[Skip to Content]
[Skip to Content Landing]

APOL1 Risk Variants, Acute Kidney Injury, and Death in Participants With African Ancestry Hospitalized With COVID-19 From the Million Veteran Program

Educational Objective
To identify the key insights or developments described in this article
1 Credit CME
Key Points

Question  Are APOL1 high-risk genotypes observed in individuals with African ancestry associated with acute kidney injury (AKI) and death following hospitalization for COVID-19?

Findings  In this cohort of 990 veterans with African ancestry hospitalized with COVID-19, 1 in 8 had APOL1 high-risk genotypes. Of those with high-risk genotypes, 51.2% had AKI, and 19.2% died, suggesting that high-risk genotype may be associated with a 2-fold increase in the odds of severe AKI and death; this increased risk was observed even in patients with normal kidney function prior to COVID-19.

Meaning  APOL1 high-risk genotypes were associated with increased odds of AKI, AKI severity, and death in individuals with African ancestry hospitalized with COVID-19.

Abstract

Importance  Coronavirus disease 2019 (COVID-19) confers significant risk of acute kidney injury (AKI). Patients with COVID-19 with AKI have high mortality rates.

Objective  Individuals with African ancestry with 2 copies of apolipoprotein L1 (APOL1) variants G1 or G2 (high-risk group) have significantly increased rates of kidney disease. We tested the hypothesis that the APOL1 high-risk group is associated with a higher-risk of COVID-19–associated AKI and death.

Design, Setting, and Participants  This retrospective cohort study included 990 participants with African ancestry enrolled in the Million Veteran Program who were hospitalized with COVID-19 between March 2020 and January 2021 with available genetic information.

Exposures  The primary exposure was having 2 APOL1 risk variants (RV) (APOL1 high-risk group), compared with having 1 or 0 risk variants (APOL1 low-risk group).

Main Outcomes and Measures  The primary outcome was AKI. The secondary outcomes were stages of AKI severity and death. Multivariable logistic regression analyses adjusted for preexisting comorbidities, medications, and inpatient AKI risk factors; 10 principal components of ancestry were performed to study these associations. We performed a subgroup analysis in individuals with normal kidney function prior to hospitalization (estimated glomerular filtration rate ≥60 mL/min/1.73 m2).

Results  Of the 990 participants with African ancestry, 905 (91.4%) were male with a median (IQR) age of 68 (60-73) years. Overall, 392 (39.6%) patients developed AKI, 141 (14%) developed stages 2 or 3 AKI, 28 (3%) required dialysis, and 122 (12.3%) died. One hundred twenty-five (12.6%) of the participants were in the APOL1 high-risk group. Patients categorized as APOL1 high-risk group had significantly higher odds of AKI (adjusted odds ratio [OR], 1.95; 95% CI, 1.27-3.02; P = .002), higher AKI severity stages (OR, 2.03; 95% CI, 1.37-2.99; P < .001), and death (OR, 2.15; 95% CI, 1.22-3.72; P = .007). The association with AKI persisted in the subgroup with normal kidney function (OR, 1.93; 95% CI, 1.15-3.26; P = .01). Data analysis was conducted between February 2021 and April 2021.

Conclusions and Relevance  In this cohort study of veterans with African ancestry hospitalized with COVID-19 infection, APOL1 kidney risk variants were associated with higher odds of AKI, AKI severity, and death, even among individuals with prior normal kidney function.

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 Credit(s)™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

CME Disclosure Statement: Unless noted, all individuals in control of content reported no relevant financial relationships. If applicable, all relevant financial relationships have been mitigated.

Article Information

Accepted for Publication: December 25, 2021.

Published Online: January 28, 2022. doi:10.1001/jamainternmed.2021.8538

Corresponding Author: Adriana M. Hung, MD, MPH, Tennessee Valley Healthcare System, Division of Nephrology and Hypertension, Vanderbilt University, 1611 21st Ave S, S3223 MCN, Nashville, TN 37232 (adriana.hung@vumc.org).

Author Contributions: Adriana Hung, Otis Wilson, Zhihong Yu, and Hua Chang Chen had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Design and conduct of the study: All Authors

Collection, management, analysis, and interpretation of the data: Hung, Siew, Wilson, Zhihong Yu, Hua Chang Chen,

Drafting the manuscript: Adriana M. Hung, Siew, Bick, Tuteja, Hunt.

Critical revision of the manuscript for important intellectual content: All authors

Statistical Analysis: Zhihong Yu, Ran Tao, Hua Chang Chen, Robert A. Greevy

Decision to submit the manuscript for publication: All Authors.

Statistical analysis: Hung, Yu, Chen, Wendt, Wilson, Greevy, Akwo, Zhou, Iyengar, Robinson-Cohen, Tao.

Obtained funding: Hung, Gaziano, Chang.

Administrative, technical, or material support: Hunt, Ho, Huffman, Chang, Cho, Susztak, Robinson-Cohen, Tuteja.

Supervision: Hung, Polimanti, Gaziano, Luoh, Casas.

Conflict of Interest Disclosures: Dr Hung reports grants from Veterans Health CSR&D Merit Grant CX001897 and grants from Veterans Health MVP035 MVP COVID-19 Science Program during the conduct of the study; grants from Vertex Pharmaceutical outside the submitted work. Dr Bick reports personal fees from TenSixteen Bio outside the submitted work. Dr Hunt reports other from Akebia Therapeutics, Inc. Safety adjudication in COVID-19 clinical trial during the conduct of the study. Dr Wendt reports grants from NIMH outside the submitted work. Dr Akwo reports grants from American Heart Association Postdoc Award #20POST35210952/Akwo/2020 during the conduct of the study. Christopher J O'Donnell: Dr O'Donnell reports income from Novartis Institute for Biomedical Research as a salaried employee outside the submitted work. Dr Susztak reports grants from GSK, Regeneron, Bayer, BiPI, Novo Nordisk, Maze, Novartis, Gilead and other from AZ, Pfizer, Bayer, GSK Consulting outside the submitted work. Dr Siew reports grants from Veterans Health Services Research and Development Grant SDR 18-194 Million Veteran Program Gamma Program during the conduct of the study; personal fees from Akebia Therapeutics, Inc. Consultant on and personal fees from Da Vita, Inc. Honorarium for an invited educational talk on AKI epidemiology at the Da Vita Annual Physician Leadership Conference outside the submitted work; and Serves on the editorial board for the Clinical Journal of the American Society of Nephrology; and has received royalties as an author for UptoDate.

Funding/Support: This research is based on data from the Million Veteran Program, Office of Research and Development, Veterans Health Administration, and was supported by award #MVP035 (MVP COVID-19 Science Program) and VA Clinical Science Research and Development-investigator grant CX001897 (Dr Hung) Genetic of Kidney Disease and Hypertension-Risk Prediction and Drug Response in the MVP. Drs Siew’s and Matheny’s time was covered by grant HX002489 (Drs Siew and Matheny).

Role of the Funder/Sponsor: The funding agencies had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Group Information: A complete list of investigators and staff in the the VA Million Veteran Program COVID-19 Science Initiative is provided in Supplement 2.

Disclaimer: This publication does not represent the views of the Department of Veteran Affairs or the United States Government.

Data Sharing Statement: The protocol, statistical code, are available from Dr Hung. However, data will require approval from the Office of Research Development and the Million Veteran Program.

Additional Contributions: We thank the MVP leadership and MVP COVID-19 Science Program. The MVP COVID-19 Science Initiative core acknowledgment and the MVP program core acknowledgment are included in eTable 9 in Supplement 1.

References
1.
Bowe  B , Cai  M , Xie  Y , Gibson  AK , Maddukuri  G , Al-Aly  Z .  Acute kidney injury in a national cohort of hospitalized US veterans with COVID-19.   Clin J Am Soc Nephrol. 2020;16(1):14-25. doi:10.2215/CJN.09610620 PubMedGoogle ScholarCrossref
2.
May  RM , Cassol  C , Hannoudi  A ,  et al.  A multi-center retrospective cohort study defines the spectrum of kidney pathology in Coronavirus 2019 disease (COVID-19).   Kidney Int. 2021;100(6):1303-1315. doi:10.1016/j.kint.2021.07.015 PubMedGoogle ScholarCrossref
3.
Wu  J , Ma  Z , Raman  A ,  et al.  APOL1 risk variants in individuals of African genetic ancestry drive endothelial cell defects that exacerbate sepsis.   Immunity. 2021;54(11):2632-2649.e6. doi:10.1016/j.immuni.2021.10.004 PubMedGoogle ScholarCrossref
4.
Bick  AG , Akwo  E , Robinson-Cohen  C ,  et al; VA Million Veteran Program.  Association of APOL1 risk alleles with cardiovascular disease in blacks in the Million Veteran Program.   Circulation. 2019;140(12):1031-1040. doi:10.1161/CIRCULATIONAHA.118.036589 PubMedGoogle ScholarCrossref
5.
Grams  ME , Rebholz  CM , Chen  Y ,  et al.  Race, APOL1 risk, and eGFR decline in the general population.   J Am Soc Nephrol. 2016;27(9):2842-2850. doi:10.1681/ASN.2015070763 PubMedGoogle ScholarCrossref
6.
Friedman  DJ , Kozlitina  J , Genovese  G , Jog  P , Pollak  MR .  Population-based risk assessment of APOL1 on renal disease.   J Am Soc Nephrol. 2011;22(11):2098-2105. doi:10.1681/ASN.2011050519 PubMedGoogle ScholarCrossref
7.
Chen  TK , Katz  R , Estrella  MM ,  et al.  Association between APOL1 genotypes and risk of cardiovascular disease in MESA (multi-ethnic study of atherosclerosis).   J Am Heart Assoc. 2017;6(12):6. doi:10.1161/JAHA.117.007199 PubMedGoogle ScholarCrossref
8.
Wasser  WG , Tzur  S , Wolday  D ,  et al.  Population genetics of chronic kidney disease: the evolving story of APOL1.   J Nephrol. 2012;25(5):603-618. doi:10.5301/jn.5000179 PubMedGoogle ScholarCrossref
9.
Genovese  G , Friedman  DJ , Ross  MD ,  et al.  Association of trypanolytic ApoL1 variants with kidney disease in African Americans.   Science. 2010;329(5993):841-845. doi:10.1126/science.1193032 PubMedGoogle ScholarCrossref
10.
O’Toole  JF , Bruggeman  LA , Madhavan  S , Sedor  JR .  The cell biology of APOL1.   Semin Nephrol. 2017;37(6):538-545. doi:10.1016/j.semnephrol.2017.07.007 PubMedGoogle ScholarCrossref
11.
Tzur  S , Rosset  S , Shemer  R ,  et al.  Missense mutations in the APOL1 gene are highly associated with end stage kidney disease risk previously attributed to the MYH9 gene.   Hum Genet. 2010;128(3):345-350. doi:10.1007/s00439-010-0861-0 PubMedGoogle ScholarCrossref
12.
Lipkowitz  MS , Freedman  BI , Langefeld  CD ,  et al; SK Investigators.  Apolipoprotein L1 gene variants associate with hypertension-attributed nephropathy and the rate of kidney function decline in African Americans.   Kidney Int. 2013;83(1):114-120. doi:10.1038/ki.2012.263 PubMedGoogle ScholarCrossref
13.
Kopp  JB , Nelson  GW , Sampath  K ,  et al.  APOL1 genetic variants in focal segmental glomerulosclerosis and HIV-associated nephropathy.   J Am Soc Nephrol. 2011;22(11):2129-2137. doi:10.1681/ASN.2011040388 PubMedGoogle ScholarCrossref
14.
Freedman  BI , Kopp  JB , Langefeld  CD ,  et al.  The apolipoprotein L1 (APOL1) gene and nondiabetic nephropathy in African Americans.   J Am Soc Nephrol. 2010;21(9):1422-1426. doi:10.1681/ASN.2010070730 PubMedGoogle ScholarCrossref
15.
Parsa  A , Kao  WH , Xie  D ,  et al; AASK Study Investigators; CRIC Study Investigators.  APOL1 risk variants, race, and progression of chronic kidney disease.   N Engl J Med. 2013;369(23):2183-2196. doi:10.1056/NEJMoa1310345 PubMedGoogle ScholarCrossref
16.
Freedman  BI , Kopp  JB , Sampson  MG , Susztak  K .  APOL1 at 10 years: progress and next steps.   Kidney Int. 2021;99(6):1296-1302. doi:10.1016/j.kint.2021.03.013 PubMedGoogle ScholarCrossref
17.
Zhao  B , Lu  Q , Cheng  Y ,  et al; TRIBE-AKI Consortium.  A genome-wide association study to identify single-nucleotide polymorphisms for acute kidney injury.   Am J Respir Crit Care Med. 2017;195(4):482-490. doi:10.1164/rccm.201603-0518OC PubMedGoogle ScholarCrossref
18.
Privratsky  JR , Li  YJ , Haynes  C ,  et al.  Apolipoprotein L1 (APOL1) coding variants are associated with creatinine rise after cardiac surgery.   J Cardiothorac Vasc Anesth. 2020;34(12):3314-3320. doi:10.1053/j.jvca.2020.04.017 PubMedGoogle ScholarCrossref
19.
Grams  ME , Matsushita  K , Sang  Y ,  et al.  Explaining the racial difference in AKI incidence.   J Am Soc Nephrol. 2014;25(8):1834-1841. doi:10.1681/ASN.2013080867 PubMedGoogle ScholarCrossref
20.
Bird  L .  APOL1 variants contribute to racial disparity in sepsis.   Nat Rev Immunol. 2021;21(12):759. doi:10.1038/s41577-021-00647-3 PubMedGoogle ScholarCrossref
21.
Nichols  B , Jog  P , Lee  JH ,  et al.  Innate immunity pathways regulate the nephropathy gene Apolipoprotein L1.   Kidney Int. 2015;87(2):332-342. doi:10.1038/ki.2014.270 PubMedGoogle ScholarCrossref
22.
Magoon  S , Bichu  P , Malhotra  V ,  et al.  COVID-19-related glomerulopathy: a report of 2 cases of collapsing focal segmental glomerulosclerosis.   Kidney Med. 2020;2(4):488-492. doi:10.1016/j.xkme.2020.05.004 PubMedGoogle ScholarCrossref
23.
Santoriello  D , Khairallah  P , Bomback  AS ,  et al.  Postmortem kidney pathology findings in patients with COVID-19.   J Am Soc Nephrol. 2020;31(9):2158-2167. doi:10.1681/ASN.2020050744 PubMedGoogle ScholarCrossref
24.
Kudose  S , Batal  I , Santoriello  D ,  et al.  Kidney biopsy findings in patients with COVID-19.   J Am Soc Nephrol. 2020;31(9):1959-1968. doi:10.1681/ASN.2020060802 PubMedGoogle ScholarCrossref
25.
Velez  JCQ , Caza  T , Larsen  CP .  COVAN is the new HIVAN: the re-emergence of collapsing glomerulopathy with COVID-19.   Nat Rev Nephrol. 2020;16(10):565-567. doi:10.1038/s41581-020-0332-3 PubMedGoogle ScholarCrossref
26.
Chaudhary  NS , Moore  JX , Zakai  NA ,  et al.  APOL1 nephropathy risk alleles and risk of sepsis in blacks.   Clin J Am Soc Nephrol. 2019;14(12):1733-1740. doi:10.2215/CJN.04490419 PubMedGoogle ScholarCrossref
27.
Kruzel-Davila  E , Wasser  WG , Aviram  S , Skorecki  K .  APOL1 nephropathy: from gene to mechanisms of kidney injury.   Nephrol Dial Transplant. 2016;31(3):349-358. doi:10.1093/ndt/gfu391 PubMedGoogle ScholarCrossref
28.
Gaziano  JM , Concato  J , Brophy  M ,  et al.  Million Veteran Program: a mega-biobank to study genetic influences on health and disease.   J Clin Epidemiol. 2016;70:214-223. doi:10.1016/j.jclinepi.2015.09.016 PubMedGoogle ScholarCrossref
29.
Friedman  DJ , Pollak  MR .  APOL1 nephropathy: from genetics to clinical applications.   Clin J Am Soc Nephrol. 2021;16(2):294-303. doi:10.2215/CJN.15161219 PubMedGoogle ScholarCrossref
30.
Friedman  DJ , Pollak  MR .  Genetics of kidney failure and the evolving story of APOL1.   J Clin Invest. 2011;121(9):3367-3374. doi:10.1172/JCI46263 PubMedGoogle ScholarCrossref
31.
Fihn  SD , Francis  J , Clancy  C ,  et al.  Insights from advanced analytics at the Veterans Health Administration.   Health Aff (Millwood). 2014;33(7):1203-1211. doi:10.1377/hlthaff.2014.0054 PubMedGoogle ScholarCrossref
32.
COVID-19: Shared Data Resource, 2020. Accessed October 15, 2021. https://vhacdwdwhweb100.vha.med.va.gov/phenotype/index.php/COVID-19:Shared_Data_Resource
33.
Lynch  KE , Deppen  SA , DuVall  SL ,  et al.  Incrementally transforming electronic medical records into the observational medical outcomes partnership common data model: a multidimensional quality assurance approach.   Appl Clin Inform. 2019;10(5):794-803. doi:10.1055/s-0039-1697598 PubMedGoogle Scholar
34.
von Elm  E , Altman  DG , Egger  M , Pocock  SJ , Gøtzsche  PC , Vandenbroucke  JP ; STROBE Initiative.  Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies.   BMJ. 2007;335(7624):806-808. doi:10.1136/bmj.39335.541782.AD PubMedGoogle ScholarCrossref
35.
Siew  ED , Ikizler  TA , Matheny  ME ,  et al.  Estimating baseline kidney function in hospitalized patients with impaired kidney function.   Clin J Am Soc Nephrol. 2012;7(5):712-719. doi:10.2215/CJN.10821011 PubMedGoogle ScholarCrossref
36.
Levey  AS , Eckardt  KU , Dorman  NM ,  et al.  Nomenclature for kidney function and disease: report of a Kidney Disease: Improving Global Outcomes (KDIGO) Consensus Conference.   Kidney Int. 2020;97(6):1117-1129. doi:10.1016/j.kint.2020.02.010 PubMedGoogle ScholarCrossref
37.
Waikar  SS , Wald  R , Chertow  GM ,  et al.  Validity of International Classification of Diseases, Ninth Revision, Clinical modification codes for acute renal failure.   J Am Soc Nephrol. 2006;17(6):1688-1694. doi:10.1681/ASN.2006010073 PubMedGoogle ScholarCrossref
38.
Sohn  MW , Arnold  N , Maynard  C , Hynes  DM .  Accuracy and completeness of mortality data in the Department of Veterans Affairs.   Popul Health Metr. 2006;4:2. doi:10.1186/1478-7954-4-2 PubMedGoogle ScholarCrossref
39.
King  JT  Jr , Yoon  JS , Rentsch  CT ,  et al.  Development and validation of a 30-day mortality index based on pre-existing medical administrative data from 13,323 COVID-19 patients: The Veterans Health Administration COVID-19 (VACO) Index.   PLoS One. 2020;15(11):e0241825. doi:10.1371/journal.pone.0241825 PubMedGoogle Scholar
40.
Gue  YX , Tennyson  M , Gao  J , Ren  S , Kanji  R , Gorog  DA .  Development of a novel risk score to predict mortality in patients admitted to hospital with COVID-19.   Sci Rep. 2020;10(1):21379. doi:10.1038/s41598-020-78505-w PubMedGoogle ScholarCrossref
41.
Argenziano  MG , Bruce  SL , Slater  CL ,  et al.  Characterization and clinical course of 1000 patients with coronavirus disease 2019 in New York: retrospective case series.   BMJ. 2020;369:m1996. doi:10.1136/bmj.m1996 PubMedGoogle Scholar
42.
Hemmelgarn  BR , Manns  BJ , Lloyd  A ,  et al; Alberta Kidney Disease Network.  Relation between kidney function, proteinuria, and adverse outcomes.   JAMA. 2010;303(5):423-429. doi:10.1001/jama.2010.39 PubMedGoogle ScholarCrossref
43.
Hunter-Zinck  H , Shi  Y , Li  M ,  et al; VA Million Veteran Program.  Genotyping array design and data quality control in the Million Veteran Program.   Am J Hum Genet. 2020;106(4):535-548. doi:10.1016/j.ajhg.2020.03.004 PubMedGoogle ScholarCrossref
44.
Fang  H , Hui  Q , Lynch  J ,  et al; VA Million Veteran Program.  Harmonizing genetic ancestry and self-identified race/ethnicity in genome-wide association studies.   Am J Hum Genet. 2019;105(4):763-772. doi:10.1016/j.ajhg.2019.08.012 PubMedGoogle ScholarCrossref
45.
Levey  AS , Stevens  LA , Schmid  CH ,  et al; CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration).  A new equation to estimate glomerular filtration rate.   Ann Intern Med. 2009;150(9):604-612. doi:10.7326/0003-4819-150-9-200905050-00006 PubMedGoogle ScholarCrossref
46.
Peterson  B , Harrell  FE .  Partial proportional odds models for ordinal response variables.   Applied Stats. 1990;39:205-17. doi:10.2307/2347760Google ScholarCrossref
47.
Brant  R .  Assessing proportionality in the proportional odds model for ordinal logistic regression.   Biometrics. 1990;46(4):1171-1178. doi:10.2307/2532457 PubMedGoogle ScholarCrossref
48.
Limou  S , Nelson  GW , Kopp  JB , Winkler  CA .  APOL1 kidney risk alleles: population genetics and disease associations.   Adv Chronic Kidney Dis. 2014;21(5):426-433. doi:10.1053/j.ackd.2014.06.005 PubMedGoogle ScholarCrossref
49.
Mukamal  KJ , Tremaglio  J , Friedman  DJ ,  et al.  APOL1 genotype, kidney and cardiovascular disease, and death in older adults.   Arterioscler Thromb Vasc Biol. 2016;36(2):398-403. doi:10.1161/ATVBAHA.115.305970 PubMedGoogle ScholarCrossref
50.
Gutiérrez  OM , Irvin  MR , Zakai  NA ,  et al.  APOL1 nephropathy risk alleles and mortality in African American adults: a cohort study.   Am J Kidney Dis. 2020;75(1):54-60. doi:10.1053/j.ajkd.2019.05.027 PubMedGoogle ScholarCrossref
51.
Beckerman  P , Susztak  K .  APOL1: the balance imposed by infection, selection, and kidney disease.   Trends Mol Med. 2018;24(8):682-695. doi:10.1016/j.molmed.2018.05.008 PubMedGoogle ScholarCrossref
52.
Bruggeman  LA , O’Toole  JF , Sedor  JR .  APOL1 polymorphisms and kidney disease: loss-of-function or gain-of-function?   Am J Physiol Renal Physiol. 2019;316(1):F1-F8. doi:10.1152/ajprenal.00426.2018 PubMedGoogle ScholarCrossref
53.
McCarthy  GM , Blasio  A , Donovan  OG ,  et al.  Recessive, gain-of-function toxicity in an APOL1 BAC transgenic mouse model mirrors human APOL1 kidney disease.   Dis Model Mech. 2021;14(8):14. doi:10.1242/dmm.048952 PubMedGoogle ScholarCrossref
54.
Lan  X , Jhaveri  A , Cheng  K ,  et al.  APOL1 risk variants enhance podocyte necrosis through compromising lysosomal membrane permeability.   Am J Physiol Renal Physiol. 2014;307(3):F326-F336. doi:10.1152/ajprenal.00647.2013 PubMedGoogle ScholarCrossref
55.
Beckerman  P , Bi-Karchin  J , Park  AS ,  et al.  Transgenic expression of human APOL1 risk variants in podocytes induces kidney disease in mice.   Nat Med. 2017;23(4):429-438. doi:10.1038/nm.4287 PubMedGoogle ScholarCrossref
56.
Granado  D , Müller  D , Krausel  V ,  et al.  Intracellular APOL1 risk variants cause cytotoxicity accompanied by energy depletion.   J Am Soc Nephrol. 2017;28(11):3227-3238. doi:10.1681/ASN.2016111220 PubMedGoogle ScholarCrossref
57.
Olabisi  OA , Zhang  JY , VerPlank  L ,  et al.  APOL1 kidney disease risk variants cause cytotoxicity by depleting cellular potassium and inducing stress-activated protein kinases.   Proc Natl Acad Sci USA. 2016;113(4):830-837. doi:10.1073/pnas.1522913113 PubMedGoogle ScholarCrossref
AMA CME Accreditation Information

Credit Designation Statement: The American Medical Association designates this Journal-based CME activity activity for a maximum of 1.00  AMA PRA Category 1 Credit(s)™. Physicians should claim only the credit commensurate with the extent of their participation in the activity.

Successful completion of this CME activity, which includes participation in the evaluation component, enables the participant to earn up to:

  • 1.00 Medical Knowledge MOC points in the American Board of Internal Medicine's (ABIM) Maintenance of Certification (MOC) program;;
  • 1.00 Self-Assessment points in the American Board of Otolaryngology – Head and Neck Surgery’s (ABOHNS) Continuing Certification program;
  • 1.00 MOC points in the American Board of Pediatrics’ (ABP) Maintenance of Certification (MOC) program;
  • 1.00 Lifelong Learning points in the American Board of Pathology’s (ABPath) Continuing Certification program; and
  • 1.00 CME points in the American Board of Surgery’s (ABS) Continuing Certification program

It is the CME activity provider's responsibility to submit participant completion information to ACCME for the purpose of granting MOC credit.

Close
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
Close
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close

Name Your Search

Save Search
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Close
Close

Lookup An Activity

or

My Saved Searches

You currently have no searches saved.

Close

My Saved Courses

You currently have no courses saved.

Close