMedGoogle ScholarCrossref
Rubin  R .  What happens when COVID-19 collides with flu season?   JAMA. 2020;324(10):923-925. doi:10.1001/jama.2020.15260PubMedGoogle ScholarCrossref
Servick  K .  Coronavirus creates a flu season guessing game.   Science. 2020;369(6506):890-891. doi:10.1126/science.369.6506.890PubMedGoogle ScholarCrossref
Chen  X , Liao  B , Cheng  L ,  et al.  The microbial coinfection in COVID-19.   Appl Microbiol Biotechnol. 2020;104(18):7777-7785. doi:10.1007/s00253-020-10814-6PubMedGoogle ScholarCrossref
Centers for Disease Control and Prevention. CDC’s diagnostic test for COVID-19 only and supplies. Accessed June 19, 2021. https://www.cdc.gov/coronavirus/2019-ncov/lab/virus-requests.html
Centers for Disease Control and Prevention. CDC’s influenza SARS-CoV-2 multiplex assay and required supplies. Accessed May 6, 2021. https://www.cdc.gov/coronavirus/2019-ncov/lab/multiplex.html
Abbott. ID NOW COVID-19. Accessed September 1, 2021. https://www.globalpointofcare.abbott/en/product-details/id-now-covid-19.html
Wyllie  AL , Fournier  J , Casanovas-Massana  A ,  et al.  Saliva or nasopharyngeal swab specimens for detection of SARS-CoV-2.   N Engl J Med. 2020;383(13):1283-1286. doi:10.1056/NEJMc2016359PubMedGoogle ScholarCrossref
O'Dea  S . Number of smartphone users worldwide from 2016 to 2023. Accessed March 31, 2021. https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
Kong  JE , Wei  Q , Tseng  D ,  et al.  Highly stable and sensitive nucleic acid amplification and cell-phone-based readout.   ACS Nano. 2017;11(3):2934-2943. doi:10.1021/acsnano.6b08274PubMedGoogle ScholarCrossref
Contreras-Naranjo  J , Wei  Q , Ozcan  A .  Mobile phone-based microscopy, sensing, and diagnostics.   IEEE J Sel Top Quantum Electron. 2015;22(3):1-14. doi:10.1109/JSTQE.2015.2478657Google ScholarCrossref
Citartan  M , Tang  T-H .  Recent developments of aptasensors expedient for point-of-care (POC) diagnostics.   Talanta. 2019;199:556-566. doi:10.1016/j.talanta.2019.02.066PubMedGoogle ScholarCrossref
Xu  X , Akay  A , Wei  H ,  et al  Advances in smartphone-based point-of-care diagnostics.   Proc IEEE. 2015;103(2):236-247. doi:10.1109/JPROC.2014.2378776Google ScholarCrossref
Ozcan  A .  Mobile phones democratize and cultivate next-generation imaging, diagnostics and measurement tools.   Lab Chip. 2014;14(17):3187-3194. doi:10.1039/C4LC00010BPubMedGoogle ScholarCrossref
Zhang  L , Tian  Z , Bachman  H , Zhang  P , Huang  TJ .  A cell-phone-based acoustofluidic platform for quantitative point-of-care testing.   ACS Nano. 2020;14(3):3159-3169. doi:10.1021/acsnano.9b08349PubMedGoogle ScholarCrossref
Coleman  B , Coarsey  C , Asghar  W .  Cell phone based colorimetric analysis for point-of-care settings.   Analyst. 2019;144(6):1935-1947. doi:10.1039/C8AN02521EPubMedGoogle ScholarCrossref
Zhu  H , Isikman  SO , Mudanyali  O , Greenbaum  A , Ozcan  A .  Optical imaging techniques for point-of-care diagnostics.   Lab Chip. 2013;13(1):51-67. doi:10.1039/C2LC40864CPubMedGoogle ScholarCrossref
Ganguli  A , Mostafa  A , Berger  J ,  et al.  Rapid isothermal amplification and portable detection system for SARS-CoV-2.   Proc Natl Acad Sci U S A. 2020;117(37):22727-22735. doi:10.1073/pnas.2014739117PubMedGoogle ScholarCrossref
Fozouni  P , Son  S , Díaz de León Derby  M ,  et al.  Amplification-free detection of SARS-CoV-2 with CRISPR-Cas13a and mobile phone microscopy.   Cell. 2021;184(2):323-333.e9, E9. doi:10.1016/j.cell.2020.12.001PubMedGoogle ScholarCrossref
Soares  RRG , Akhtar  AS , Pinto  IF ,  et al.  Sample-to-answer COVID-19 nucleic acid testing using a low-cost centrifugal microfluidic platform with bead-based signal enhancement and smartphone read-out.   Lab Chip. 2021;21(15):2932-2944. doi:10.1039/D1LC00266JPubMedGoogle ScholarCrossref
Kailasa  SK , Mehta  VN , Koduru  JR ,  et al.  An overview of molecular biology and nanotechnology based analytical methods for the detection of SARS-CoV-2: promising biotools for the rapid diagnosis of COVID-19.   Analyst. 2021;146(5):1489-1513. doi:10.1039/D0AN01528HPubMedGoogle ScholarCrossref
U.S. Food and Drug Administration. Molecular diagnostic template for laboratories. Accessed June 19, 2021. https://www.fda.gov/medical-devices/coronavirus-disease-2019-covid-19-emergency-use-authorizations-medical-devices/in-vitro-diagnostics-euas
Bossuyt  PM , Reitsma  JB , Bruns  DE ,  et al; STARD Group.  STARD 2015: an updated list of essential items for reporting diagnostic accuracy studies.   BMJ. 2015;351:h5527. doi:10.1136/bmj.h5527PubMedGoogle Scholar
Centers for Disease Control and Prevention. SARS-CoV-2 variant classifications and definitions. 2021. Accessed May 6, 2021. https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/variant-surveillance/variant-info.html
Centers for Disease Control and Prevention. Weekly U.S. influenza surveillance report. 2021. Accessed June 6, 2021. https://www.cdc.gov/flu/weekly/index.htm
Williams  E , Bond  K , Zhang  B , Putland  M , Williamson  DA .  Saliva as a non-invasive specimen for detection of SARS-CoV-2.   J Clin Microbiol. 2020;58(8):e00776-e00720. doi:10.1128/JCM.00776-20PubMedGoogle ScholarCrossref
Wei  S , Suryawanshi  H , Djandji  A ,  et al.  Field-deployable, rapid diagnostic testing of saliva for SARS-CoV-2.   Sci Rep. 2021;11(1):5448. doi:10.1038/s41598-021-84792-8PubMedGoogle ScholarCrossref
Hayashida  K , Kajino  K , Hachaambwa  L , Namangala  B , Sugimoto  C .  Direct blood dry LAMP: a rapid, stable, and easy diagnostic tool for Human African Trypanosomiasis.   PLoS Negl Trop Dis. 2015;9(3):e0003578. doi:10.1371/journal.pntd.0003578PubMedGoogle Scholar
Yoshikawa  T , Matsuo  T , Kawamura  Y ,  et al.  Direct detection of human herpesvirus 6B by the LAMP method using newly developed dry-reagents.   J Virol Methods. 2014;201:65-67. doi:10.1016/j.jviromet.2014.02.017PubMedGoogle ScholarCrossref
European Centre for Disease Prevention and Control. Threat assessment brief: implications of the emergence and spread of the SARS-CoV-2 B.1.1.529 variant of concern (Omicron) for the EU/EEA. 2021. Accessed November 30, 2021. https://www.ecdc.europa.eu/en/publications-data/threat-assessment-brief-emergence-sars-cov-2-variant-b.1.1.529
Barnes  L , Heithoff  DM , Mahan  SP ,  et al.  Smartphone-based pathogen diagnosis in urinary sepsis patients.   EBioMedicine. 2018;36:73-82. doi:10.1016/j.ebiom.2018.09.001PubMedGoogle ScholarCrossref
Fox  M . The coming flu season may be bad. Here's why. 2021. Accessed June 13, 2021. https://www.cnn.com/2021/06/08/health/influenza-season-doozy/index.html
Hernández-Neuta  I , Neumann  F , Brightmeyer  J ,  et al.  Smartphone-based clinical diagnostics: towards democratization of evidence-based health care.   J Intern Med. 2019;285(1):19-39. doi:10.1111/joim.12820PubMedGoogle ScholarCrossref
Hollander  JE , Carr  BG .  Virtually perfect? telemedicine for COVID-19.   N Engl J Med. 2020;382(18):1679-1681. doi:10.1056/NEJMp2003539PubMedGoogle ScholarCrossref
AMA CME Accreditation Information

Credit Designation Statement: The American Medical Association designates this Journal-based CME activity activity for a maximum of 1.00  AMA PRA Category 1 Credit(s)™. Physicians should claim only the credit commensurate with the extent of their participation in the activity.

Successful completion of this CME activity, which includes participation in the evaluation component, enables the participant to earn up to:

  • 1.00 Medical Knowledge MOC points in the American Board of Internal Medicine's (ABIM) Maintenance of Certification (MOC) program;;
  • 1.00 Self-Assessment points in the American Board of Otolaryngology – Head and Neck Surgery’s (ABOHNS) Continuing Certification program;
  • 1.00 MOC points in the American Board of Pediatrics’ (ABP) Maintenance of Certification (MOC) program;
  • 1.00 Lifelong Learning points in the American Board of Pathology’s (ABPath) Continuing Certification program; and
  • 1.00 CME points in the American Board of Surgery’s (ABS) Continuing Certification program

It is the CME activity provider's responsibility to submit participant completion information to ACCME for the purpose of granting MOC credit.

Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right

Name Your Search

Save Search
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience

Lookup An Activity


My Saved Searches

You currently have no searches saved.


My Saved Courses

You currently have no courses saved.