[Skip to Content]
[Skip to Content Landing]

Antiseizure Medications for Adults With EpilepsyA Review

Educational Objective
To identify the key insights or developments described in this article
1 Credit CME
Abstract

Importance  Epilepsy affects approximately 65 million people worldwide. Persistent seizures are associated with a 20% to 40% risk of bodily injuries (eg, fractures, burns, concussions) over 12-month follow-up. The primary goal of epilepsy treatment is to eliminate seizures while minimizing adverse effects of antiseizure drugs (ASDs).

Observations  An epileptic seizure is defined as a sudden occurrence of transient signs and symptoms caused by abnormal and excessive or synchronous neuronal activity in the brain. Focal and generalized epilepsy are the 2 most frequent types of epilepsy; diagnosis is based on the type of seizures. There are 26 US Food and Drug Administration–approved medications for epilepsy, of which 24 have similar antiseizure efficacy for focal epilepsy and 9 have similar efficacy for generalized epilepsy. The decision to initiate an ASD should be individualized, but should be strongly considered after 2 unprovoked seizures or after 1 unprovoked seizure that occurred during sleep and/or in the presence of epileptiform activity on an electroencephalogram and/or in the presence of a structural lesion on the brain magnetic resonance imaging. The ASDs must be selected based on the seizure and epilepsy types, the epilepsy syndrome, and the adverse effects associated with the drug. For focal epilepsy, oxcarbazepine and lamotrigine are first-line therapy, while levetiracetam can be also considered if there is no history of psychiatric disorder. For generalized epilepsy, the selection of the ASD is based on the type of epilepsy syndrome and the patient’s sex, age, and psychiatric history. Seizure freedom is achieved in approximately 60% to 70% of all patients. A total of 25% to 50% of patients also experience neurologic, psychiatric, cognitive, or medical disorders, such as mood, anxiety, and attention deficit disorders and migraines. For these patients, selecting an ASD should consider the presence of these disorders and concomitant use of medications to treat them. ASDs with cytochrome P450 enzyme-inducing properties (eg, carbamazepine, phenytoin) may worsen comorbid coronary and cerebrovascular disease by causing hyperlipidemia and accelerating the metabolism of concomitant drugs used for their treatment. They can also facilitate the development of osteopenia and osteoporosis.

Conclusions and Relevance  Epilepsy affects approximately 65 million people worldwide and is associated with increased rates of bodily injuries and mortality when not optimally treated. For focal and generalized epilepsy, selection of ASDs should consider the seizure and epilepsy types and epilepsy syndrome, as well as the patient’s age and sex, comorbidities, and potential drug interactions.

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 Credit(s)™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

CME Disclosure Statement: Unless noted, all individuals in control of content reported no relevant financial relationships. If applicable, all relevant financial relationships have been mitigated.

Article Information

Corresponding Author: Andres M. Kanner, MD, Comprehensive Epilepsy Center, Department of Neurology, University of Miami, Miller School of Medicine, 1120 NW 14th St, Room 1324, Miami, FL 33136 (a.kanner@med.miami.edu).

Accepted for Publication: February 28, 2022.

Author Contributions: Drs Kanner and Bicchi had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. Both Drs Kanner and Bicchi contributed equally to the content of this manuscript.

Concept and design: Kanner.

Acquisition, analysis, or interpretation of data: All authors.

Drafting of the manuscript: Kanner.

Critical revision of the manuscript for important intellectual content: All authors.

Administrative, technical, or material support: Melo Bicchi.

Supervision: Kanner.

Conflict of Interest Disclosures: Dr Kanner reported receiving personal fees from Epilepsy Foundation as compensation for his role as co-editor of Epilepsy.com and from Eisai Ltd as honoraria for lectures given at international meetings on psychiatric aspects of epilepsy and for participation in a scientific advisory board and receiving honoraria from Xenon Inc for participation in a scientific advisory board outside the submitted work. No other disclosures were reported.

References
1.
Fisher  RS , van Emde Boas  W , Blume  W ,  et al.  Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE).   Epilepsia. 2005;46(4):470-472. doi:10.1111/j.0013-9580.2005.66104.xPubMedGoogle ScholarCrossref
2.
Fisher  RS , Acevedo  C , Arzimanoglou  A ,  et al.  ILAE official report: a practical clinical definition of epilepsy.   Epilepsia. 2014;55(4):475-482. doi:10.1111/epi.12550PubMedGoogle ScholarCrossref
3.
Krumholz  A , Wiebe  S , Gronseth  GS ,  et al.  Evidence-based guideline: management of an unprovoked first seizure in adults: report of the Guideline Development Subcommittee of the American Academy of Neurology and the American Epilepsy Society.   Neurology. 2015;84(16):1705-1713. doi:10.1212/WNL.0000000000001487PubMedGoogle ScholarCrossref
4.
Theodore  WH , Spencer  SS , Wiebe  S ,  et al.  Epilepsy in North America: a report prepared under the auspices of the global campaign against epilepsy, the International Bureau for Epilepsy, the International League Against Epilepsy, and the World Health Organization.   Epilepsia. 2006;47(10):1700-1722. doi:10.1111/j.1528-1167.2006.00633.xPubMedGoogle ScholarCrossref
5.
Beghi  E .  The epidemiology of epilepsy.   Neuroepidemiology. 2020;54(2):185-191. doi:10.1159/000503831PubMedGoogle Scholar
6.
Fiest  KM , Sauro  KM , Wiebe  S ,  et al.  Prevalence and incidence of epilepsy: a systematic review and meta-analysis of international studies.   Neurology. 2017;88(3):296-303. doi:10.1212/WNL.0000000000003509PubMedGoogle ScholarCrossref
7.
Graham  NS , Crichton  S , Koutroumanidis  M , Wolfe  CD , Rudd  AG .  Incidence and associations of poststroke epilepsy: the prospective South London Stroke Register.   Stroke. 2013;44(3):605-611. doi:10.1161/STROKEAHA.111.000220PubMedGoogle ScholarCrossref
8.
Semah  F , Picot  MC , Adam  C ,  et al.  Is the underlying cause of epilepsy a major prognostic factor for recurrence?   Neurology. 1998;51(5):1256-1262. doi:10.1212/WNL.51.5.1256PubMedGoogle ScholarCrossref
9.
Scheffer  IE , Berkovic  S , Capovilla  G ,  et al.  ILAE classification of the epilepsies: position paper of the ILAE Commission for Classification and Terminology.   Epilepsia. 2017;58(4):512-521. doi:10.1111/epi.13709PubMedGoogle ScholarCrossref
10.
Tatum  WO , Hirsch  LJ , Gelfand  MA ,  et al; OSmartViE Investigators.  Assessment of the predictive value of outpatient smartphone videos for diagnosis of epileptic seizures.   JAMA Neurol. 2020;77(5):593-600. doi:10.1001/jamaneurol.2019.4785PubMedGoogle ScholarCrossref
11.
Badry  R .  Latency to the first epileptiform activity in the EEG of epileptic patients.   Int J Neurosci. 2013;123(9):646-649. doi:10.3109/00207454.2013.785543PubMedGoogle ScholarCrossref
12.
Anderson  J , Hamandi  K .  Understanding juvenile myoclonic epilepsy: contributions from neuroimaging.   Epilepsy Res. 2011;94(3):127-137. doi:10.1016/j.eplepsyres.2011.03.008PubMedGoogle ScholarCrossref
13.
Fields  MC , Labovitz  DL , French  JA .  Hospital-onset seizures: an inpatient study.   JAMA Neurol. 2013;70(3):360-364. doi:10.1001/2013.jamaneurol.337PubMedGoogle ScholarCrossref
14.
Hesdorffer  DC , Benn  EK , Cascino  GD , Hauser  WA .  Is a first acute symptomatic seizure epilepsy? mortality and risk for recurrent seizure.   Epilepsia. 2009;50(5):1102-1108. doi:10.1111/j.1528-1167.2008.01945.xPubMedGoogle ScholarCrossref
15.
Kim  LG , Johnson  TL , Marson  AG , Chadwick  DW ; MRC MESS Study group.  Prediction of risk of seizure recurrence after a single seizure and early epilepsy: further results from the MESS trial.   Lancet Neurol. 2006;5(4):317-322. doi:10.1016/S1474-4422(06)70383-0PubMedGoogle ScholarCrossref
16.
Seneviratne  U , Cook  M , D’Souza  W .  The prognosis of idiopathic generalized epilepsy.   Epilepsia. 2012;53(12):2079-2090. doi:10.1111/j.1528-1167.2012.03723.xPubMedGoogle ScholarCrossref
17.
Buck  D , Baker  GA , Jacoby  A , Smith  DF , Chadwick  DW .  Patients’ experiences of injury as a result of epilepsy.   Epilepsia. 1997;38(4):439-444. doi:10.1111/j.1528-1157.1997.tb01733.xPubMedGoogle ScholarCrossref
18.
Olafsson  E , Hauser  WA , Gudmundsson  G .  Long-term survival of people with unprovoked seizures: a population-based study.   Epilepsia. 1998;39(1):89-92. doi:10.1111/j.1528-1157.1998.tb01279.xPubMedGoogle ScholarCrossref
19.
Loiseau  J , Picot  MC , Loiseau  P .  Short-term mortality after a first epileptic seizure: a population-based study.   Epilepsia. 1999;40(10):1388-1392. doi:10.1111/j.1528-1157.1999.tb02010.xPubMedGoogle ScholarCrossref
20.
Devinsky  O , Hesdorffer  DC , Thurman  DJ , Lhatoo  S , Richerson  G .  Sudden unexpected death in epilepsy: epidemiology, mechanisms, and prevention.   Lancet Neurol. 2016;15(10):1075-1088. doi:10.1016/S1474-4422(16)30158-2PubMedGoogle ScholarCrossref
21.
Haut  SR .  Seizure clusters: characteristics and treatment.   Curr Opin Neurol. 2015;28(2):143-150. doi:10.1097/WCO.0000000000000177PubMedGoogle ScholarCrossref
22.
Aícua-Rapún  I , André  P , Rossetti  AO ,  et al.  Therapeutic drug monitoring of newer antiepileptic drugs: a randomized trial for dosage adjustment.   Ann Neurol. 2020;87(1):22-29. doi:10.1002/ana.25641PubMedGoogle ScholarCrossref
23.
Kwan  P , Brodie  MJ .  Early identification of refractory epilepsy.   N Engl J Med. 2000;342(5):314-319. doi:10.1056/NEJM200002033420503PubMedGoogle ScholarCrossref
24.
Chen  Z , Brodie  MJ , Liew  D , Kwan  P .  Treatment outcomes in patients with newly diagnosed epilepsy treated with established and new antiepileptic drugs: a 30-year longitudinal cohort study.   JAMA Neurol. 2018;75(3):279-286. doi:10.1001/jamaneurol.2017.3949PubMedGoogle ScholarCrossref
25.
Gidal  BE , Ferry  J , Reyderman  L , Piña-Garza  JE .  Use of extended-release and immediate-release anti-seizure medications with a long half-life to improve adherence in epilepsy: a guide for clinicians.   Epilepsy Behav. 2021;120:107993. doi:10.1016/j.yebeh.2021.107993PubMedGoogle Scholar
26.
Kwan  P , Arzimanoglou  A , Berg  AT ,  et al.  Definition of drug resistant epilepsy: consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies.   Epilepsia. 2010;51(6):1069-1077. doi:10.1111/j.1528-1167.2009.02397.xPubMedGoogle ScholarCrossref
27.
Perez  DL , LaFrance  WC  Jr .  Nonepileptic seizures: an updated review.   CNS Spectr. 2016;21(3):239-246. doi:10.1017/S109285291600002XPubMedGoogle ScholarCrossref
28.
Xu  Y , Nguyen  D , Mohamed  A ,  et al.  Frequency of a false positive diagnosis of epilepsy: a systematic review of observational studies.   Seizure. 2016;41:167-174. doi:10.1016/j.seizure.2016.08.005PubMedGoogle ScholarCrossref
29.
Leach  JP , Lauder  R , Nicolson  A , Smith  DF .  Epilepsy in the UK: misdiagnosis, mistreatment, and undertreatment? the Wrexham area epilepsy project.   Seizure. 2005;14(7):514-520. doi:10.1016/j.seizure.2005.08.008PubMedGoogle ScholarCrossref
30.
French  JA , Kanner  AM , Bautista  J ,  et al; Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology; Quality Standards Subcommittee of the American Academy of Neurology; American Epilepsy Society.  Efficacy and tolerability of the new antiepileptic drugs I: treatment of new onset epilepsy: report of the Therapeutics and Technology Assessment Subcommittee and Quality Standards Subcommittee of the American Academy of Neurology and the American Epilepsy Society.   Neurology. 2004;62(8):1252-1260. doi:10.1212/01.WNL.0000123693.82339.FCPubMedGoogle ScholarCrossref
31.
French  JA , Kanner  AM , Bautista  J ,  et al; Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology; Quality Standards Subcommittee of the American Academy of Neurology; American Epilepsy Society.  Efficacy and tolerability of the new antiepileptic drugs II: treatment of refractory epilepsy: report of the Therapeutics and Technology Assessment Subcommittee and Quality Standards Subcommittee of the American Academy of Neurology and the American Epilepsy Society.   Neurology. 2004;62(8):1261-1273. doi:10.1212/01.WNL.0000123695.22623.32PubMedGoogle ScholarCrossref
32.
Kanner  AM , Ashman  E , Gloss  D ,  et al.  Practice guideline update summary: efficacy and tolerability of the new antiepileptic drugs I: treatment of new-onset epilepsy: report of the American Epilepsy Society and the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology.   Epilepsy Curr. 2018;18(4):260-268. doi:10.5698/1535-7597.18.4.260PubMedGoogle ScholarCrossref
33.
Kanner  AM , Ashman  E , Gloss  D ,  et al.  Practice guideline update summary: efficacy and tolerability of the new antiepileptic drugs II: treatment-resistant epilepsy: report of the American Epilepsy Society and the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology.   Epilepsy Curr. 2018;18(4):269-278. doi:10.5698/1535-7597.18.4.269PubMedGoogle ScholarCrossref
34.
Epilepsies: diagnosis and management. National Institute for Health and Care Excellence; 2021.
35.
Glauser  T , Ben-Menachem  E , Bourgeois  B ,  et al.  ILAE treatment guidelines: evidence-based analysis of antiepileptic drug efficacy and effectiveness as initial monotherapy for epileptic seizures and syndromes.   Epilepsia. 2006;47(7):1094-1120. doi:10.1111/j.1528-1167.2006.00585.xPubMedGoogle ScholarCrossref
36.
Mattson  RH , Cramer  JA , Collins  JF .  A comparison of valproate with carbamazepine for the treatment of complex partial seizures and secondarily generalized tonic-clonic seizures in adults: the Department of Veterans Affairs Epilepsy Cooperative Study No. 264 Group.   N Engl J Med. 1992;327(11):765-771. doi:10.1056/NEJM199209103271104PubMedGoogle ScholarCrossref
37.
Mattson  RH , Cramer  JA , Collins  JF ,  et al.  Comparison of carbamazepine, phenobarbital, phenytoin, and primidone in partial and secondarily generalized tonic-clonic seizures.   N Engl J Med. 1985;313(3):145-151. doi:10.1056/NEJM198507183130303PubMedGoogle ScholarCrossref
38.
Mattson  RH .  Selection of drugs for the treatment of epilepsy.   Semin Neurol. 1990;10(4):406-413. doi:10.1055/s-2008-1063985PubMedGoogle ScholarCrossref
39.
Dam  M , Ekberg  R , Løyning  Y , Waltimo  O , Jakobsen  K .  A double-blind study comparing oxcarbazepine and carbamazepine in patients with newly diagnosed, previously untreated epilepsy.   Epilepsy Res. 1989;3(1):70-76. doi:10.1016/0920-1211(89)90070-3PubMedGoogle Scholar
40.
Brodie  MJ , Richens  A , Yuen  AW ; UK Lamotrigine/Carbamazepine Monotherapy Trial Group.  Double-blind comparison of lamotrigine and carbamazepine in newly diagnosed epilepsy.   Lancet. 1995;345(8948):476-479. doi:10.1016/S0140-6736(95)90581-2PubMedGoogle ScholarCrossref
41.
Christe  W , Krämer  G , Vigonius  U ,  et al.  A double-blind controlled clinical trial: oxcarbazepine versus sodium valproate in adults with newly diagnosed epilepsy.   Epilepsy Res. 1997;26(3):451-460. doi:10.1016/S0920-1211(96)01013-3PubMedGoogle ScholarCrossref
42.
Guerreiro  MM , Vigonius  U , Pohlmann  H ,  et al.  A double-blind controlled clinical trial of oxcarbazepine versus phenytoin in children and adolescents with epilepsy.   Epilepsy Res. 1997;27(3):205-213. doi:10.1016/S0920-1211(97)00025-9PubMedGoogle ScholarCrossref
43.
Bill  PA , Vigonius  U , Pohlmann  H ,  et al.  A double-blind controlled clinical trial of oxcarbazepine versus phenytoin in adults with previously untreated epilepsy.   Epilepsy Res. 1997;27(3):195-204. doi:10.1016/S0920-1211(97)00024-7PubMedGoogle ScholarCrossref
44.
Steiner  TJ , Dellaportas  CI , Findley  LJ ,  et al.  Lamotrigine monotherapy in newly diagnosed untreated epilepsy: a double-blind comparison with phenytoin.   Epilepsia. 1999;40(5):601-607. doi:10.1111/j.1528-1157.1999.tb05562.xPubMedGoogle ScholarCrossref
45.
Brodie  MJ , Overstall  PW , Giorgi  L ; The UK Lamotrigine Elderly Study Group.  Multicentre, double-blind, randomised comparison between lamotrigine and carbamazepine in elderly patients with newly diagnosed epilepsy.   Epilepsy Res. 1999;37(1):81-87. doi:10.1016/S0920-1211(99)00039-XPubMedGoogle ScholarCrossref
46.
Brodie  MJ , Chadwick  DW , Anhut  H ,  et al; Gabapentin Study Group 945-212.  Gabapentin versus lamotrigine monotherapy: a double-blind comparison in newly diagnosed epilepsy.   Epilepsia. 2002;43(9):993-1000. doi:10.1046/j.1528-1157.2002.45401.xPubMedGoogle ScholarCrossref
47.
Brodie  MJ , Perucca  E , Ryvlin  P , Ben-Menachem  E , Meencke  HJ ; Levetiracetam Monotherapy Study Group.  Comparison of levetiracetam and controlled-release carbamazepine in newly diagnosed epilepsy.   Neurology. 2007;68(6):402-408. doi:10.1212/01.wnl.0000252941.50833.4aPubMedGoogle ScholarCrossref
48.
Kwan  P , Brodie  MJ , Kälviäinen  R , Yurkewicz  L , Weaver  J , Knapp  LE .  Efficacy and safety of pregabalin versus lamotrigine in patients with newly diagnosed partial seizures: a phase 3, double-blind, randomised, parallel-group trial.   Lancet Neurol. 2011;10(10):881-890. doi:10.1016/S1474-4422(11)70154-5PubMedGoogle ScholarCrossref
49.
Baulac  M , Brodie  MJ , Patten  A , Segieth  J , Giorgi  L .  Efficacy and tolerability of zonisamide versus controlled-release carbamazepine for newly diagnosed partial epilepsy: a phase 3, randomised, double-blind, non-inferiority trial.   Lancet Neurol. 2012;11(7):579-588. doi:10.1016/S1474-4422(12)70105-9PubMedGoogle ScholarCrossref
50.
Baulac  M , Patten  A , Giorgi  L .  Long-term safety and efficacy of zonisamide versus carbamazepine monotherapy for treatment of partial seizures in adults with newly diagnosed epilepsy: results of a phase III, randomized, double-blind study.   Epilepsia. 2014;55(10):1534-1543. doi:10.1111/epi.12749PubMedGoogle ScholarCrossref
51.
Baulac  M , Rosenow  F , Toledo  M ,  et al.  Efficacy, safety, and tolerability of lacosamide monotherapy versus controlled-release carbamazepine in patients with newly diagnosed epilepsy: a phase 3, randomised, double-blind, non-inferiority trial.   Lancet Neurol. 2017;16(1):43-54. doi:10.1016/S1474-4422(16)30292-7PubMedGoogle ScholarCrossref
52.
Marson  AG , Al-Kharusi  AM , Alwaidh  M ,  et al; SANAD Study group.  The SANAD study of effectiveness of carbamazepine, gabapentin, lamotrigine, oxcarbazepine, or topiramate for treatment of partial epilepsy: an unblinded randomised controlled trial.   Lancet. 2007;369(9566):1000-1015. doi:10.1016/S0140-6736(07)60460-7PubMedGoogle ScholarCrossref
53.
Marson  A , Burnside  G , Appleton  R ,  et al; SANAD II collaborators.  The SANAD II study of the effectiveness and cost-effectiveness of levetiracetam, zonisamide, or lamotrigine for newly diagnosed focal epilepsy: an open-label, non-inferiority, multicentre, phase 4, randomised controlled trial.   Lancet. 2021;397(10282):1363-1374. doi:10.1016/S0140-6736(21)00247-6PubMedGoogle ScholarCrossref
54.
Marson  AG , Al-Kharusi  AM , Alwaidh  M ,  et al; SANAD Study group.  The SANAD study of effectiveness of valproate, lamotrigine, or topiramate for generalised and unclassifiable epilepsy: an unblinded randomised controlled trial.   Lancet. 2007;369(9566):1016-1026. doi:10.1016/S0140-6736(07)60461-9PubMedGoogle ScholarCrossref
55.
Marson  A , Burnside  G , Appleton  R ,  et al; SANAD II collaborators.  The SANAD II study of the effectiveness and cost-effectiveness of valproate versus levetiracetam for newly diagnosed generalised and unclassifiable epilepsy: an open-label, non-inferiority, multicentre, phase 4, randomised controlled trial.   Lancet. 2021;397(10282):1375-1386. doi:10.1016/S0140-6736(21)00246-4PubMedGoogle ScholarCrossref
56.
Harden  CL , Meador  KJ , Pennell  PB ,  et al; American Academy of Neurology; American Epilepsy Society.  Management issues for women with epilepsy-Focus on pregnancy (an evidence-based review): II. teratogenesis and perinatal outcomes: report of the Quality Standards Subcommittee and Therapeutics and Technology Subcommittee of the American Academy of Neurology and the American Epilepsy Society.   Epilepsia. 2009;50(5):1237-1246. doi:10.1111/j.1528-1167.2009.02129.xPubMedGoogle ScholarCrossref
57.
Lattanzi  S , Zaccara  G , Giovannelli  F ,  et al.  Antiepileptic monotherapy in newly diagnosed focal epilepsy: anetwork meta-analysis.   Acta Neurol Scand. 2019;139(1):33-41. doi:10.1111/ane.13025PubMedGoogle ScholarCrossref
58.
Perucca  E , Gram  L , Avanzini  G , Dulac  O .  Antiepileptic drugs as a cause of worsening seizures.   Epilepsia. 1998;39(1):5-17. doi:10.1111/j.1528-1157.1998.tb01268.xPubMedGoogle ScholarCrossref
59.
Mula  M .  New non-intravenous routes for benzodiazepines in epilepsy: a clinician perspective.   CNS Drugs. 2017;31(1):11-17. doi:10.1007/s40263-016-0398-4PubMedGoogle ScholarCrossref
60.
Gidal  BE , French  JA , Grossman  P , Le Teuff  G .  Assessment of potential drug interactions in patients with epilepsy: impact of age and sex.   Neurology. 2009;72(5):419-425. doi:10.1212/01.wnl.0000341789.77291.8dPubMedGoogle ScholarCrossref
61.
Perucca  E .  Clinically relevant drug interactions with antiepileptic drugs.   Br J Clin Pharmacol. 2006;61(3):246-255. doi:10.1111/j.1365-2125.2005.02529.xPubMedGoogle ScholarCrossref
62.
Ranta  A , Wooten  GF .  Hyponatremia due to an additive effect of carbamazepine and thiazide diuretics.   Epilepsia. 2004;45(7):879. doi:10.1111/j.0013-9580.2004.00604.xPubMedGoogle ScholarCrossref
63.
Tellez-Zenteno  JF , Patten  SB , Jetté  N , Williams  J , Wiebe  S .  Psychiatric comorbidity in epilepsy: a population-based analysis.   Epilepsia. 2007;48(12):2336-2344. doi:10.1111/j.1528-1167.2007.01222.xPubMedGoogle Scholar
64.
Kanner  AM .  Management of psychiatric and neurological comorbidities in epilepsy.   Nat Rev Neurol. 2016;12(2):106-116. doi:10.1038/nrneurol.2015.243PubMedGoogle ScholarCrossref
65.
Mula  M , Trimble  MR , Sander  JW .  Are psychiatric adverse events of antiepileptic drugs a unique entity? a study on topiramate and levetiracetam.   Epilepsia. 2007;48(12):2322-2326. doi:10.1111/j.1528-1167.2007.01262.xPubMedGoogle Scholar
66.
Silberstein  SD , Holland  S , Freitag  F , Dodick  DW , Argoff  C , Ashman  E ; Quality Standards Subcommittee of the American Academy of Neurology and the American Headache Society.  Evidence-based guideline update: pharmacologic treatment for episodic migraine prevention in adults: report of the Quality Standards Subcommittee of the American Academy of Neurology and the American Headache Society.   Neurology. 2012;78(17):1337-1345. doi:10.1212/WNL.0b013e3182535d20PubMedGoogle ScholarCrossref
67.
Ben-Menachem  E .  Weight issues for people with epilepsy—a review.   Epilepsia. 2007;48(suppl 9):42-45. doi:10.1111/j.1528-1167.2007.01402.xPubMedGoogle ScholarCrossref
68.
Beerhorst  K , van der Kruijs  SJ , Verschuure  P , Tan  IY , Aldenkamp  AP .  Bone disease during chronic antiepileptic drug therapy: general versus specific risk factors.   J Neurol Sci. 2013;331(1-2):19-25. doi:10.1016/j.jns.2013.05.005PubMedGoogle ScholarCrossref
69.
Carbone  LD , Johnson  KC , Robbins  J ,  et al.  Antiepileptic drug use, falls, fractures, and BMD in postmenopausal women: findings from the women’s health initiative (WHI).   J Bone Miner Res. 2010;25(4):873-881.PubMedGoogle Scholar
70.
Farhat  G , Yamout  B , Mikati  MA , Demirjian  S , Sawaya  R , El-Hajj Fuleihan  G .  Effect of antiepileptic drugs on bone density in ambulatory patients.   Neurology. 2002;58(9):1348-1353. doi:10.1212/WNL.58.9.1348PubMedGoogle ScholarCrossref
71.
Mintzer  S , Skidmore  CT , Abidin  CJ ,  et al.  Effects of antiepileptic drugs on lipids, homocysteine, and C-reactive protein.   Ann Neurol. 2009;65(4):448-456. doi:10.1002/ana.21615PubMedGoogle ScholarCrossref
72.
Chang  CS , Liao  CH , Lin  CC , Lane  HY , Sung  FC , Kao  CH .  Patients with epilepsy are at an increased risk of subsequent stroke: a population-based cohort study.   Seizure. 2014;23(5):377-381. doi:10.1016/j.seizure.2014.02.007PubMedGoogle ScholarCrossref
73.
Josephson  CB , Wiebe  S , Delgado-Garcia  G ,  et al; Association of Enzyme-Inducing Antiseizure Drug Use With Long-term Cardiovascular Disease.  Association of enzyme-inducing antiseizure drug use with long-term cardiovascular disease.   JAMA Neurol. 2021;78(11):1367-1374. doi:10.1001/jamaneurol.2021.3424PubMedGoogle ScholarCrossref
74.
Lee-Lane  E , Torabi  F , Lacey  A ,  et al.  Epilepsy, antiepileptic drugs, and the risk of major cardiovascular events.   Epilepsia. 2021;62(7):1604-1616. doi:10.1111/epi.16930PubMedGoogle ScholarCrossref
75.
Bermeo-Ovalle  A .  Making rash decisions in epilepsy: evaluating hypersensitivity reactions to anti-seizure medications.   Epilepsy Curr. 2019;19(2):96-98. doi:10.1177/1535759719835672PubMedGoogle ScholarCrossref
76.
Hirsch  LJ , Weintraub  DB , Buchsbaum  R ,  et al.  Predictors of Lamotrigine-associated rash.   Epilepsia. 2006;47(2):318-322. doi:10.1111/j.1528-1167.2006.00423.xPubMedGoogle ScholarCrossref
77.
Mockenhaupt  M , Messenheimer  J , Tennis  P , Schlingmann  J .  Risk of Stevens-Johnson syndrome and toxic epidermal necrolysis in new users of antiepileptics.   Neurology. 2005;64(7):1134-1138. doi:10.1212/01.WNL.0000156354.20227.F0PubMedGoogle ScholarCrossref
78.
Man  CB , Kwan  P , Baum  L ,  et al.  Association between HLA-B*1502 allele and antiepileptic drug-induced cutaneous reactions in Han Chinese.   Epilepsia. 2007;48(5):1015-1018. doi:10.1111/j.1528-1167.2007.01022.xPubMedGoogle ScholarCrossref
79.
Harden  CL , Meador  KJ , Pennell  PB ,  et al; American Academy of Neurology; American Epilepsy Society.  Practice parameter update: management issues for women with epilepsy—focus on pregnancy (an evidence-based review): teratogenesis and perinatal outcomes: report of the Quality Standards Subcommittee and Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology and American Epilepsy Society.   Neurology. 2009;73(2):133-141. doi:10.1212/WNL.0b013e3181a6b312PubMedGoogle ScholarCrossref
80.
Harden  CL , Pennell  PB , Koppel  BS ,  et al; American Academy of Neurology; American Epilepsy Society.  Practice parameter update: management issues for women with epilepsy—focus on pregnancy (an evidence-based review): vitamin K, folic acid, blood levels, and breastfeeding: report of the Quality Standards Subcommittee and Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology and American Epilepsy Society.   Neurology. 2009;73(2):142-149. doi:10.1212/WNL.0b013e3181a6b325PubMedGoogle ScholarCrossref
81.
Pennell  PB , French  JA , Harden  CL ,  et al.  Fertility and birth outcomes in women with epilepsy seeking pregnancy.   JAMA Neurol. 2018;75(8):962-969. doi:10.1001/jamaneurol.2018.0646PubMedGoogle ScholarCrossref
82.
Tomson  T , Battino  D , Bonizzoni  E ,  et al; EURAP study group.  Dose-dependent risk of malformations with antiepileptic drugs: an analysis of data from the EURAP epilepsy and pregnancy registry.   Lancet Neurol. 2011;10(7):609-617. doi:10.1016/S1474-4422(11)70107-7PubMedGoogle ScholarCrossref
83.
Hernández-Díaz  S , Smith  CR , Shen  A ,  et al; North American AED Pregnancy Registry; North American AED Pregnancy Registry.  Comparative safety of antiepileptic drugs during pregnancy.   Neurology. 2012;78(21):1692-1699. doi:10.1212/WNL.0b013e3182574f39PubMedGoogle ScholarCrossref
84.
Tomson  T , Battino  D .  Teratogenic effects of antiepileptic drugs.   Lancet Neurol. 2012;11(9):803-813. doi:10.1016/S1474-4422(12)70103-5PubMedGoogle ScholarCrossref
85.
Meador  KJ , Baker  GA , Browning  N ,  et al; NEAD Study Group.  Fetal antiepileptic drug exposure and cognitive outcomes at age 6 years (NEAD study): a prospective observational study.   Lancet Neurol. 2013;12(3):244-252. doi:10.1016/S1474-4422(12)70323-XPubMedGoogle ScholarCrossref
86.
Wiggs  KK , Rickert  ME , Sujan  AC ,  et al.  Antiseizure medication use during pregnancy and risk of ASD and ADHD in children.   Neurology. 2020;95(24):e3232-e3240. doi:10.1212/WNL.0000000000010993PubMedGoogle ScholarCrossref
87.
Tomson  T , Battino  D , Bonizzoni  E ,  et al; EURAP Study Group.  Comparative risk of major congenital malformations with eight different antiepileptic drugs: a prospective cohort study of the EURAP registry.   Lancet Neurol. 2018;17(6):530-538. doi:10.1016/S1474-4422(18)30107-8PubMedGoogle ScholarCrossref
88.
Campbell  E , Kennedy  F , Russell  A ,  et al.  Malformation risks of antiepileptic drug monotherapies in pregnancy: updated results from the UK and Ireland Epilepsy and Pregnancy Registers.   J Neurol Neurosurg Psychiatry. 2014;85(9):1029-1034. doi:10.1136/jnnp-2013-306318PubMedGoogle ScholarCrossref
89.
Harden  CL , Pennell  PB , Koppel  BS ,  et al; American Academy of Neurology; American Epilepsy Society.  Management issues for women with epilepsy—ocus on pregnancy (an evidence-based review): III. vitamin K, folic acid, blood levels, and breast-feeding: report of the Quality Standards Subcommittee and Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology and the American Epilepsy Society.   Epilepsia. 2009;50(5):1247-1255. doi:10.1111/j.1528-1167.2009.02130.xPubMedGoogle ScholarCrossref
90.
Pennell  PB .  Use of antiepileptic drugs during pregnancy: evolving concepts.   Neurotherapeutics. 2016;13(4):811-820. doi:10.1007/s13311-016-0464-0PubMedGoogle ScholarCrossref
91.
Veiby  G , Engelsen  BA , Gilhus  NE .  Early child development and exposure to antiepileptic drugs prenatally and through breastfeeding: a prospective cohort study on children of women with epilepsy.   JAMA Neurol. 2013;70(11):1367-1374. doi:10.1001/jamaneurol.2013.4290PubMedGoogle ScholarCrossref
92.
Medical Research Council Antiepileptic Drug Withdrawal Study Group.  Randomised study of antiepileptic drug withdrawal in patients in remission.   Lancet. 1991;337(8751):1175-1180.PubMedGoogle Scholar
93.
Specchio  LM , Tramacere  L , La Neve  A , Beghi  E .  Discontinuing antiepileptic drugs in patients who are seizure free on monotherapy.   J Neurol Neurosurg Psychiatry. 2002;72(1):22-25. doi:10.1136/jnnp.72.1.22PubMedGoogle ScholarCrossref
94.
Lamberink  HJ , Otte  WM , Geerts  AT ,  et al.  Individualised prediction model of seizure recurrence and long-term outcomes after withdrawal of antiepileptic drugs in seizure-free patients: a systematic review and individual participant data meta-analysis.   Lancet Neurol. 2017;16(7):523-531. doi:10.1016/S1474-4422(17)30114-XPubMedGoogle ScholarCrossref
95.
Berg  AT , Shinnar  S .  Relapse following discontinuation of antiepileptic drugs: a meta-analysis.   Neurology. 1994;44(4):601-608. doi:10.1212/WNL.44.4.601PubMedGoogle ScholarCrossref
96.
Beghi  E , Schmidt  D .  When and how to stop antiepileptic drugs.   Epileptology. 2013;1(1):17-20. doi:10.1016/j.epilep.2012.07.001Google ScholarCrossref
97.
Camfield  P , Camfield  C .  Idiopathic generalized epilepsy with generalized tonic-clonic seizures (IGE-GTC): a population-based cohort with >20 year follow up for medical and social outcome.   Epilepsy Behav. 2010;18(1-2):61-63. doi:10.1016/j.yebeh.2010.02.014PubMedGoogle ScholarCrossref
98.
Senf  P , Schmitz  B , Holtkamp  M , Janz  D .  Prognosis of juvenile myoclonic epilepsy 45 years after onset: seizure outcome and predictors.   Neurology. 2013;81(24):2128-2133. doi:10.1212/01.wnl.0000437303.36064.f8PubMedGoogle ScholarCrossref
99.
Loiseau  P , Duché  B , Pédespan  JM .  Absence epilepsies.   Epilepsia. 1995;36(12):1182-1186. doi:10.1111/j.1528-1157.1995.tb01060.xPubMedGoogle ScholarCrossref
100.
Trinka  E , Baumgartner  S , Unterberger  I ,  et al.  Long-term prognosis for childhood and juvenile absence epilepsy.   J Neurol. 2004;251(10):1235-1241. doi:10.1007/s00415-004-0521-1PubMedGoogle ScholarCrossref
101.
Jobst  BC , Cascino  GD .  Resective epilepsy surgery for drug-resistant focal epilepsy: a review.   JAMA. 2015;313(3):285-293. doi:10.1001/jama.2014.17426PubMedGoogle ScholarCrossref
102.
Téllez-Zenteno  JF , Dhar  R , Wiebe  S .  Long-term seizure outcomes following epilepsy surgery: a systematic review and meta-analysis.   Brain. 2005;128(Pt 5):1188-1198. doi:10.1093/brain/awh449PubMedGoogle Scholar
103.
Giordano  F , Zicca  A , Barba  C , Guerrini  R , Genitori  L .  Vagus nerve stimulation: surgical technique of implantation and revision and related morbidity.   Epilepsia. 2017;58(suppl 1):85-90. doi:10.1111/epi.13678PubMedGoogle ScholarCrossref
104.
Englot  DJ , Chang  EF , Auguste  KI .  Vagus nerve stimulation for epilepsy: a meta-analysis of efficacy and predictors of response.   J Neurosurg. 2011;115(6):1248-1255. doi:10.3171/2011.7.JNS11977PubMedGoogle ScholarCrossref
AMA CME Accreditation Information

Credit Designation Statement: The American Medical Association designates this Journal-based CME activity activity for a maximum of 1.00  AMA PRA Category 1 Credit(s)™. Physicians should claim only the credit commensurate with the extent of their participation in the activity.

Successful completion of this CME activity, which includes participation in the evaluation component, enables the participant to earn up to:

  • 1.00 Medical Knowledge MOC points in the American Board of Internal Medicine's (ABIM) Maintenance of Certification (MOC) program;;
  • 1.00 Self-Assessment points in the American Board of Otolaryngology – Head and Neck Surgery’s (ABOHNS) Continuing Certification program;
  • 1.00 MOC points in the American Board of Pediatrics’ (ABP) Maintenance of Certification (MOC) program;
  • 1.00 Lifelong Learning points in the American Board of Pathology’s (ABPath) Continuing Certification program; and
  • 1.00 credit toward the CME [and Self-Assessment requirements] of the American Board of Surgery’s Continuous Certification program

It is the CME activity provider's responsibility to submit participant completion information to ACCME for the purpose of granting MOC credit.

Close
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
Close
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close

Name Your Search

Save Search
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Close
Close

Lookup An Activity

or

My Saved Searches

You currently have no searches saved.

Close

My Saved Courses

You currently have no courses saved.

Close