[Skip to Content]
[Skip to Content Landing]

Diagnosis and Management of Lumbar Spinal StenosisA Review

To identify the key insights or developments described in this article
1 Credit CME
Abstract

Importance  Lumbar spinal stenosis is a prevalent and disabling cause of low back and leg pain in older persons, affecting an estimated 103 million persons worldwide. Most are treated nonoperatively. Approximately 600 000 surgical procedures are performed in the US each year for lumbar spinal stenosis.

Observations  The prevalence of the clinical syndrome of lumbar spinal stenosis in US adults is approximately 11% and increases with age. The diagnosis can generally be made based on a clinical history of back and lower extremity pain that is provoked by lumbar extension, relieved by lumbar flexion, and confirmed with cross-sectional imaging, such as computed tomography or magnetic resonance imaging (MRI). Nonoperative treatment includes activity modification such as reducing periods of standing or walking, oral medications to diminish pain such as nonsteroidal anti-inflammatory drugs (NSAIDs), and physical therapy. In a series of patients with lumbar spinal stenosis followed up for up to 3 years without operative intervention, approximately one-third of patients reported improvement, approximately 50% reported no change in symptoms, and approximately 10% to 20% of patients reported that their back pain, leg pain, and walking were worse. Long-term benefits of epidural steroid injections for lumbar spinal stenosis have not been demonstrated. Surgery appears effective in carefully selected patients with back, buttock, and lower extremity pain who do not improve with conservative management. For example, in a randomized trial of 94 participants with symptomatic and radiographic degenerative lumbar spinal stenosis, decompressive laminectomy improved symptoms more than nonoperative therapy (difference, 7.8 points; 95% CI, 0.8-14.9; minimum clinically important difference, 10-12.8) on the Oswestry Disability Index (score range, 0-100). Among persons with lumbar spinal stenosis and concomitant spondylolisthesis, lumbar fusion increased symptom resolution in 1 trial (difference, 5.7 points; 95% CI, 0.1 to 11.3) on the 36-Item Short Form Health Survey physical dimension score (range, 0-100), but 2 other trials showed either no important differences between the 2 therapies or noninferiority of lumbar decompression alone compared with lumbar decompression plus spinal fusion (MCID, 2-4.9 points). In a noninferiority trial, 71.4% treated with lumbar decompression alone vs 72.9% of those receiving decompression plus fusion achieved a 30% or more reduction in Oswestry Disability Index score, consistent with the prespecified noninferiority hypothesis. Fusion is associated with greater risk of complications such as blood loss, infection, longer hospital stays, and higher costs. Thus, the precise indications for concomitant lumbar fusion in persons with lumbar spinal stenosis and spondylolisthesis remain unclear.

Conclusions and Relevance  Lumbar spinal stenosis affects approximately 103 million people worldwide and 11% of older adults in the US. First-line therapy is activity modification, analgesia, and physical therapy. Long-term benefits from epidural steroid injections have not been established. Selected patients with continued pain and activity limitation may be candidates for decompressive surgery.

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 Credit(s)™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

CME Disclosure Statement: Unless noted, all individuals in control of content reported no relevant financial relationships. If applicable, all relevant financial relationships have been mitigated.

Article Information

Corresponding Author: Jeffrey N. Katz, MD, MSc, Orthopedic and Arthritis Center for Outcomes Research, Brigham and Women’s Hospital, 75 Francis St, Hale 5016, Boston, MA 02115 (jnkatz@bwh.harvard.edu).

Accepted for Publication: March 30, 2022.

Conflict of Interest Disclosures: Dr Makhni reported other support from Medtronic Consulting and Consumer Medical Consulting during the conduct of the study. No other disclosures were reported.

References
1.
Ravindra  VM , Senglaub  SS , Rattani  A ,  et al.  Degenerative lumbar spine disease: estimating global incidence and worldwide volume.   Global Spine J. 2018;8(8):784-794. doi:10.1177/2192568218770769 PubMedGoogle ScholarCrossref
2.
Overview of the National (Nationwide) Impatient Sample. (NIS). Health care cost and utilization project (H-CUP), Agency for Healthcare Research and Quality. Accessed April 1, 2022. https://www.hcup-us.ahrq.gov/nisoverview.jsp
3.
Tosteson  AN , Lurie  JD , Tosteson  TD ,  et al; SPORT Investigators.  Surgical treatment of spinal stenosis with and without degenerative spondylolisthesis: cost-effectiveness after 2 years.   Ann Intern Med. 2008;149(12):845-853. doi:10.7326/0003-4819-149-12-200812160-00003 PubMedGoogle ScholarCrossref
4.
Lurie  J , Tomkins-Lane  C .  Management of lumbar spinal stenosis.   BMJ. 2016;352:h6234. doi:10.1136/bmj.h6234 PubMedGoogle ScholarCrossref
5.
Genevay  S , Atlas  SJ .  Lumbar spinal stenosis.   Best Pract Res Clin Rheumatol. 2010;24(2):253-265. doi:10.1016/j.berh.2009.11.001 PubMedGoogle ScholarCrossref
6.
Jensen  RK , Lauridsen  HH , Andresen  ADK , Mieritz  RM , Schiøttz-Christensen  B , Vach  W .  Diagnostic screening for lumbar spinal stenosis.   Clin Epidemiol. 2020;12:891-905. doi:10.2147/CLEP.S263646 PubMedGoogle ScholarCrossref
7.
Katz  JN , Dalgas  M , Stucki  G ,  et al.  Degenerative lumbar spinal stenosis: diagnostic value of the history and physical examination.   Arthritis Rheum. 1995;38(9):1236-1241. doi:10.1002/art.1780380910 PubMedGoogle ScholarCrossref
8.
Boden  SD , Davis  DO , Dina  TS , Patronas  NJ , Wiesel  SW .  Abnormal magnetic-resonance scans of the lumbar spine in asymptomatic subjects: a prospective investigation.   J Bone Joint Surg Am. 1990;72(3):403-408. doi:10.2106/00004623-199072030-00013 PubMedGoogle ScholarCrossref
9.
Kalichman  L , Cole  R , Kim  DH ,  et al.  Spinal stenosis prevalence and association with symptoms: the Framingham Study.   Spine J. 2009;9(7):545-550. doi:10.1016/j.spinee.2009.03.005 PubMedGoogle ScholarCrossref
10.
Jensen  RK , Jensen  TS , Koes  B , Hartvigsen  J .  Prevalence of lumbar spinal stenosis in general and clinical populations: a systematic review and meta-analysis.   Eur Spine J. 2020;29(9):2143-2163. doi:10.1007/s00586-020-06339-1 PubMedGoogle ScholarCrossref
11.
Weinstein  JN , Tosteson  TD , Lurie  JD ,  et al; SPORT Investigators.  Surgical versus nonsurgical therapy for lumbar spinal stenosis.   N Engl J Med. 2008;358(8):794-810. doi:10.1056/NEJMoa0707136 PubMedGoogle ScholarCrossref
12.
Nadeau  M , Rosas-Arellano  MP , Gurr  KR ,  et al.  The reliability of differentiating neurogenic claudication from vascular claudication based on symptomatic presentation.   Can J Surg. 2013;56(6):372-377. doi:10.1503/cjs.016512 PubMedGoogle ScholarCrossref
13.
Polonsky  TS , McDermott  MM .  Lower extremity peripheral artery disease without chronic limb-threatening ischemia: a review.   JAMA. 2021;325(21):2188-2198. doi:10.1001/jama.2021.2126 PubMedGoogle ScholarCrossref
14.
Katz  JN , Lipson  SJ , Lew  RA ,  et al.  Lumbar laminectomy alone or with instrumented or noninstrumented arthrodesis in degenerative lumbar spinal stenosis: patient selection, costs, and surgical outcomes.   Spine (Phila Pa 1976). 1997;22(10):1123-1131. doi:10.1097/00007632-199705150-00012 PubMedGoogle ScholarCrossref
15.
Lim  YS , Mun  JU , Seo  MS ,  et al.  Dural sac area is a more sensitive parameter for evaluating lumbar spinal stenosis than spinal canal area: a retrospective study.   Medicine (Baltimore). 2017;96(49):e9087. doi:10.1097/MD.0000000000009087 PubMedGoogle ScholarCrossref
16.
Yaksi  A , Ozgönenel  L , Ozgönenel  B .  The efficiency of gabapentin therapy in patients with lumbar spinal stenosis.   Spine (Phila Pa 1976). 2007;32(9):939-942. doi:10.1097/01.brs.0000261029.29170.e6 PubMedGoogle ScholarCrossref
17.
Mannion  AF , Junge  A , Grob  D , Dvorak  J , Fairbank  JC .  Development of a German version of the Oswestry Disability Index, II: sensitivity to change after spinal surgery.   Eur Spine J. 2006;15(1):66-73. doi:10.1007/s00586-004-0816-z PubMedGoogle ScholarCrossref
18.
Haddadi  K , Asadian  L , Isazade  A .  Effects of nasal calcitonin vs oral gabapentin on pain and symptoms of lumbar spinal stenosis: a clinical trial study.   Clin Med Insights Arthritis Musculoskelet Disord. 2016;9:133-138. doi:10.4137/CMAMD.S39938 PubMedGoogle ScholarCrossref
19.
Cleland  JA , Whitman  JM , Houser  JL , Wainner  RS , Childs  JD .  Psychometric properties of selected tests in patients with lumbar spinal stenosis.   Spine J. 2012;12(10):921-931. doi:10.1016/j.spinee.2012.05.004 PubMedGoogle ScholarCrossref
20.
Copay  AG , Glassman  SD , Subach  BR , Berven  S , Schuler  TC , Carreon  LY .  Minimum clinically important difference in lumbar spine surgery patients: a choice of methods using the Oswestry Disability Index, Medical Outcomes Study questionnaire Short Form 36, and pain scales.   Spine J. 2008;8(6):968-974. doi:10.1016/j.spinee.2007.11.006 PubMedGoogle ScholarCrossref
21.
Friedly  JL , Comstock  BA , Turner  JA ,  et al.  Long-term effects of repeated injections of local anesthetic with or without corticosteroid for lumbar spinal stenosis: a randomized trial.   Arch Phys Med Rehabil. 2017;98(8):1499.e2-1507.e2. doi:10.1016/j.apmr.2017.02.029 PubMedGoogle ScholarCrossref
22.
Ogura  Y , Ogura  K , Kobayashi  Y ,  et al.  Minimum clinically important difference of major patient-reported outcome measures in patients undergoing decompression surgery for lumbar spinal stenosis.   Clin Neurol Neurosurg. 2020;196:105966. doi:10.1016/j.clineuro.2020.105966 PubMedGoogle ScholarCrossref
23.
Manchikanti  L , Cash  KA , McManus  CD , Pampati  V , Fellows  B .  Results of 2-year follow-up of a randomized, double-blind, controlled trial of fluoroscopic caudal epidural injections in central spinal stenosis.   Pain Physician. 2012;15(5):371-384. doi:10.36076/ppj.2012/15/371 PubMedGoogle ScholarCrossref
24.
Minetama  M , Kawakami  M , Teraguchi  M ,  et al.  Supervised physical therapy vs home exercise for patients with lumbar spinal stenosis: a randomized controlled trial.   Spine J. 2019;19(8):1310-1318. doi:10.1016/j.spinee.2019.04.009 PubMedGoogle ScholarCrossref
25.
Ammendolia  C , Côté  P , Southerst  D ,  et al.  Comprehensive nonsurgical treatment versus self-directed care to improve walking ability in lumbar spinal stenosis: a randomized trial.   Arch Phys Med Rehabil. 2018;99(12):2408-2419.e2. doi:10.1016/j.apmr.2018.05.014 PubMedGoogle ScholarCrossref
26.
Pua  YH , Cai  CC , Lim  KC .  Treadmill walking with body weight support is no more effective than cycling when added to an exercise program for lumbar spinal stenosis: a randomised controlled trial.   Aust J Physiother. 2007;53(2):83-89. doi:10.1016/S0004-9514(07)70040-5 PubMedGoogle ScholarCrossref
27.
Hammerich  A , Whitman  J , Mintken  P ,  et al.  Effectiveness of physical therapy combined with epidural steroid injection for individuals with lumbar spinal stenosis: a randomized parallel-group trial.   Arch Phys Med Rehabil. 2019;100(5):797-810. doi:10.1016/j.apmr.2018.12.035 PubMedGoogle ScholarCrossref
28.
Homayouni  K , Naseri  M , Zaravar  F , Zaravar  L , Karimian  H .  Comparison of the effect of aquatic physical therapy and conventional physical therapy in patients with lumbar spinal stenosis (a randomized controlled trial).   J Musculoskelet Res. 2015;18(01):1550002. doi:10.1142/S0218957715500025Google ScholarCrossref
29.
Takenaka  H , Kamiya  M , Sugiura  H ,  et al.  Responsiveness and minimal clinically important difference of the 6-minute walk distance in patients undergoing lumbar spinal canal stenosis surgery.   Clin Spine Surg. 2022;35(3):E345-E350. doi:10.1097/BSD.0000000000001196 PubMedGoogle ScholarCrossref
30.
Benaim  C , Blaser  S , Léger  B , Vuistiner  P , Luthi  F .  “Minimal clinically important difference” estimates of 6 commonly-used performance tests in patients with chronic musculoskeletal pain completing a work-related multidisciplinary rehabilitation program.   BMC Musculoskelet Disord. 2019;20(1):16. doi:10.1186/s12891-018-2382-2 PubMedGoogle ScholarCrossref
31.
Schneider  MJ , Ammendolia  C , Murphy  DR ,  et al.  Comparative clinical effectiveness of nonsurgical treatment methods in patients with lumbar spinal stenosis: a randomized clinical trial.   JAMA Netw Open. 2019;2(1):e186828. doi:10.1001/jamanetworkopen.2018.6828 PubMedGoogle ScholarCrossref
32.
Carlesso  C , Piva  SR , Smith  C , Ammendolia  C , Schneider  MJ .  Responsiveness of outcome measures in nonsurgical patients with lumbar spinal stenosis: a secondary analysis from a randomized controlled trial.   Spine (Phila Pa 1976). 2021;46(12):788-795.PubMedGoogle Scholar
33.
Whitman  JM , Flynn  TW , Childs  JD ,  et al.  A comparison between two physical therapy treatment programs for patients with lumbar spinal stenosis: a randomized clinical trial.   Spine (Phila Pa 1976). 2006;31(22):2541-2549. doi:10.1097/01.brs.0000241136.98159.8c PubMedGoogle Scholar
34.
Delitto  A , Piva  SR , Moore  CG ,  et al.  Surgery versus nonsurgical treatment of lumbar spinal stenosis: a randomized trial.   Ann Intern Med. 2015;162(7):465-473. doi:10.7326/M14-1420 PubMedGoogle Scholar
35.
Angst  F , Aeschlimann  A , Stucki  G .  Smallest detectable and minimal clinically important differences of rehabilitation intervention with their implications for required sample sizes using WOMAC and SF-36 quality of life measurement instruments in patients with osteoarthritis of the lower extremities.   Arthritis Rheum. 2001;45(4):384-391. doi:10.1002/1529-0131(200108)45:4<384::AID-ART352>3.0.CO;2-0 PubMedGoogle Scholar
36.
Malmivaara  A , Slätis  P , Heliövaara  M ,  et al; Finnish Lumbar Spinal Research Group.  Surgical or nonoperative treatment for lumbar spinal stenosis? a randomized controlled trial.   Spine (Phila Pa 1976). 2007;32(1):1-8. doi:10.1097/01.brs.0000251014.81875.6d PubMedGoogle Scholar
37.
Försth  P , Ólafsson  G , Carlsson  T ,  et al.  A randomized, controlled trial of fusion surgery for lumbar spinal stenosis.   N Engl J Med. 2016;374(15):1413-1423. doi:10.1056/NEJMoa1513721 PubMedGoogle Scholar
38.
Ghogawala  Z , Dziura  J , Butler  WE ,  et al.  Laminectomy plus fusion versus laminectomy alone for lumbar spondylolisthesis.   N Engl J Med. 2016;374(15):1424-1434. doi:10.1056/NEJMoa1508788 PubMedGoogle Scholar
39.
Austevoll  IM , Hermansen  E , Fagerland  MW ,  et al; NORDSTEN-DS Investigators.  Decompression with or without fusion in degenerative lumbar spondylolisthesis.   N Engl J Med. 2021;385(6):526-538. doi:10.1056/NEJMoa2100990 PubMedGoogle Scholar
40.
Chou  R , Deyo  R , Friedly  J ,  et al.  Systemic pharmacologic therapies for low back pain: a systematic review for an American College of Physicians clinical practice guideline.   Ann Intern Med. 2017;166(7):480-492. doi:10.7326/M16-2458 PubMedGoogle Scholar
41.
Saragiotto  BT , Machado  GC , Ferreira  ML , Pinheiro  MB , Abdel Shaheed  C , Maher  CG .  Paracetamol for low back pain.   Cochrane Database Syst Rev. 2016;2016(6):CD012230. doi:10.1002/14651858.CD012421PubMedGoogle Scholar
42.
Chan  AT , Manson  JE , Albert  CM ,  et al.  Nonsteroidal antiinflammatory drugs, acetaminophen, and the risk of cardiovascular events.   Circulation. 2006;113(12):1578-1587. doi:10.1161/CIRCULATIONAHA.105.595793 PubMedGoogle Scholar
43.
UpToDate. Lexicomp; 2022. Accessed April 6, 2022. https://www.uptodate.com/contents/search.
44.
Roberts  E , Delgado Nunes  V , Buckner  S ,  et al.  Paracetamol: not as safe as we thought? a systematic literature review of observational studies.   Ann Rheum Dis. 2016;75(3):552-559. doi:10.1136/annrheumdis-2014-206914 PubMedGoogle Scholar
45.
Enthoven  WT , Roelofs  PD , Deyo  RA , van Tulder  MW , Koes  BW .  Non-steroidal anti-inflammatory drugs for chronic low back pain.   Cochrane Database Syst Rev. 2016;2(2):CD012087. doi:10.1002/14651858.CD012087 PubMedGoogle Scholar
46.
Sostres  C , Gargallo  CJ , Arroyo  MT , Lanas  A .  Adverse effects of non-steroidal anti-inflammatory drugs (NSAIDs, aspirin and coxibs) on upper gastrointestinal tract.   Best Pract Res Clin Gastroenterol. 2010;24(2):121-132. doi:10.1016/j.bpg.2009.11.005 PubMedGoogle Scholar
47.
Warner  TD , Mitchell  JA .  COX-2 selectivity alone does not define the cardiovascular risks associated with non-steroidal anti-inflammatory drugs.   Lancet. 2008;371(9608):270-273. doi:10.1016/S0140-6736(08)60137-3 PubMedGoogle Scholar
48.
Whelton  A .  Nephrotoxicity of nonsteroidal anti-inflammatory drugs: physiologic foundations and clinical implications.   Am J Med. 1999;106(5B):13S-24S. doi:10.1016/S0002-9343(99)00113-8 PubMedGoogle Scholar
49.
Atkinson  JH , Slater  MA , Capparelli  EV ,  et al.  A randomized controlled trial of gabapentin for chronic low back pain with and without a radiating component.   Pain. 2016;157(7):1499-1507. doi:10.1097/j.pain.0000000000000554 PubMedGoogle Scholar
50.
Konno  S , Oda  N , Ochiai  T , Alev  L .  Randomized, double-blind, placebo-controlled phase III trial of duloxetine monotherapy in Japanese patients with chronic low back pain.   Spine (Phila Pa 1976). 2016;41(22):1709-1717. doi:10.1097/BRS.0000000000001707 PubMedGoogle Scholar
51.
Friedly  JL , Comstock  BA , Turner  JA ,  et al.  A randomized trial of epidural glucocorticoid injections for spinal stenosis.   N Engl J Med. 2014;371(1):11-21. doi:10.1056/NEJMoa1313265 PubMedGoogle Scholar
52.
Goodman  BS , Posecion  LW , Mallempati  S , Bayazitoglu  M .  Complications and pitfalls of lumbar interlaminar and transforaminal epidural injections.   Curr Rev Musculoskelet Med. 2008;1(3-4):212-222. doi:10.1007/s12178-008-9035-2 PubMedGoogle Scholar
53.
Deyo  RA , Martin  BI , Ching  A ,  et al.  Interspinous spacers compared with decompression or fusion for lumbar stenosis: complications and repeat operations in the Medicare population.   Spine (Phila Pa 1976). 2013;38(10):865-872. doi:10.1097/BRS.0b013e31828631b8 PubMedGoogle Scholar
54.
Ammendolia  C , Stuber  KJ , Rok  E ,  et al.  Nonoperative treatment for lumbar spinal stenosis with neurogenic claudication.   Cochrane Database Syst Rev. 2013;(8):CD010712. doi:10.1002/14651858.CD010712 PubMedGoogle Scholar
55.
Skljarevski  V , Ossanna  M , Liu-Seifert  H ,  et al.  A double-blind, randomized trial of duloxetine versus placebo in the management of chronic low back pain.   Eur J Neurol. 2009;16(9):1041-1048. doi:10.1111/j.1468-1331.2009.02648.x PubMedGoogle Scholar
56.
Krebs  EE , Gravely  A , Nugent  S ,  et al.  Effect of opioid vs nonopioid medications on pain-related function in patients with chronic back pain or hip or knee osteoarthritis pain: The SPACE randomized clinical trial.   JAMA. 2018;319(9):872-882. doi:10.1001/jama.2018.0899 PubMedGoogle Scholar
57.
Schneider  B , Zheng  P , Mattie  R , Kennedy  DJ .  Safety of epidural steroid injections.   Expert Opin Drug Saf. 2016;15(8):1031-1039. doi:10.1080/14740338.2016.1184246 PubMedGoogle Scholar
58.
Machado  GC , Ferreira  PH , Yoo  RI ,  et al.  Surgical options for lumbar spinal stenosis.   Cochrane Database Syst Rev. 2016;11(11):CD012421. doi:10.1002/14651858.CD012421PubMedGoogle Scholar
59.
Lurie  JD , Tosteson  TD , Tosteson  A ,  et al.  Long-term outcomes of lumbar spinal stenosis: eight-year results of the Spine Patient Outcomes Research Trial (SPORT).   Spine (Phila Pa 1976). 2015;40(2):63-76. doi:10.1097/BRS.0000000000000731 PubMedGoogle Scholar
60.
Onggo  JR , Nambiar  M , Maingard  JT ,  et al.  The use of minimally invasive interspinous process devices for the treatment of lumbar canal stenosis: a narrative literature review.   J Spine Surg. 2021;7(3):394-412. doi:10.21037/jss-21-57 PubMedGoogle Scholar
61.
Kreiner  S , Shaffer  W , Baisden  J ,  et al. Evidence-Based Clinical Guidelines for Multidisciplinary Spine Care. North American Spine Society; 2011. Accessed April 4, 2022. https://www.spine.org/Portals/0/Assets/Downloads/ResearchClinicalCare/Guidelines/LumbarStenosis.pdf
62.
Rousing  R , Jensen  RK , Fruensgaard  S ,  et al.  Danish national clinical guidelines for surgical and nonsurgical treatment of patients with lumbar spinal stenosis.   Eur Spine J. 2019;28(6):1386-1396. doi:10.1007/s00586-019-05987-2 PubMedGoogle Scholar
63.
Deer  TR , Grider  JS , Pope  JE ,  et al.  The MIST guidelines: the lumbar spinal stenosis consensus group guidelines for minimally invasive spine treatment.   Pain Pract. 2019;19(3):250-274. doi:10.1111/papr.12744 PubMedGoogle Scholar
64.
Fornari  M , Robertson  SC , Pereira  P ,  et al.  Conservative treatment and percutaneous pain relief techniques in patients with lumbar spinal stenosis: WFNS spine committee recommendations.   World Neurosurg X. 2020;7:100079. doi:10.1016/j.wnsx.2020.100079 PubMedGoogle Scholar
65.
Costa  F , Alves  OL , Anania  CD , Zileli  M , Fornari  M .  Decompressive surgery for lumbar spinal stenosis: WFNS spine committee recommendations.   World Neurosurg X. 2020;7:100076. doi:10.1016/j.wnsx.2020.100076 PubMedGoogle Scholar
66.
Sharif  S , Shaikh  Y , Bajamal  AH , Costa  F , Zileli  M .  Fusion surgery for lumbar spinal stenosis: WFNS spine committee recommendations.   World Neurosurg X. 2020;7:100077. doi:10.1016/j.wnsx.2020.100077 PubMedGoogle Scholar
67.
Wessberg  P , Frennered  K .  Central lumbar spinal stenosis: natural history of non-surgical patients.   Eur Spine J. 2017;26(10):2536-2542. doi:10.1007/s00586-017-5075-x PubMedGoogle Scholar
68.
Watters  WC  III , Baisden  J , Gilbert  TJ ,  et al; North American Spine Society.  Degenerative lumbar spinal stenosis: an evidence-based clinical guideline for the diagnosis and treatment of degenerative lumbar spinal stenosis.   Spine J. 2008;8(2):305-310. doi:10.1016/j.spinee.2007.10.033 PubMedGoogle Scholar
AMA CME Accreditation Information

Credit Designation Statement: The American Medical Association designates this Journal-based CME activity activity for a maximum of 1.00  AMA PRA Category 1 Credit(s)™. Physicians should claim only the credit commensurate with the extent of their participation in the activity.

Successful completion of this CME activity, which includes participation in the evaluation component, enables the participant to earn up to:

  • 1.00 Medical Knowledge MOC points in the American Board of Internal Medicine's (ABIM) Maintenance of Certification (MOC) program;;
  • 1.00 Self-Assessment points in the American Board of Otolaryngology – Head and Neck Surgery’s (ABOHNS) Continuing Certification program;
  • 1.00 MOC points in the American Board of Pediatrics’ (ABP) Maintenance of Certification (MOC) program;
  • 1.00 Lifelong Learning points in the American Board of Pathology’s (ABPath) Continuing Certification program; and
  • 1.00 CME points in the American Board of Surgery’s (ABS) Continuing Certification program

It is the CME activity provider's responsibility to submit participant completion information to ACCME for the purpose of granting MOC credit.

Close
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
Close
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close

Name Your Search

Save Search
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Close
Close

Lookup An Activity

or

My Saved Searches

You currently have no searches saved.

Close

My Saved Courses

You currently have no courses saved.

Close