Household Secondary Attack Rates of SARS-CoV-2 by Variant and Vaccination Status | Global Health | JN Learning | AMA Ed Hub [Skip to Content]
[Skip to Content Landing]

Household Secondary Attack Rates of SARS-CoV-2 by Variant and Vaccination StatusAn Updated Systematic Review and Meta-analysis

Educational Objective
To identify the key insights or developments described in this article
1 Credit CME
Key Points

Question  Are viral variants of concern and increased vaccination associated with SARS-CoV-2 household transmission rates?

Findings  In this systemic review and meta-analysis of 135 studies with more than 1.3 million participants in 36 countries, household secondary attack rates increased over time and were higher for Omicron (42.7%), Alpha (36.4%), and Delta (29.7%) variants than previously reported estimates (18.9%). Full vaccination reduced susceptibility and infectiousness, but more so for Alpha than Delta and Omicron.

Meaning  These findings suggest vaccination for SARS-CoV-2 transcends protection of the individual by conferring indirect protection to other household members, but the degree of protection is seemingly lower for emerging variants.

Abstract

Importance  An overall household secondary attack rate (SAR) of 18.9% (95% CI, 16.2%-22.0%) through June 17, 2021 was previously reported for SARS-CoV-2. Emerging variants of concern and increased vaccination have affected transmission rates.

Objective  To evaluate how reported household SARs changed over time and whether SARs varied by viral variant and index case and contact vaccination status.

Data Sources  PubMed and medRxiv from June 18, 2021, through March 8, 2022, and reference lists of eligible articles. Preprints were included.

Study Selection  Articles with original data reporting the number of infected and total number of household contacts. Search terms included SARS-CoV-2, COVID-19, variant, vaccination, secondary attack rate, secondary infection rate, household, index case, family contacts, close contacts, and family transmission.

Data Extraction and Synthesis  The Preferred Reporting Items for Systematic Reviews and Meta-Analyses reporting guideline was followed. Meta-analyses used generalized linear mixed models to obtain SAR estimates and 95% CIs.

Main Outcomes and Measures  SAR stratified by covariates according to variant, index case and contact vaccination status, and index case identification period. SARs were used to estimate vaccine effectiveness on the basis of the transmission probability for susceptibility to infection (VES,p), infectiousness given infection (VEI,p), and total vaccine effectiveness (VET,p).

Results  Household SARs were higher for 33 studies with midpoints in 2021 to 2022 (37.3%; 95% CI, 32.7% to 42.1%) compared with 63 studies with midpoints through April 2020 (15.5%; 95% CI, 13.2% to 18.2%). Household SARs were 42.7% (95% CI, 35.4% to 50.4%) for Omicron (7 studies), 36.4% (95% CI, 33.4% to 39.5%) for Alpha (11 studies), 29.7% (95% CI, 23.0% to 37.3%) for Delta (16 studies), and 22.5% (95% CI, 18.6% to 26.8%) for Beta (3 studies). For full vaccination, VES,p was 78.6% (95% CI, 76.0% to 80.9%) for Alpha, 56.4% (95% CI, 54.6% to 58.1%) for Delta, and 18.1% (95% CI, −18.3% to 43.3%) for Omicron; VEI,p was 75.3% (95% CI, 69.9% to 79.8%) for Alpha, 21.9% (95% CI, 11.0% to 31.5%) for Delta, and 18.2% (95% CI, 0.6% to 32.6%) for Omicron; and VET,p was 94.7% (95% CI, 93.3% to 95.8%) for Alpha, 64.4% (95% CI, 58.0% to 69.8%) for Delta, and 35.8% (95% CI, 13.0% to 52.6%) for Omicron.

Conclusions and Relevance  These results suggest that emerging SARS-CoV-2 variants of concern have increased transmissibility. Full vaccination was associated with reductions in susceptibility and infectiousness, but more so for Alpha than Delta and Omicron. The changes in estimated vaccine effectiveness underscore the challenges of developing effective vaccines concomitant with viral evolution.

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 CME Credit™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

CME Disclosure Statement: Unless noted, all individuals in control of content reported no relevant financial relationships. If applicable, all relevant financial relationships have been mitigated.

Article Information

Accepted for Publication: March 10, 2022.

Published: April 28, 2022. doi:10.1001/jamanetworkopen.2022.9317

Open Access: This is an open access article distributed under the terms of the CC-BY License. © 2022 Madewell ZJ et al. JAMA Network Open.

Corresponding Author: Zachary J. Madewell, PhD, Department of Biostatistics, University of Florida, PO Box 117450, Gainesville, FL 32611 (zmadewe@emory.edu).

Author Contributions: Dr Madewell had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: Madewell, Longini, Dean.

Acquisition, analysis, or interpretation of data: All authors.

Drafting of the manuscript: Madewell.

Critical revision of the manuscript for important intellectual content: All authors.

Statistical analysis: Madewell, Yang, Longini, Halloran.

Obtained funding: Longini, Dean.

Administrative, technical, or material support: Longini.

Supervision: Dean.

Conflict of Interest Disclosures: Dr Yang reported receiving grants from National Institutes of Health during the conduct of the study. No other disclosures were reported.

Funding/Support: This work was supported by the National Institutes of Health (grant R01-AI139761 to Dr Dean).

Role of the Funder/Sponsor: The funder had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

References
1.
Madewell  ZJ , Yang  Y , Longini  IM  Jr , Halloran  ME , Dean  NE .  Factors associated with household transmission of SARS-CoV-2: an updated systematic review and meta-analysis.   JAMA Netw Open. 2021;4(8):e2122240. doi:10.1001/jamanetworkopen.2021.22240PubMedGoogle ScholarCrossref
2.
Klaassen  F , Chitwood  MH , Cohen  T ,  et al.  Population immunity to pre-Omicron and Omicron SARS-CoV-2 variants in US states and counties through December 1, 2021.   medRxiv. Preprint posted online March 1, 2022.Google Scholar
3.
Halloran  ME , Longini  IM , Struchiner  CJ , Longini  IM .  Design and Analysis of Vaccine Studies. Vol 18. Springer; 2010. doi:10.1007/978-0-387-68636-3
4.
Halloran  ME , Préziosi  MP , Chu  H .  Estimating vaccine efficacy from secondary attack rates.   J Am Stat Assoc. 2003;98(461):38-46. doi:10.1198/016214503388619076Google ScholarCrossref
5.
Madewell  ZJ , Yang  Y , Longini  IM  Jr , Halloran  ME , Dean  NE .  Household transmission of SARS-CoV-2: a systematic review and meta-analysis.   JAMA Netw Open. 2020;3(12):e2031756. doi:10.1001/jamanetworkopen.2020.31756PubMedGoogle ScholarCrossref
6.
Fung  HF , Martinez  L , Alarid-Escudero  F ,  et al; Stanford-CIDE Coronavirus Simulation Model (SC-COSMO) Modeling Group.  The household secondary attack rate of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): a rapid review.   Clin Infect Dis. 2021;73(2)(suppl):S138-S145. doi:10.1093/cid/ciaa1558PubMedGoogle ScholarCrossref
7.
Begg  CB , Mazumdar  M .  Operating characteristics of a rank correlation test for publication bias.   Biometrics. 1994;50(4):1088-1101. doi:10.2307/2533446PubMedGoogle ScholarCrossref
8.
Duval  S , Tweedie  R .  Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis.   Biometrics. 2000;56(2):455-463. doi:10.1111/j.0006-341X.2000.00455.xPubMedGoogle ScholarCrossref
9.
Viechtbauer  W .  Conducting meta-analyses in R with the metafor package.   J Stat Softw. 2010;36(3):1-48. doi:10.18637/jss.v036.i03Google ScholarCrossref
10.
R Core Team. R: a language and environment for statistical computing. Accessed December 7, 2021. https://www.gbif.org/tool/81287/r-a-language-and-environment-for-statistical-computing
11.
Afonso  ET , Marques  SM , Costa  LD ,  et al.  Secondary household transmission of SARS-CoV-2 among children and adolescents: clinical and epidemiological aspects.   Pediatr Pulmonol. 2022;57(1):162-175.doi:10.1002/ppul.25711PubMedGoogle ScholarCrossref
12.
Bistaraki  A , Roussos  S , Tsiodras  S , Sypsa  V .  Age-dependent effects on infectivity and susceptibility to SARS-CoV-2 infection: results from nationwide contact tracing data in Greece.   Infect Dis. 2022;54(3):186-195.doi:10.1080/23744235.2021.1995627PubMedGoogle ScholarCrossref
13.
Burke  RM , Calderwood  L , Killerby  ME ,  et al; COVID-19 Case Investigation Form Working Group.  Patterns of virus exposure and presumed household transmission among persons with coronavirus disease, United States, January-April 2020.   Emerg Infect Dis. 2021;27(9):2323-2332. doi:10.3201/eid2709.204577PubMedGoogle ScholarCrossref
14.
Calvani  M , Cantiello  G , Cavani  M ,  et al.  Reasons for SARS-CoV-2 infection in children and their role in the transmission of infection according to age: a case-control study.   Ital J Pediatr. 2021;47(1):193. doi:10.1186/s13052-021-01141-1PubMedGoogle ScholarCrossref
15.
Cheng  VC-C , Siu  GK-H , Wong  S-C ,  et al.  Complementation of contact tracing by mass testing for successful containment of Beta COVID-19 variant (SARS-CoV-2 VOC B.1.351) epidemic in Hong Kong.   Lancet Reg Health West Pac. 2021;17:100281. doi:10.1016/j.lanwpc.2021.100281PubMedGoogle ScholarCrossref
16.
Chu  VT , Yousaf  AR , Chang  K ,  et al; Georgia Camp Investigation Team.  Household transmission of SARS-CoV-2 from children and adolescents.   N Engl J Med. 2021;385(10):954-956. doi:10.1056/NEJMc2031915PubMedGoogle ScholarCrossref
17.
Clifford  S , Waight  P , Hackman  J ,  et al.  Effectiveness of BNT162b2 and ChAdOx1 against SARS-CoV-2 household transmission: a prospective cohort study in England.   medRxiv. Preprint posted online November 25, 2021. doi:10.1101/2021.11.24.21266401Google Scholar
18.
Cohen  C , Kleynhans  J , von Gottberg  A ,  et al.  SARS-CoV-2 incidence, transmission and reinfection in a rural and an urban setting: results of the PHIRST-C cohort study, South Africa, 2020-2021.   medRxiv. Preprint posted online December 4, 2021. doi:10.1101/2021.07.20.21260855Google Scholar
19.
de Gier  B , Andeweg  S , Joosten  R ,  et al; RIVM COVID-19 surveillance and epidemiology team 1; Members of the RIVM COVID-19 surveillance and epidemiology team.  Vaccine effectiveness against SARS-CoV-2 transmission and infections among household and other close contacts of confirmed cases, the Netherlands, February to May 2021.   Euro Surveill. 2021;26(31):2100640. doi:10.2807/1560-7917.ES.2021.26.31.2100640PubMedGoogle ScholarCrossref
20.
Dougherty  K , Mannell  M , Naqvi  O , Matson  D , Stone  J .  SARS-CoV-2 B. 1.617. 2 (Delta) variant COVID-19 outbreak associated with a gymnastics facility—Oklahoma, April–May 2021.   MMWR Morb Mortal Wkly Rep. 2021;70(28):1004-1007. doi:10.15585/mmwr.mm7028e2PubMedGoogle ScholarCrossref
21.
Gazit  S , Mizrahi  B , Kalkstein  N ,  et al.  BNT162b2 mRNA vaccine effectiveness given confirmed exposure: analysis of household members of COVID-19 patients.   Clin Infect Dis. 2021;ciab973. doi:10.1093/cid/ciab973PubMedGoogle ScholarCrossref
22.
Ge  Y , Martinez  L , Sun  S ,  et al.  COVID-19 transmission dynamics among close contacts of index patients with COVID-19: a population-based cohort study in Zhejiang province, China.   JAMA Intern Med. 2021;181(10):1343-1350. doi:10.1001/jamainternmed.2021.4686PubMedGoogle ScholarCrossref
23.
Gorgels  K , Alphen  L , van der Veer  BMJW ,  et al.  Increased transmissibility of SARS-CoV-2 Alpha variant (B.1.1.7) in children: three large primary school outbreaks revealed by whole genome sequencing in the Netherlands.   Research Square. Preprint posted online December 8, 2021. doi:10.21203/rs.3.rs-1107495/v1Google Scholar
24.
Hwang  H , Lim  J-S , Song  S-A ,  et al.  Transmission dynamics of the Delta variant of SARS-CoV-2 infections in South Korea.   J Infect Dis. 2021;225(5):793-799. doi:10.1093/infdis/jiab586PubMedGoogle ScholarCrossref
25.
Jagdale  GR , Parande  MA , Borle  P ,  et al.  Secondary attack rate among the contacts of COVID-19 patients at the beginning of the pandemic in Pune City of Western Maharashtra, India.   J Commun Dis. 2021;53(3):51-59. Google Scholar
26.
Kang  M , Xin  H , Yuan  J ,  et al.  Transmission dynamics and epidemiological characteristics of Delta variant infections in China.   medRxiv. Preprint posted online August 13, 2021. doi:10.1101/2021.08.12.21261991Google Scholar
27.
Karumanagoundar  K , Raju  M , Ponnaiah  M ,  et al.  Secondary attack rate of COVID-19 among contacts and risk factors, Tamil Nadu, March-May 2020: a retrospective cohort study.   BMJ Open. 2021;11(11):e051491. doi:10.1136/bmjopen-2021-051491PubMedGoogle ScholarCrossref
28.
Layan  M , Gilboa  M , Gonen  T ,  et al.  Impact of BNT162b2 vaccination and isolation on SARS-CoV-2 transmission in Israeli households: an observational study.   medRxiv. Preprint posted online July 16, 2021. doi:10.1101/2021.07.12.21260377Google Scholar
29.
Li  Y , Liu  J , Yang  Z ,  et al.  Transmission of severe acute respiratory syndrome coronavirus 2 to close contacts, China, January-February 2020.   Emerg Infect Dis. 2021;27(9):2288-2293. doi:10.3201/eid2709.202035PubMedGoogle ScholarCrossref
30.
Liu  PY , Gragnani  CM , Timmerman  J ,  et al.  Pediatric household transmission of severe acute respiratory coronavirus-2 infection-Los Angeles County, December 2020 to February 2021.   Pediatr Infect Dis J. 2021;40(10):e379-e381. doi:10.1097/INF.0000000000003251PubMedGoogle ScholarCrossref
31.
Martinez  DA , Klein  EY , Parent  C ,  et al.  Latino household transmission of severe acute respiratory syndrome coronavirus 2.   Clin Infect Dis. 2021;ciab753. doi:10.1093/cid/ciab753PubMedGoogle ScholarCrossref
32.
Martínez-Baz  I , Trobajo-Sanmartín  C , Miqueleiz  A ,  et al; Working Group for the Study of COVID-19 in Navarre; Investigators, other members of the Working Group for the Study of COVID-19 in Navarre.  Product-specific COVID-19 vaccine effectiveness against secondary infection in close contacts, Navarre, Spain, April to August 2021.   Euro Surveill. 2021;26(39):2100894. doi:10.2807/1560-7917.ES.2021.26.39.2100894PubMedGoogle ScholarCrossref
33.
Meyer  ED , Sandfort  M , Bender  J ,  et al.  Two doses of the mRNA BNT162b2 vaccine reduce severe outcomes, viral load and secondary attack rate: evidence from a SARS-CoV-2 Alpha outbreak in a nursing home in Germany, January-March 2021.   medRxiv. Preprint posted online September 23, 2021. doi:10.1101/2021.09.13.21262519Google Scholar
34.
Miller  E , Waight  PA , Andrews  NJ ,  et al.  Transmission of SARS-CoV-2 in the household setting: a prospective cohort study in children and adults in England.   J Infect. 2021;83(4):483-489. doi:10.1016/j.jinf.2021.07.037PubMedGoogle ScholarCrossref
35.
Ministry of Health New Zealand. COVID-19 variants update. December 3, 2021. Accessed December 3, 2021. https://www.health.govt.nz/system/files/documents/pages/22-november-2021-variants-update-summary.pdf
36.
Musa  S , Kissling  E , Valenciano  M ,  et al.  Household transmission of SARS-CoV-2: a prospective observational study in Bosnia and Herzegovina, August-December 2020.   Int J Infect Dis. 2021;112:352-361. doi:10.1016/j.ijid.2021.09.063PubMedGoogle ScholarCrossref
37.
Ng  OT , Koh  V , Chiew  CJ ,  et al.  Impact of Delta variant and vaccination on SARS-CoV-2 secondary attack rate among household close contacts.   Lancet Reg Health West Pac. 2021;17:100299. doi:10.1016/j.lanwpc.2021.100299PubMedGoogle ScholarCrossref
38.
Ng  DCE , Tan  KK , Chin  L ,  et al.  Risk factors associated with household transmission of SARS-CoV-2 in Negeri Sembilan, Malaysia.   J Paediatr Child Health. 2021. doi:10.1111/jpc.15821PubMedGoogle ScholarCrossref
39.
Ogata  T , Irie  F , Ogawa  E ,  et al.  Secondary attack rate among non-spousal household contacts of coronavirus disease 2019 in Tsuchiura, Japan, August 2020-February 2021.   Int J Environ Res Public Health. 2021;18(17):8921. doi:10.3390/ijerph18178921PubMedGoogle ScholarCrossref
40.
Rajmohan  P , Jose  P , Thodi  JBA ,  et al.  Dynamics of transmission of COVID-19 cases and household contacts: a prospective cohort study.   J Acute Dis. 2021;10(4):162-168. doi:10.4103/2221-6189.321590Google ScholarCrossref
41.
Ratovoson  R , Razafimahatratra  R , Randriamanantsoa  L ,  et al.  Household transmission of COVID-19 among the earliest cases in Antananarivo, Madagascar.   Influenza Other Respir Viruses. 2022;16(1):48-55. doi:10.1111/irv.12896PubMedGoogle ScholarCrossref
42.
Singanayagam  A , Hakki  S , Dunning  J ,  et al; ATACCC Study Investigators.  Community transmission and viral load kinetics of the SARS-CoV-2 Delta (B.1.617.2) variant in vaccinated and unvaccinated individuals in the UK: a prospective, longitudinal, cohort study.   Lancet Infect Dis. 2022;22(2):183-195. doi:10.1016/S1473-3099(21)00648-4PubMedGoogle ScholarCrossref
43.
Soriano-Arandes  A , Gatell  A , Serrano  P ,  et al; COVID-19 Pediatric Disease in Catalonia Research Group.  Household severe acute respiratory syndrome coronavirus 2 transmission and children: a network prospective study.   Clin Infect Dis. 2021;73(6):e1261-e1269. doi:10.1093/cid/ciab228PubMedGoogle ScholarCrossref
44.
Tanaka  H , Hirayama  A , Nagai  H ,  et al.  Increased transmissibility of the SARS-CoV-2 Alpha variant in a Japanese population.   Int J Environ Res Public Health. 2021;18(15):7752. doi:10.3390/ijerph18157752PubMedGoogle ScholarCrossref
45.
Rehman  SU , Qaisrani  M , Abbasi  S ,  et al.  COVID-19 outbreak in Islamabad resulting from a travel-associated primary case: a case series.   Glob Biosecur. 2021;3(1).Google Scholar
46.
Watanapokasin  N , Siripongboonsitti  T , Ungtrakul  T ,  et al.  Transmissibility of SARS-CoV-2 variants as a secondary attack in Thai households: a retrospective study.   IJID Reg. 2021;1:1-2. doi:10.1016/j.ijregi.2021.09.001Google ScholarCrossref
47.
Cerami  C , Popkin-Hall  ZR , Rapp  T ,  et al.  Household transmission of SARS-CoV-2 in the United States: living density, viral load, and disproportionate impact on communities of color.   Clin Infect Dis. 2021;ciab701. doi:10.1093/cid/ciab701PubMedGoogle ScholarCrossref
48.
Harris  RJ , Hall  JA , Zaidi  A , Andrews  NJ , Dunbar  JK , Dabrera  G .  Effect of vaccination on household transmission of SARS-CoV-2 in England.   N Engl J Med. 2021;385(8):759-760. doi:10.1056/NEJMc2107717PubMedGoogle ScholarCrossref
49.
Lyngse  FP , Mølbak  K , Skov  RL ,  et al; Danish Covid-19 Genome Consortium.  Increased transmissibility of SARS-CoV-2 lineage B.1.1.7 by age and viral load.   Nat Commun. 2021;12(1):7251. doi:10.1038/s41467-021-27202-xPubMedGoogle ScholarCrossref
50.
Sachdev  DD , Chew Ng  R , Sankaran  M ,  et al.  Contact tracing outcomes among household contacts of fully vaccinated COVID-19 patients - San Francisco, California, January 29-July 2, 2021.   Clin Infect Dis. 2021;ciab1042. doi:10.1093/cid/ciab1042PubMedGoogle ScholarCrossref
51.
Dub  T , Nohynek  H , Hagberg  L ,  et al.  High secondary attack rate and persistence of SARS-CoV-2 antibodies in household transmission study participants, Finland 2020.   medRxiv. Preprint posted online July 27, 2021. doi:10.2139/ssrn.3892117Google Scholar
52.
Montecucco  A , Dini  G , Rahmani  A ,  et al.  Investigating SARS-CoV-2 transmission among co-workers in a University of Northern Italy during COVID-19 pandemic: an observational study.   Med Lav. 2021;112(6):429-435.PubMedGoogle Scholar
53.
Remón-Berrade  M , Guillen-Aguinaga  S , Sarrate-Adot  I ,  et al.  Risk of secondary household transmission of COVID-19 from health care workers in a hospital in Spain.   Epidemiologia. 2022;3(1):1-10. doi:10.3390/epidemiologia3010001Google ScholarCrossref
54.
Loss  J , Wurm  J , Varnaccia  G ,  et al.  Transmission of SARS-CoV-2 among children and staff in German daycare centers: results from the COALA study.   medRxiv. Preprint posted online December 27, 2021. doi:10.1101/2021.12.21.21268157Google Scholar
55.
Lyngse  FP , Mortensen  LH , Denwood  MJ ,  et al.  SARS-CoV-2 Omicron VOC transmission in Danish households.   medRxiv. Preprint posted online December 27, 2021. doi:10.1101/2021.12.27.21268278Google Scholar
56.
de Gier  B , Andeweg  S , Backer  JA ,  et al.  Vaccine effectiveness against SARS-CoV-2 transmission to household contacts during dominance of Delta variant (B.1.617.2), August-September 2021, the Netherlands.   medRxiv. Preprint posted online October 14, 2021. doi:10.2807/1560-7917.ES.2021.26.44.2100977Google Scholar
57.
Yi  S , Kim  JM , Choe  YJ ,  et al.  SARS-CoV-2 Delta variant breakthrough infection and onward secondary transmission in household.   J Korean Med Sci. 2022;37(1):e12. doi:10.3346/jkms.2022.37.e12PubMedGoogle ScholarCrossref
58.
Tanaka  ML , Marentes Ruiz  CJ , Malhotra  S ,  et al.  SARS-CoV-2 transmission dynamics in households with children, Los Angeles, California.   Front Pediatr. 2022;9:752993. doi:10.3389/fped.2021.752993PubMedGoogle ScholarCrossref
59.
Meena  MS , Priya  S , Thirukumaran  R , Gowrilakshmi  M , Essakiraja  K , Madhumitha  MS .  Factors influencing the acquisition of COVID infection among high-risk contacts of COVID-19 patients in Madurai district-a case control study.   J Family Med Prim Care. 2022;11(1):182-189. doi:10.4103/jfmpc.jfmpc_355_21PubMedGoogle ScholarCrossref
60.
Friedman-Klabanoff  DJ , Fitzpatrick  MC , Deming  ME ,  et al.  Risk of severe acute respiratory syndrome coronavirus 2 acquisition is associated with individual exposure but not community-level transmission.   J Infect Dis. 2022;jiac029. doi:10.1093/infdis/jiac029PubMedGoogle ScholarCrossref
61.
Águila-Mejía  JD , Wallmann  R , Calvo-Montes  J , Rodríguez-Lozano  J , Valle-Madrazo  T , Aginagalde-Llorente  A .  Secondary attack rates, transmission, incubation and serial interval periods of first SARS-CoV-2 Omicron variant cases in a northern region of Spain.   Research Square. Preprint posted online January 20, 2022.Google Scholar
62.
Lyngse  FP , Kirkeby  CT , Denwood  M ,  et al.  Transmission of SARS-CoV-2 Omicron VOC subvariants BA.1 and BA.2: evidence from Danish households.   medRxiv. Preprint posted online January 30, 2022. doi:10.1101/2022.01.28.22270044Google Scholar
63.
Baker  JM , Nakayama  JY , O’Hegarty  M ,  et al.  SARS-CoV-2 B.1.1.529 (Omicron) variant transmission within households—four U.S. jurisdictions, November 2021-February 2022.   MMWR Morb Mortal Wkly Rep. 2022;71(9):341-346. doi:10.15585/mmwr.mm7109e1PubMedGoogle ScholarCrossref
64.
Jalali  N , Brustad  HK , Frigessi  A ,  et al.  Increased household transmission and immune escape of the SARS-CoV-2 Omicron variant compared to the Delta variant: evidence from Norwegian contact tracing and vaccination data.   medRxiv. Preprint posted online February 18, 2022. Google Scholar
65.
Lyngse  FP , Mølbak  K , Denwood  M ,  et al.  Effect of vaccination on household transmission of SARS-CoV-2 Delta VOC.   medRxiv. Preprint posted online January 6, 2022. doi:10.1101/2022.01.06.22268841Google Scholar
66.
Ma  X , Wu  K , Li  Y ,  et al.  Contact tracing period and epidemiological characteristics of an outbreak of the SARS-CoV-2 Delta variant in Guangzhou.   Int J Infect Dis. 2022;117:18-23. doi:10.1016/j.ijid.2022.01.034PubMedGoogle ScholarCrossref
67.
Smith-Jeffcoat  SE , Pomeroy  MA , Sleweon  S ,  et al.  Multistate outbreak of SARS-CoV-2 B. 1.1. 529 (Omicron) variant infections among persons in a social network attending a convention—New York City, November 18–December 20, 2021.   MMWR Morb Mortal Wkly Rep. 2022;71(7):238-242. doi:10.15585/mmwr.mm7107a3PubMedGoogle ScholarCrossref
68.
Song  JS , Lee  J , Kim  M ,  et al.  Serial intervals and household transmission of SARS-CoV-2 Omicron variant, South Korea, 2021.   Emerg Infect Dis. 2022;28(3):756-759. doi:10.3201/eid2803.212607PubMedGoogle ScholarCrossref
69.
Loenenbach  A , Markus  I , Lehfeld  A-S ,  et al.  SARS-CoV-2 variant B.1.1.7 susceptibility and infectiousness of children and adults deduced from investigations of childcare centre outbreaks, Germany, 2021.   Euro Surveill. 2021;26(21):2100433. doi:10.2807/1560-7917.ES.2021.26.21.2100433PubMedGoogle ScholarCrossref
70.
de Gier  B , Andeweg  S , Backer  JA ,  et al; RIVM COVID-19 Surveillance and Epidemiology Team.  Vaccine effectiveness against SARS-CoV-2 transmission to household contacts during dominance of Delta variant (B.1.617.2), the Netherlands, August to September 2021.   Euro Surveill. 2021;26(44):2100977. doi:10.2807/1560-7917.ES.2021.26.44.2100977PubMedGoogle ScholarCrossref
71.
Allen  H , Tessier  E , Turner  C ,  et al.  Comparative transmission of SARS-CoV-2 Omicron (B.1.1.529) and Delta (B.1.617.2) variants and the impact of vaccination: national cohort study, England.   medRxiv. Preprint posted online February 17, 2022. doi:10.1101/2022.02.15.22271001Google Scholar
72.
Eyre  DW , Taylor  D , Purver  M ,  et al.  The impact of SARS-CoV-2 vaccination on Alpha and Delta variant transmission.   medRxiv. Preprint posted online February 17, 2021. doi:10.1101/2021.09.28.21264260Google Scholar
73.
Hayek  S , Shaham  G , Ben-Shlomo  Y ,  et al.  Indirect protection of children from SARS-CoV-2 infection through parental vaccination.   Science. 2022;375(6585):1155-1159. doi:10.1126/science.abm3087PubMedGoogle ScholarCrossref
74.
Richterman  A , Meyerowitz  EA , Cevik  M .  Indirect protection by reducing transmission: ending the pandemic with SARS-CoV-2 vaccination.   Open Forum Infect Dis. 2021;9(2):ofab259. doi:10.1093/ofid/ofab259PubMedGoogle ScholarCrossref
75.
Prunas  O , Warren  JL , Crawford  FW ,  et al.  Vaccination with BNT162b2 reduces transmission of SARS-CoV-2 to household contacts in Israel.   Science. 2022;375(6585):1151-1154. doi:10.1126/science.abl4292PubMedGoogle ScholarCrossref
76.
Tseng  HF , Ackerson  BK , Luo  Y ,  et al.  Effectiveness of mRNA-1273 against SARS-CoV-2 Omicron and Delta variants.   Nat Med. 2022. doi:10.1038/s41591-022-01753-yPubMedGoogle ScholarCrossref
77.
Andrews  N , Stowe  J , Kirsebom  F ,  et al.  Covid-19 vaccine effectiveness against the Omicron (B.1.1.529) variant.   N Engl J Med. 2022. doi:10.1056/NEJMoa2119451PubMedGoogle ScholarCrossref
78.
Dejnirattisai  W , Shaw  RH , Supasa  P ,  et al; Com-COV2 study group.  Reduced neutralisation of SARS-CoV-2 omicron B.1.1.529 variant by post-immunisation serum.   Lancet. 2022;399(10321):234-236. doi:10.1016/S0140-6736(21)02844-0PubMedGoogle ScholarCrossref
79.
Shah  ASV , Gribben  C , Bishop  J ,  et al.  Effect of vaccination on transmission of SARS-CoV-2.   N Engl J Med. 2021;385(18):1718-1720. doi:10.1056/NEJMc2106757PubMedGoogle ScholarCrossref
80.
Björk  J , Inghammar  M , Moghaddassi  M , Rasmussen  M , Malmqvist  U , Kahn  F .  High level of protection against COVID-19 after two doses of BNT162b2 vaccine in the working age population—first results from a cohort study in Southern Sweden.   Infect Dis (Lond). 2021;54(2):1-6.PubMedGoogle Scholar
81.
Braeye  T , Cornelissen  L , Catteau  L ,  et al.  Vaccine effectiveness against infection and onwards transmission of COVID-19: analysis of Belgian contact tracing data, January-June 2021.   Vaccine. 2021;39(39):5456-5460. doi:10.1016/j.vaccine.2021.08.060PubMedGoogle ScholarCrossref
82.
Fiolet  T , Kherabi  Y , MacDonald  C-J , Ghosn  J , Peiffer-Smadja  N .  Comparing COVID-19 vaccines for their characteristics, efficacy and effectiveness against SARS-CoV-2 and variants of concern: a narrative review.   Clin Microbiol Infect. 2022;28(2):202-221. doi:10.1016/j.cmi.2021.10.005PubMedGoogle ScholarCrossref
83.
Seppälä  E , Veneti  L , Starrfelt  J ,  et al.  Vaccine effectiveness against infection with the Delta (B.1.617.2) variant, Norway, April to August 2021.   Euro Surveill. 2021;26(35):2100793. doi:10.2807/1560-7917.ES.2021.26.35.2100793PubMedGoogle ScholarCrossref
84.
Prunas  O , Warren  JL , Crawford  FW ,  et al.  Vaccination with BNT162b2 reduces transmission of SARS-CoV-2 to household contacts in Israel.   medRxiv. Preprint posted online December 20, 2021. doi:10.1101/2021.07.13.21260393Google Scholar
85.
Public Health England. SARS-CoV-2 variants of concern and variants under investigation in England: technical briefing 37. February 11, 2022. Accessed March 2, 2022. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1057359/Technical-Briefing-37-25February2022.pdf
86.
Public Health England. SARS-CoV-2 variants of concern and variants under investigation in England: technical briefing 23. September 17, 2021. Accessed December 12, 2021. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1018547/Technical_Briefing_23_21_09_16.pdf
87.
Madewell  ZJ , Dean  NE , Berlin  JA ,  et al.  Challenges of evaluating and modelling vaccination in emerging infectious diseases.   Epidemics. 2021;37:100506. doi:10.1016/j.epidem.2021.100506PubMedGoogle ScholarCrossref
88.
Meyerowitz  E , Richterman  A .  SARS-CoV-2 transmission and prevention in the era of the Delta variant.   SSRN. Preprint posted online November 18, 2021. doi:10.2139/ssrn.3964247Google Scholar
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_Multimedia_LoginSubscribe_Purchase
Close
If you are not a JN Learning subscriber, you can either:
Subscribe to JN Learning for one year
Buy this activity
jn-learning_Modal_Multimedia_LoginSubscribe_Purchase
Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close

Name Your Search

Save Search
Close
With a personal account, you can:
  • Track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
jn-learning_Modal_SaveSearch_NoAccess_Purchase
Close

Lookup An Activity

or

Close

My Saved Searches

You currently have no searches saved.

Close

My Saved Courses

You currently have no courses saved.

Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close