Accepted for Publication: December 14, 2021.
Published Online: March 3, 2022. doi:10.1001/jamaoncol.2021.8196
Corresponding Author: Tanios Bekaii-Saab, MD, Division of Hematology and Oncology, Mayo Clinic, 5701 E Mayo Blvd, Phoenix, AZ 85054 (bekaii-saab.tanios@mayo.edu).
Author Contributions: Drs Strickler and Bekaii-Saab had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.
Concept and design: Strickler, Yoshino, Siena, Bekaii-Saab.
Acquisition, analysis, or interpretation of data: All authors.
Drafting of the manuscript: Strickler, Yoshino, Siena, Bekaii-Saab.
Critical revision of the manuscript for important intellectual content: All authors.
Administrative, technical, or material support: Strickler.
Supervision: Strickler, Siena, Bekaii-Saab.
Conflict of Interest Disclosures: Dr Strickler reported nonfinancial support from Seagen during the conduct of the study as well as personal fees from AbbVie, AstraZeneca, Bayer, GlaxoSmithKline, Natera, Pfizer, Seagen, Viatris, Mereo Biopharma, Silverback Therapeutics, and Inivata and grants from Bayer, Erasca, AStar D3, Silverback Therapeutics, Nektar, Roche/Genentech, Sanofi Genzyme, Gossamer Bio, AbbVie, Amgen, Daiichi-Sankyo, Curegenix, and Seagen outside the submitted work. Dr Yoshino reported grants from Taiho Pharmaceuticals, Sumitomo Dainippon Pharma, Chugai Pharmaceutical, Amgen, Sanofi, Daiichi Sankyo, Merck Sharp and Dohme, Parexel International, and ONO Pharmaceutical outside the submitted work. Dr Graham reported service on the advisory board of Incyte Advisory, personal fees from Mayo Clinic, and grants from Bristol Myers Squibb outside the submitted work. Dr Siena reported being an advisory board member for Seagen, Daiichi Sankyo, Roche-Genentech, Novartis, and Guardant during the conduct of the study. Dr Bekaii-Saab reported research funding from Agios, Arys, Arcus, Atreca, Boston Biomedical, Bayer, Amgen, Merck, Celgene, Lilly, Ipsen, Clovis, Seagen, Genentech, Novartis, Mirati, Merus, Abgenomics, Incyte, Pfizer, and Bristol Myers Squibb; consulting fees from Ipsen, Arcus, Array Biopharma, Pfizer, Seagen, Bayer, Genentech, Incyte, Merck, Stemline, AbbVie, Boehringer Ingelheim, Janssen, Eisai, Daichii Sankyo, Natera, TreosBio, Celularity, Exact Science, Sobi, Beigene, Kanaph, Xilis, AstraZeneca, and Foundation Medicine; service on independent data monitoring and data safety monitoring committees for Fibrogen, Suzhou Kintor, AstraZeneca, Exelixis, Lilly, PanCan, and 1Globe; scientific advisory board service for Imugene, Immuneering, and Sun Biopharma; and holding patents WO/2018/183488 and WO/2019/055687.
Additional Contributions: Medical writing support was provided by Sarah A. Laredo, PhD and editorial support was provided by Travis Taylor, BA, both of Scion, supported by Seagen Inc. according to Good Publication Practice guidelines (http://annals.org/aim/article/2424869/good-publication-practice-communicating-company-sponsored-medical-research-gpp3).
4.Price
T , Kim
TW , Li
J ,
et al. Final results and outcomes by prior bevacizumab exposure, skin toxicity, and hypomagnesaemia from ASPECCT: randomized phase 3 non-inferiority study of panitumumab versus cetuximab in chemorefractory wild-type KRAS exon 2 metastatic colorectal cancer.
Eur J Cancer. 2016;68:51-59. doi:
10.1016/j.ejca.2016.08.010
PubMedGoogle ScholarCrossref 8.Overman
MJ , McDermott
R , Leach
JL ,
et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study.
Lancet Oncol. 2017;18(9):1182-1191. doi:
10.1016/S1470-2045(17)30422-9
PubMedGoogle ScholarCrossref 9.Overman
MJ , Lonardi
S , Wong
KYM ,
et al Nivolumab (NIVO) + low-dose ipilimumab (IPI) in previously treated patients (pts) with microsatellite instability-high/mismatch repair-deficient (MSI-H/dMMR) metastatic colorectal cancer (mCRC): Long-term follow-up.
J Clin Oncol. 2019;37(4):635-635. doi:
10.1200/JCO.2019.37.4_suppl.635
Google ScholarCrossref 10.Boni
V , Drilon
A , Deeken
J ,
et al SO-29 Efficacy and safety of larotrectinib in patients with tropomyosin receptor kinase fusion-positive gastrointestinal cancer: an expanded dataset.
Ann Oncol. 2021;32:S214-S215. doi:
10.1016/j.annonc.2021.05.053
Google ScholarCrossref 11.Patel
M , Siena
S , Demetri
G ,
et al O-3 Efficacy and safety of entrectinib in NTRK fusion-positive gastrointestinal cancers: updated integrated analysis of three clinical trials (STARTRK-2, STARTRK-1 and ALKA-372-001).
Ann Oncol. 2020;31:232-233. doi:
10.1016/j.annonc.2020.04.056
Google ScholarCrossref 12.Strickler
J , Zemla
T , Ou
F ,
et al. 527PD—trastuzumab and tucatinib for the treatment of HER2 amplified metastatic colorectal cancer (mCRC): initial results from the MOUNTAINEER trial.
Ann Oncol. 2019;30:v200. doi:
10.1093/annonc/mdz246.005
Google ScholarCrossref 13.Yoshino
T , Bartolomeo
MD , Raghav
KPS ,
et al. Trastuzumab deruxtecan (T-DXd; DS-8201) in patients (pts) with HER2-expressing metastatic colorectal cancer (mCRC): Final results from a phase 2, multicenter, open-label study (DESTINY-CRC01).
J Clin Oncol. 2021;39(15_suppl):3505. doi:
10.1200/JCO.2021.39.15_suppl.3505
Google ScholarCrossref 20.Raghav
K , Loree
JM , Morris
JS ,
et al. Validation of HER2 amplification as a predictive biomarker for anti–epidermal growth factor receptor antibody therapy in metastatic colorectal cancer.
JCO Precis Oncol. 2019;3:1-13. doi:
10.1200/PO.18.00226
Google ScholarCrossref 22.Sartore-Bianchi
A , Trusolino
L , Martino
C ,
et al. Dual-targeted therapy with trastuzumab and lapatinib in treatment-refractory, KRAS codon 12/13 wild-type, HER2-positive metastatic colorectal cancer (HERACLES): a proof-of-concept, multicentre, open-label, phase 2 trial.
Lancet Oncol. 2016;17(6):738-746. doi:
10.1016/S1470-2045(16)00150-9
PubMedGoogle ScholarCrossref 23.Meric-Bernstam
F , Hurwitz
H , Raghav
KPS ,
et al. Pertuzumab plus trastuzumab for HER2-amplified metastatic colorectal cancer (MyPathway): an updated report from a multicentre, open-label, phase 2a, multiple basket study.
Lancet Oncol. 2019;20(4):518-530. doi:
10.1016/S1470-2045(18)30904-5
PubMedGoogle ScholarCrossref 26.Sartore-Bianchi
A , Lonardi
S , Aglietta
M ,
et al. Central nervous system as possible site of relapse in ERBB2-positive metastatic colorectal cancer: long-term results of treatment with trastuzumab and lapatinib.
JAMA Oncol. 2020;6(6):927-929. doi:
10.1001/jamaoncol.2020.0571
PubMedGoogle ScholarCrossref 28.Lee
WS , Park
YH , Lee
JN , Baek
JH , Lee
TH , Ha
SY . Comparison of HER2 expression between primary colorectal cancer and their corresponding metastases.
Cancer Med. 2014;3(3):674-680. doi:
10.1002/cam4.228
PubMedGoogle ScholarCrossref 35.Richman
SD , Southward
K , Chambers
P ,
et al. HER2 overexpression and amplification as a potential therapeutic target in colorectal cancer: analysis of 3256 patients enrolled in the QUASAR, FOCUS and PICCOLO colorectal cancer trials.
J Pathol. 2016;238(4):562-570. doi:
10.1002/path.4679
PubMedGoogle ScholarCrossref 39.Wolff
AC , Hammond
MEH , Allison
KH ,
et al. Human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists Clinical practice guideline focused update.
J Clin Oncol. 2018;36(20):2105-2122. doi:
10.1200/JCO.2018.77.8738
PubMedGoogle ScholarCrossref 40.Bartley
AN , Washington
MK , Colasacco
C ,
et al. HER2 testing and clinical decision making in gastroesophageal adenocarcinoma: guideline from the College of American Pathologists, American Society for Clinical Pathology, and the American Society of Clinical Oncology.
J Clin Oncol. 2017;35(4):446-464. doi:
10.1200/JCO.2016.69.4836
PubMedGoogle ScholarCrossref 41.Fujii
S , Magliocco
AM , Kim
J ,
et al. International harmonization of provisional diagnostic criteria for ERBB2-amplified metastatic colorectal cancer allowing for screening by next-generation sequencing panel.
JCO Precis Oncol. 2020;4:6-19. doi:
10.1200/PO.19.00154
PubMedGoogle ScholarCrossref 43.Cenaj
O , Ligon
AH , Hornick
JL , Sholl
LM . Detection of ERBB2 amplification by next-generation sequencing predicts HER2 expression in colorectal carcinoma.
Am J Clin Pathol. 2019;152(1):97-108. doi:
10.1093/ajcp/aqz031
PubMedGoogle ScholarCrossref 44.Dumbrava
EEI , Balaji
K , Raghav
K ,
et al. Targeting ERBB2 (HER2) amplification identified by next-generation sequencing in patients with advanced or metastatic solid tumors beyond conventional indications.
JCO Precis Oncol. 2019;3:3. doi:
10.1200/PO.18.00345
PubMedGoogle ScholarCrossref 48.Slamon
DJ , Clark
GM , Wong
SG , Levin
WJ , Ullrich
A , McGuire
WL . Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene.
Science. 1987;235(4785):177-182. doi:
10.1126/science.3798106
PubMedGoogle ScholarCrossref 52.Laurent-Puig
P , Balogoun
R , Cayre
A ,
et al. 459O—ERBB2 alterations a new prognostic biomarker in stage III colon cancer from a FOLFOX based adjuvant trial (PETACC8).
Ann Oncol. 2016;27:vi151. doi:
10.1093/annonc/mdw370.8Google Scholar 55.Barlaam
B , Anderton
J , Ballard
P ,
et al. Discovery of AZD8931, an equipotent, reversible inhibitor of signaling by EGFR, HER2, and HER3 receptors.
ACS Med Chem Lett. 2013;4(8):742-746. doi:
10.1021/ml400146c
PubMedGoogle ScholarCrossref 57.Ramanathan
RK , Hwang
JJ , Zamboni
WC ,
et al. Low overexpression of HER-2/neu in advanced colorectal cancer limits the usefulness of trastuzumab (Herceptin) and irinotecan as therapy: a phase II trial.
Cancer Invest. 2004;22(6):858-865. doi:
10.1081/CNV-200039645
PubMedGoogle ScholarCrossref 58.Yuan
Y , Fu
X , Ying
J ,
et al. Dual-targeted therapy with pyrotinib and trastuzumab for HER2-positive advanced colorectal cancer: Preliminary results from a multicenter phase 2 trial.
J Clin Oncol. 2021;39(suppl 15):e15554-e15554. doi:
10.1200/JCO.2021.39.15_suppl.e15554
Google ScholarCrossref 59.Okamoto
W , Nakamura
Y , Kato
T ,
et al. Pertuzumab plus trastuzumab and real-world standard of care (SOC) for patients (pts) with treatment refractory metastatic colorectal cancer (mCRC) with HER2 (ERBB2) amplification (amp) confirmed by tumor tissue or ctDNA analysis (TRIUMPH, EPOC1602).
J Clin Oncol. 2021;39(15_suppl):3555-3555. doi:
10.1200/JCO.2021.39.15_suppl.3555
Google ScholarCrossref 60.Gupta
R , Garrett-Mayer
E , Halabi
S ,
et al. Pertuzumab plus trastuzumab (P+T) in patients (Pts) with colorectal cancer (CRC) with ERBB2 amplification or overexpression: Results from the TAPUR Study.
J Clin Oncol. 2020;38(4):132-132. doi:
10.1200/JCO.2020.38.4_suppl.132
Google ScholarCrossref 61.Jacobs
SA , Lee
JJ , George
TJ ,
et al. Neratinib plus cetuximab in quadruple WT (KRAS, NRAS, BRAF, PIK3CA) metastatic colorectal cancer resistant to cetuximab or panitumumab: NSABP FC-7, a phase Ib study.
Clin Cancer Res. 2021;27(6):1612-1622. doi:
10.1158/1078-0432.CCR-20-1831PubMedGoogle ScholarCrossref 62.Jacobs
SA , Lee
JJ , George
TJ ,
et al. NSABP FC-11: a phase II study of neratinib (N) plus trastuzumab (T) or n plus cetuximab (C) in patients (pts) with “quadruple wild-type (WT)” (KRAS/NRAS/BRAF/PIK3CA WT) metastatic colorectal cancer (mCRC) based on HER2 status—amplified (amp), non-amplified (non-amp), WT, or mutated (mt).
J Clin Oncol. 2019;37(4_suppl):TPS716-TPS716. doi:
10.1200/JCO.2019.37.4_suppl.TPS716
Google ScholarCrossref 63.Southwest Oncology Group. S1613, trastuzumab and pertuzumab or cetuximab and irinotecan hydrochloride in treating patients with locally advanced or metastatic HER2/neu amplified colorectal cancer that cannot be removed by surgery. Accessed November 20, 2021.
https://clinicaltrials.gov/ct2/show/NCT03365882 64.Modi
S , Park
H , Murthy
RK ,
et al. Antitumor activity and safety of trastuzumab deruxtecan in patients with HER2–low-expressing advanced breast cancer: results from a phase Ib study.
J Clin Oncol. 2020;38(17):1887-1896. doi:
10.1200/JCO.19.02318
PubMedGoogle ScholarCrossref 67.Doi
T , Shitara
K , Naito
Y ,
et al. Safety, pharmacokinetics, and antitumour activity of trastuzumab deruxtecan (DS-8201), a HER2-targeting antibody-drug conjugate, in patients with advanced breast and gastric or gastro-oesophageal tumours: a phase 1 dose-escalation study.
Lancet Oncol. 2017;18(11):1512-1522. doi:
10.1016/S1470-2045(17)30604-6
PubMedGoogle ScholarCrossref 68.Siena
S , Di Bartolomeo
M , Raghav
K ,
et al; DESTINY-CRC01 investigators. Trastuzumab deruxtecan (DS-8201) in patients with HER2-expressing metastatic colorectal cancer (DESTINY-CRC01): a multicentre, open-label, phase 2 trial.
Lancet Oncol. 2021;22(6):779-789. doi:
10.1016/S1470-2045(21)00086-3
PubMedGoogle ScholarCrossref 69.Pant
S , Ducreux
M , Harding
JJ ,
et al. A phase IIb, open-label, single-arm study of zanidatamab (ZW25) monotherapy in subjects with advanced or metastatic HER2-amplified biliary tract cancers.
J Clin Oncol. 2021;39(3_suppl):TPS352-TPS352. doi:
10.1200/JCO.2021.39.3_suppl.TPS352
Google ScholarCrossref 71.Zymeworks Inc. A safety and efficacy study of ZW25 (zanidatamab) plus combination chemotherapy in HER2-expressing gastrointestinal cancers, including gastroesophageal adenocarcinoma, biliary tract cancer, and colorectal cancer. Accessed June 3, 2021.
https://clinicaltrials.gov/ct2/show/study/NCT03929666 72.Lopez
DM , Barve
M , Wang
J ,
et al. Abstract B005: a phase I study of A166, a novel anti-HER2 antibody-drug conjugate (ADC), in patients with locally advanced/metastatic solid tumors.
Mol Cancer Ther. 2019;18(12 Supplement):B005-B005. doi:
10.1158/1535-7163.TARG-19-B005
Google Scholar 73.Hamblett
K , Barnscher
S , Davies
R ,
et al. Abstract P6-17-13: ZW49, a HER2 targeted biparatopic antibody drug conjugate for the treatment of HER2 expressing cancers.
Cancer Res. 2019;79(suppl 4). doi:
10.1158/1538-7445.SABCS18-P6-17-13Google Scholar