Identification of Drug Interaction Adverse Events in Patients With COVID-19: A Systematic Review | Clinical Pharmacy and Pharmacology | JN Learning | AMA Ed Hub [Skip to Content]
[Skip to Content Landing]

Identification of Drug Interaction Adverse Events in Patients With COVID-19A Systematic Review

Educational Objective
To identify the key insights or developments described in this article
1 Credit CME
Key Points

Question  Is it possible to assess adverse events associated with drug-drug interactions (DDIs) by drug interaction checkers in patients with COVID-19?

Findings  The DDIs identified in this systematic review involved 46 different drugs, with 575 DDIs for 58 drug pairs (305 associated with at least 1 adverse drug reaction) reported. Drug interaction checkers could have identified such events, including severe and life-threatening ones.

Meaning  Notwithstanding the emergency context of the COVID-19 pandemic, DDI-related adverse events should never be overlooked to customize the most effective and safest therapy.

Abstract

Importance  During the COVID-19 pandemic, urgent clinical management of patients has mainly included drugs currently administered for other diseases, referred to as repositioned drugs. As a result, some of these drugs have proved to be not only ineffective but also harmful because of adverse events associated with drug-drug interactions (DDIs).

Objective  To identify DDIs that led to adverse clinical outcomes and/or adverse drug reactions in patients with COVID-19 by systematically reviewing the literature and assessing the value of drug interaction checkers in identifying such events.

Evidence Review  After identification of the drugs used during the COVID-19 pandemic, the drug interaction checkers Drugs.com, COVID-19 Drug Interactions, LexiComp, Medscape, and WebMD were consulted to analyze theoretical DDI-associated adverse events in patients with COVID-19 from March 1, 2020, through February 28, 2022. A systematic literature review was performed by searching the databases PubMed, Scopus, and Cochrane for articles published from March 1, 2020, through February 28, 2022, to retrieve articles describing actual adverse events associated with DDIs. The drug interaction checkers were consulted again to evaluate their potential to assess such events.

Findings  The DDIs identified in the reviewed articles involved 46 different drugs. In total, 575 DDIs for 58 drug pairs (305 associated with at least 1 adverse drug reaction) were reported. The drugs most involved in DDIs were lopinavir and ritonavir. Of the 6917 identified studies, 20 met the inclusion criteria. These studies, which enrolled 1297 patients overall, reported 115 DDI-related adverse events: 15 (26%) were identifiable by all tools analyzed, 29 (50%) were identifiable by at least 1 of them, and 14 (24%) remained nonidentifiable.

Conclusions and Relevance  The main finding of this systematic review is that the use of drug interaction checkers could have identified several DDI-associated adverse drug reactions, including severe and life-threatening events. Both the interactions between the drugs used to treat COVID-19 and between the COVID-19 drugs and those already used by the patients should be evaluated.

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 CME Credit™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

CME Disclosure Statement: Unless noted, all individuals in control of content reported no relevant financial relationships. If applicable, all relevant financial relationships have been mitigated.

Article Information

Accepted for Publication: March 2, 2022.

Published: April 19, 2022. doi:10.1001/jamanetworkopen.2022.7970

Open Access: This is an open access article distributed under the terms of the CC-BY License. © 2022 Conti V et al. JAMA Network Open.

Corresponding Author: Valeria Conti, PhD, Department of Medicine, Surgery, and Dentistry, Scuola Medica Salernitana, University of Salerno, Via S Allende, 84081 Baronissi, SA, Italy (vconti@unisa.it).

Author Contributions: Drs Conti and Filippelli had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. Drs Conti and Sellitto contributed equally to this work.

Concept and design: Conti, Sellitto, Pagliano, Filippelli.

Acquisition, analysis, or interpretation of data: Conti, Sellitto, Torsiello, Manzo, De Bellis, Stefanelli, Bertini, Costantino, Maci, Raschi, Sabbatino, Corbi.

Drafting of the manuscript: Conti, Sellitto, Torsiello, Bertini, Sabbatino.

Critical revision of the manuscript for important intellectual content: Conti, Sellitto, Torsiello, Manzo, De Bellis, Stefanelli, Costantino, Maci, Raschi, Sabbatino, Corbi, Pagliano, Filippelli.

Supervision: Conti, Sellitto, Manzo, Stefanelli, Sabbatino, Corbi, Pagliano, Filippelli.

Conflict of Interest Disclosures: Dr Raschi reported receiving personal fees from Novartis outside the submitted work. No other disclosures were reported.

Additional Contributions: Native English-speaker Jan Festa, Morgan School, Salerno, Italy, revised the manuscript. She was not compensated for her work.

References
1.
Pagliano  P , Sellitto  C , Conti  V , Ascione  T , Esposito  S .  Characteristics of viral pneumonia in the COVID-19 era: an update.   Infection. 2021;49(4):607-616. doi:10.1007/s15010-021-01603-y PubMedGoogle ScholarCrossref
2.
Pagliano  P , Scarpati  G , Sellitto  C ,  et al.  Experimental pharmacotherapy for COVID-19: the latest advances.   J Exp Pharmacol. 2021;13:1-13. doi:10.2147/JEP.S255209 PubMedGoogle ScholarCrossref
3.
Esposito  S , Noviello  S , Pagliano  P .  Update on treatment of COVID-19: ongoing studies between promising and disappointing results.   Infez Med. 2020;28(2):198-211.PubMedGoogle Scholar
4.
Perazzolo  S , Zhu  L , Lin  W , Nguyen  A , Ho  RJY .  Systems and clinical pharmacology of COVID-19 therapeutic candidates: a clinical and translational medicine perspective.   J Pharm Sci. 2021;110(3):1002-1017. doi:10.1016/j.xphs.2020.11.019 PubMedGoogle ScholarCrossref
5.
Cantudo-Cuenca  MD , Gutiérrez-Pizarraya  A , Pinilla-Fernández  A ,  et al.  Drug-drug interactions between treatment specific pharmacotherapy and concomitant medication in patients with COVID-19 in the first wave in Spain.   Sci Rep. 2021;11(1):12414. doi:10.1038/s41598-021-91953-2 PubMedGoogle ScholarCrossref
6.
Stroup  DF , Berlin  JA , Morton  SC ,  et al.  Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group.   JAMA. 2000;283(15):2008-2012. doi:10.1001/jama.283.15.2008 PubMedGoogle ScholarCrossref
7.
Moher  D , Liberati  A , Tetzlaff  J , Altman  DG ; PRISMA Group.  Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement.   PLoS Med. 2009;6(7):e1000097. doi:10.1371/journal.pmed.1000097 PubMedGoogle Scholar
8.
Drugs.com. Drug Interaction checker. Accessed February 13, 2022. https://www.drugs.com/
9.
Covid 19 Drug Interaction. Drug Interaction checker. Accessed February 13, 2022. https://www.covid19-druginteractions.org/checker
11.
Medscape Reference. Drug Interactions Checker. Accessed February 13, 2022. https://reference.medscape.com/
12.
WebMD. Better information. Better health. Accessed February 13, 2022. https://www.webmd.com/
13.
European Medicines Agency. Accessed February 13, 2022. https://www.ema.europa.eu/en
14.
Agenzia Italiana del Farmaco. Accessed February 13, 2022. https://www.aifa.gov.it/
15.
Clinicaltrials.gov. Accessed February 13, 2022. https://www.clinicaltrials.gov/
16.
Anmella  G , Arbelo  N , Fico  G ,  et al.  COVID-19 inpatients with psychiatric disorders: real-world clinical recommendations from an expert team in consultation-liaison psychiatry.   J Affect Disord. 2020;274:1062-1067. doi:10.1016/j.jad.2020.05.149 PubMedGoogle ScholarCrossref
17.
Bartiromo  M , Borchi  B , Botta  A ,  et al.  Threatening drug-drug interaction in a kidney transplant patient with coronavirus disease 2019 (COVID-19).   Transpl Infect Dis. 2020;22(4):e13286. doi:10.1111/tid.13286 PubMedGoogle Scholar
18.
Borba  MGS , Val  FFA , Sampaio  VS ,  et al; CloroCovid-19 Team.  Effect of high vs low doses of chloroquine diphosphate as adjunctive therapy for patients hospitalized with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection: a randomized clinical trial.   JAMA Netw Open. 2020;3(4):e208857. doi:10.1001/jamanetworkopen.2020.8857 PubMedGoogle Scholar
19.
Crescioli  G , Brilli  V , Lanzi  C ,  et al.  Adverse drug reactions in SARS-CoV-2 hospitalised patients: a case-series with a focus on drug-drug interactions.   Intern Emerg Med. 2021;16(3):697-710. doi:10.1007/s11739-020-02586-8 PubMedGoogle ScholarCrossref
20.
Dajti  E , Cristini  F , Tamanini  G , Cescon  M , Bazzoli  F , Tamè  M .  COVID-19 in a young liver transplant recipient: caution for drug-drug interactions.   J Gastrointestin Liver Dis. 2020;29(3):470. doi:10.15403/jgld-2672 PubMedGoogle Scholar
21.
Gautret  P , Lagier  JC , Honoré  S , Hoang  VT , Raoult  D .  Clinical efficacy and safety profile of hydroxychloroquine and azithromycin against COVID-19.   Int J Antimicrob Agents. 2021;57(1):106242. doi:10.1016/j.ijantimicag.2020.106242 PubMedGoogle Scholar
22.
Ghani  MU , Kumar  M , Ghani  U , Sonia  F , Abbas  SA .  Intracranial hemorrhage complicating anticoagulant prophylactic therapy in three hospitalized COVID-19 patients.   J Neurovirol. 2020;26(4):602-604. doi:10.1007/s13365-020-00869-6 PubMedGoogle ScholarCrossref
23.
Li  X , Yang  Y , Liu  L ,  et al.  Effect of combination antiviral therapy on hematological profiles in 151 adults hospitalized with severe coronavirus disease 2019.   Pharmacol Res. 2020;160:105036. doi:10.1016/j.phrs.2020.105036 PubMedGoogle Scholar
24.
Macías  J , Pinilla  A , Lao-Dominguez  FA ,  et al.  High rate of major drug-drug interactions of lopinavir-ritonavir for COVID-19 treatment.   Sci Rep. 2020;10(1):20958. doi:10.1038/s41598-020-78029-3 PubMedGoogle ScholarCrossref
25.
Martínez-López-de-Castro  N , Samartín-Ucha  M , Paradela-Carreiro  A ,  et al.  Real-world prevalence and consequences of potential drug-drug interactions in the first-wave COVID-19 treatments.   J Clin Pharm Ther. 2021;46(3):724-730. doi:10.1111/jcpt.13337 PubMedGoogle ScholarCrossref
26.
Meriglier  E , Rivoisy  C , Hessamfar  M ,  et al.  Safety of hydroxychloroquine and darunavir or lopinavir in COVID-19 infection.   J Antimicrob Chemother. 2021;76(2):482-486. doi:10.1093/jac/dkaa441 PubMedGoogle ScholarCrossref
27.
Meziyerh  S , Zwart  TC , van Etten  RW ,  et al.  Severe COVID-19 in a renal transplant recipient: a focus on pharmacokinetics.   Am J Transplant. 2020;20(7):1896-1901. doi:10.1111/ajt.15943 PubMedGoogle ScholarCrossref
28.
Nham  E , Ko  JH , Jeong  BH ,  et al.  Severe thrombocytopenia in a patient with COVID-19.   Infect Chemother. 2020;52(3):410-414. doi:10.3947/ic.2020.52.3.410 PubMedGoogle ScholarCrossref
29.
Ramireddy  A , Chugh  H , Reinier  K ,  et al.  Experience with hydroxychloroquine and azithromycin in the coronavirus disease 2019 pandemic: implications for QT interval monitoring.   J Am Heart Assoc. 2020;9(12):e017144. doi:10.1161/JAHA.120.017144 PubMedGoogle Scholar
30.
Skroza  N , Bernardini  N , Balduzzi  V ,  et al.  A late-onset widespread skin rash in a previous COVID-19-infected patient: viral or multidrug effect?   J Eur Acad Dermatol Venereol. 2020;34(9):e438-e439. doi:10.1111/jdv.16633 PubMedGoogle ScholarCrossref
31.
Szekely  Y , Lichter  Y , Taieb  P ,  et al.  Spectrum of cardiac manifestations in COVID-19: a systematic echocardiographic study.   Circulation. 2020;142(4):342-353. doi:10.1161/CIRCULATIONAHA.120.047971 PubMedGoogle ScholarCrossref
32.
Teoli  D , Thompson  V , Wright  J ,  et al.  Acute pain crisis caused by tramadol remdesivir drug-drug interaction.   J Palliat Med. 2021;24(10):1582-1584. doi:10.1089/jpm.2021.0123 PubMedGoogle ScholarCrossref
33.
Thammathiwat  T , Tungsanga  S , Tiankanon  K ,  et al.  A case of successful treatment of severe COVID-19 pneumonia with favipiravir and tocilizumab in post-kidney transplant recipient.   Transpl Infect Dis. 2021;23(1):e13388. doi:10.1111/tid.13388 PubMedGoogle Scholar
34.
Treon  SP , Castillo  JJ , Skarbnik  AP ,  et al.  The BTK inhibitor ibrutinib may protect against pulmonary injury in COVID-19-infected patients.   Blood. 2020;135(21):1912-1915. doi:10.1182/blood.2020006288 PubMedGoogle ScholarCrossref
35.
Yekedüz  E , Dursun  B , Aydın  GÇ ,  et al.  Clinical course of COVID-19 infection in elderly patient with melanoma on nivolumab.   J Oncol Pharm Pract. 2020;26(5):1289-1294. doi:10.1177/1078155220924084 PubMedGoogle ScholarCrossref
36.
Pagliano  P , Sellitto  C , Scarpati  G ,  et al.  An overview of the preclinical discovery and development of remdesivir for the treatment of coronavirus disease 2019 (COVID-19).   Expert Opin Drug Discov. 2022;17(1):9-18. doi:10.1080/17460441.2021.1970743 PubMedGoogle ScholarCrossref
37.
Horby  P , Lim  WS , Emberson  JR ,  et al; RECOVERY Collaborative Group.  Dexamethasone in hospitalized patients with COVID-19.   N Engl J Med. 2021;384(8):693-704. doi:10.1056/NEJMoa2021436 PubMedGoogle Scholar
38.
Stasi  C , Fallani  S , Voller  F , Silvestri  C .  Treatment for COVID-19: an overview.   Eur J Pharmacol. 2020;889:173644. doi:10.1016/j.ejphar.2020.173644 PubMedGoogle Scholar
39.
Wong  CKH , Wong  JYH , Tang  EHM , Au  CH , Wai  AKC .  Clinical presentations, laboratory and radiological findings, and treatments for 11,028 COVID-19 patients: a systematic review and meta-analysis.   Sci Rep. 2020;10(1):19765. doi:10.1038/s41598-020-74988-9 PubMedGoogle ScholarCrossref
40.
Conti  V , Corbi  G , Sellitto  C ,  et al.  Effect of tocilizumab in reducing the mortality rate in COVID-19 patients: a systematic review with meta-analysis.   J Pers Med. 2021;11(7):628. doi:10.3390/jpm11070628 PubMedGoogle ScholarCrossref
41.
Preskorn  SH , Quadri  S .  Why are patients with COVID-19 at risk for drug-drug interactions?   J Psychiatr Pract. 2020;26(6):485-492. doi:10.1097/PRA.0000000000000502 PubMedGoogle ScholarCrossref
42.
Agenzia Italiana del Farmaco. Uso delle eparine nei pazienti adulti con COVID-19. Accessed February 13, 2022. https://www.aifa.gov.it/documents/20142/0/Eparine_Basso_Peso_Molecolare_13.05.2021.pdf
43.
Gatti  M , Raschi  E , Poluzzi  E ,  et al.  The complex management of atrial fibrillation and cancer in the COVID-19 era: drug interactions, thromboembolic risk, and proarrhythmia.   Curr Heart Fail Rep. 2020;17(6):365-383. doi:10.1007/s11897-020-00485-9 PubMedGoogle ScholarCrossref
44.
Miranda  V , Fede  A , Nobuo  M ,  et al.  Adverse drug reactions and drug interactions as causes of hospital admission in oncology.   J Pain Symptom Manage. 2011;42(3):342-353. doi:10.1016/j.jpainsymman.2010.11.014 PubMedGoogle ScholarCrossref
45.
Chan  A , Soh  D , Ko  Y , Huang  YC , Chiang  J .  Characteristics of unplanned hospital admissions due to drug-related problems in cancer patients.   Support Care Cancer. 2014;22(7):1875-1881. doi:10.1007/s00520-014-2160-0 PubMedGoogle ScholarCrossref
46.
CredibleMeds. Accessed February 13, 2022. https://crediblemeds.org/
47.
Chai  KL , Rowan  G , Seymour  JF , Burbury  K , Carney  D , Tam  CS .  Practical recommendations for the choice of anticoagulants in the management of patients with atrial fibrillation on ibrutinib.   Leuk Lymphoma. 2017;58(12):2811-2814. doi:10.1080/10428194.2017.1315115 PubMedGoogle ScholarCrossref
48.
Conti  V , Corbi  G , Costantino  M ,  et al.  Biomarkers to personalize the treatment of rheumatoid arthritis: focus on autoantibodies and pharmacogenetics.   Biomolecules. 2020;10(12):14. doi:10.3390/biom10121672 PubMedGoogle ScholarCrossref
49.
Gordon  CJ , Tchesnokov  EP , Schinazi  RF , Götte  M .  Molnupiravir promotes SARS-CoV-2 mutagenesis via the RNA template.   J Biol Chem. 2021;297(1):100770. doi:10.1016/j.jbc.2021.100770 PubMedGoogle Scholar
50.
Painter  WP , Holman  W , Bush  JA ,  et al.  Human safety, tolerability, and pharmacokinetics of molnupiravir, a novel broad-spectrum oral antiviral agent with activity against SARS-CoV-2.   Antimicrob Agents Chemother. 2021;65(5):e02428-e20. doi:10.1128/AAC.02428-20 PubMedGoogle ScholarCrossref
51.
Owen  DR , Allerton  CMN , Anderson  AS ,  et al.  An oral SARS-CoV-2 Mpro inhibitor clinical candidate for the treatment of COVID-19.   Science. 2021;374(6575):1586-1593. doi:10.1126/science.abl4784 PubMedGoogle ScholarCrossref
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
Close
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close

Name Your Search

Save Search
Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Close

Lookup An Activity

or

Close

My Saved Searches

You currently have no searches saved.

Close

My Saved Courses

You currently have no courses saved.

Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close