[Skip to Content]
[Skip to Content Landing]

Lipoprotein(a) and its Significance in Cardiovascular DiseaseA Review

To identify the key insights or developments described in this article
1 Credit CME
Abstract

Importance  Lipoprotein(a) (Lp[a]) is a low-density lipoprotein (LDL) cholesterol–like particle bound to apolipoprotein(a). This novel marker of cardiovascular disease acts through induction of vascular inflammation, atherogenesis, calcification, and thrombosis. While an absolute risk threshold remains to be universally accepted, an estimated 20% to 25% of the global population have Lp(a) levels of 50 mg/dL or higher, a level noted by the European Atherosclerosis Society to confer increased cardiovascular risk.

Observations  Compelling evidence from pathophysiological, observational, and genetic studies suggest a potentially causal association between high Lp(a) levels, atherosclerotic cardiovascular disease, and calcific aortic valve stenosis. Additional evidence has demonstrated that elevated Lp(a) levels are associated with a residual cardiovascular risk despite traditional risk factor optimization, including LDL cholesterol reduction. These findings have led to the formulation of the Lp(a) hypothesis, namely that Lp(a) lowering leads to cardiovascular risk reduction, intensifying the search for Lp(a)-reducing therapies. The ineffectiveness of lifestyle modification, statins, and ezetimibe to lower Lp(a); the modest Lp(a) reduction with proprotein convertase subtilisin/kexin type 9 inhibitors; the adverse effect profile and unclear cardiovascular benefit of pharmacotherapies such as niacin and mipomersen; and the impracticality of regular lipoprotein apheresis represent major challenges to currently available therapies. Nevertheless, emerging nucleic acid–based therapies, such as the antisense oligonucleotide pelacarsen and the small interfering RNA olpasiran, are generating interest because of their potent Lp(a)-lowering effects. Assessment of new-onset diabetes in patients achieving very low Lp(a) levels will be important in future trials.

Conclusions and Relevance  Epidemiologic and genetic studies suggest a potentially causal association between elevated Lp(a) levels, atherosclerotic cardiovascular disease, and aortic valve stenosis. Emerging nucleic acid–based therapies have potent Lp(a)-lowering effects and appear safe; phase 3 trials will establish whether they improve cardiovascular outcomes.

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 Credit(s)™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

CME Disclosure Statement: Unless noted, all individuals in control of content reported no relevant financial relationships. If applicable, all relevant financial relationships have been mitigated.

Article Information

Accepted for Publication: March 24, 2022.

Published Online: May 18, 2022. doi:10.1001/jamacardio.2022.0987

Correction: This article was corrected on July 13, 2022, to fix the SI conversion factor for lipoprotein(a), 2 typographical errors in the population column of Table 1 and 2 typographical errors in the main text, and the key findings cell in the CCHS row in Table 1.

Corresponding Author: Robert P. Giugliano, MD, SM, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, 350 Longwood Ave, First Floor, Boston, MA 02115 (rgiugliano@bwh.harvard.edu).

Author Contributions: Drs Duarte Lau and Giugliano had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Study concept and design: All authors.

Acquisition, analysis, or interpretation of data: All authors.

Drafting of the manuscript: Duarte Lau.

Critical revision of the manuscript for important intellectual content: Giugliano.

Study supervision: Giugliano.

Conflict of Interest Disclosures: Dr Giugliano has received research grant support to the Brigham and Women’s Hospital from Amgen, Anthos Therapeutics, Ionis Pharmaceuticals, and Daiichi Sankyo; honoraria for lectures and CME programs from Amgen, Centrix, Daiichi Sankyo, Dr Reddy’s Laboratories, Medical Education Resources, Medscape, Menarini, Merck, Pfizer, SAJA Pharmaceuticals, Servier, Shanghai Medical Telescope, and Voxmedia; and consulting fees from Amarin, Amgen, CryoLife, CSL Behring, CVS Caremark, Daiichi Sankyo, Esperion, Gilead, Hengrui, Inari, Janssen, Labcorp, Novartis, Pfizer, PhaseBio Pharmaceuticals, St. Luke’s Hospital Kansas City, Samsung, and Sanofi Aventis. No other disclosures were reported.

Additional Contributions: Special thanks to Michelle L. O’Donoghue, MD, MPH (Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, Massachusetts), for her invaluable comments ad honorem during the revision of this article. We thank Maria J. Monterroso, BA (Universidad del Valle de Guatemala, Guatemala City, Guatemala), for designing the figures of this article. Neither contributor was compensated for their work.

References
1.
Berg  K .  A new serum type system in man—the LP system.   Acta Pathol Microbiol Scand. 1963;59:369-382. doi:10.1111/j.1699-0463.1963.tb01808.xPubMedGoogle ScholarCrossref
2.
Varvel  S , McConnell  JP , Tsimikas  S .  Prevalence of elevated Lp(a) mass levels and patient thresholds in 532 359 patients in the United States.   Arterioscler Thromb Vasc Biol. 2016;36(11):2239-2245. doi:10.1161/ATVBAHA.116.308011PubMedGoogle ScholarCrossref
3.
Patel  AP , Wang  M , Pirruccello  JP ,  et al.  Lp(a) (lipoprotein[a]) concentrations and incident atherosclerotic cardiovascular disease: new insights from a large national biobank.   Arterioscler Thromb Vasc Biol. 2021;41(1):465-474.PubMedGoogle Scholar
4.
Erqou  S , Kaptoge  S , Perry  PL ,  et al; Emerging Risk Factors Collaboration.  Lipoprotein(a) concentration and the risk of coronary heart disease, stroke, and nonvascular mortality.   JAMA. 2009;302(4):412-423. doi:10.1001/jama.2009.1063PubMedGoogle ScholarCrossref
5.
Kamstrup  PR , Tybjærg-Hansen  A , Nordestgaard  BG .  Elevated lipoprotein(a) and risk of aortic valve stenosis in the general population.   J Am Coll Cardiol. 2014;63(5):470-477. doi:10.1016/j.jacc.2013.09.038PubMedGoogle ScholarCrossref
6.
Arsenault  BJ , Boekholdt  SM , Dubé  MP ,  et al.  Lipoprotein(a) levels, genotype, and incident aortic valve stenosis: a prospective mendelian randomization study and replication in a case-control cohort.   Circ Cardiovasc Genet. 2014;7(3):304-310. doi:10.1161/CIRCGENETICS.113.000400PubMedGoogle ScholarCrossref
7.
Clarke  R , Peden  JF , Hopewell  JC ,  et al; PROCARDIS Consortium.  Genetic variants associated with Lp(a) lipoprotein level and coronary disease.   N Engl J Med. 2009;361(26):2518-2528. doi:10.1056/NEJMoa0902604PubMedGoogle ScholarCrossref
8.
Kamstrup  PR , Tybjaerg-Hansen  A , Steffensen  R , Nordestgaard  BG .  Genetically elevated lipoprotein(a) and increased risk of myocardial infarction.   JAMA. 2009;301(22):2331-2339. doi:10.1001/jama.2009.801PubMedGoogle ScholarCrossref
9.
Nordestgaard  BG , Chapman  MJ , Ray  K ,  et al; European Atherosclerosis Society Consensus Panel.  Lipoprotein(a) as a cardiovascular risk factor: current status.   Eur Heart J. 2010;31(23):2844-2853. doi:10.1093/eurheartj/ehq386PubMedGoogle ScholarCrossref
10.
O’Donoghue  ML , Fazio  S , Giugliano  RP ,  et al.  Lipoprotein(a), PCSK9 inhibition, and cardiovascular risk.   Circulation. 2019;139(12):1483-1492. doi:10.1161/CIRCULATIONAHA.118.037184PubMedGoogle ScholarCrossref
11.
Schmidt  K , Noureen  A , Kronenberg  F , Utermann  G .  Structure, function, and genetics of lipoprotein (a).   J Lipid Res. 2016;57(8):1339-1359. doi:10.1194/jlr.R067314PubMedGoogle ScholarCrossref
12.
Jawi  MM , Frohlich  J , Chan  SY .  Lipoprotein(a) the insurgent: a new insight into the structure, function, metabolism, pathogenicity, and medications affecting lipoprotein(a) molecule.   J Lipids. 2020;2020:3491764. doi:10.1155/2020/3491764PubMedGoogle ScholarCrossref
13.
Cegla  J , France  M , Marcovina  SM , Neely  RDG .  Lp(a): when and how to measure it.   Ann Clin Biochem. 2021;58(1):16-21. doi:10.1177/0004563220968473PubMedGoogle ScholarCrossref
14.
Dati  F , Tate  JR , Marcovina  SM , Steinmetz  A ; International Federation of Clinical Chemistry and Laboratory Medicine; IFCC Working Group for Lipoprotein(a) Assay Standardization.  First WHO/IFCC international reference reagent for lipoprotein(a) for immunoassay--Lp(a) SRM 2B.   Clin Chem Lab Med. 2004;42(6):670-676. doi:10.1515/CCLM.2004.114PubMedGoogle ScholarCrossref
15.
Tsimikas  S .  A test in context: lipoprotein(a): diagnosis, prognosis, controversies, and emerging therapies.   J Am Coll Cardiol. 2017;69(6):692-711. doi:10.1016/j.jacc.2016.11.042PubMedGoogle ScholarCrossref
16.
Reyes-Soffer  G .  The impact of race and ethnicity on lipoprotein(a) levels and cardiovascular risk.   Curr Opin Lipidol. 2021;32(3):163-166. doi:10.1097/MOL.0000000000000753PubMedGoogle ScholarCrossref
17.
Enkhmaa  B , Anuurad  E , Berglund  L .  Lipoprotein (a): impact by ethnicity and environmental and medical conditions.   J Lipid Res. 2016;57(7):1111-1125. doi:10.1194/jlr.R051904PubMedGoogle ScholarCrossref
18.
Guan  W , Cao  J , Steffen  BT ,  et al.  Race is a key variable in assigning lipoprotein(a) cutoff values for coronary heart disease risk assessment: the Multi-Ethnic Study of Atherosclerosis.   Arterioscler Thromb Vasc Biol. 2015;35(4):996-1001. doi:10.1161/ATVBAHA.114.304785PubMedGoogle ScholarCrossref
19.
Grundy  SM , Stone  NJ , Bailey  AL ,  et al.  2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines.   Circulation. 2019;139(25):e1082-e1143.PubMedGoogle Scholar
20.
Wilson  DP , Jacobson  TA , Jones  PH ,  et al.  Use of lipoprotein(a) in clinical practice: a biomarker whose time has come. a scientific statement from the National Lipid Association.   J Clin Lipidol. 2019;13(3):374-392. doi:10.1016/j.jacl.2019.04.010PubMedGoogle ScholarCrossref
21.
Mach  F , Baigent  C , Catapano  AL ,  et al; ESC Scientific Document Group.  2019 ESC/EAS guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk.   Eur Heart J. 2020;41(1):111-188. doi:10.1093/eurheartj/ehz455PubMedGoogle ScholarCrossref
22.
Cegla  J , Neely  RDG , France  M ,  et al; HEART UK Medical, Scientific and Research Committee.  HEART UK consensus statement on Lipoprotein(a): a call to action.   Atherosclerosis. 2019;291:62-70. doi:10.1016/j.atherosclerosis.2019.10.011PubMedGoogle ScholarCrossref
23.
Newman  CB , Blaha  MJ , Boord  JB ,  et al.  Lipid management in patients with endocrine disorders: an Endocrine Society Clinical Practice Guideline.   J Clin Endocrinol Metab. 2020;105(12):3613-3682. doi:10.1210/clinem/dgaa674PubMedGoogle ScholarCrossref
24.
Pearson  GJ , Thanassoulis  G , Anderson  TJ ,  et al.  2021 Canadian Cardiovascular Society guidelines for the management of dyslipidemia for the prevention of cardiovascular disease in adults.   Can J Cardiol. 2021;37(8):1129-1150. doi:10.1016/j.cjca.2021.03.016PubMedGoogle ScholarCrossref
25.
Kamstrup  PR , Benn  M , Tybjaerg-Hansen  A , Nordestgaard  BG .  Extreme lipoprotein(a) levels and risk of myocardial infarction in the general population: the Copenhagen City Heart study.   Circulation. 2008;117(2):176-184. doi:10.1161/CIRCULATIONAHA.107.715698PubMedGoogle ScholarCrossref
26.
O’Donoghue  ML , Morrow  DA , Tsimikas  S ,  et al.  Lipoprotein(a) for risk assessment in patients with established coronary artery disease.   J Am Coll Cardiol. 2014;63(6):520-527. doi:10.1016/j.jacc.2013.09.042PubMedGoogle ScholarCrossref
27.
Bergmark  BA , O’Donoghue  ML , Murphy  SA ,  et al.  An exploratory analysis of proprotein convertase subtilisin/kexin type 9 inhibition and aortic stenosis in the FOURIER trial.   JAMA Cardiol. 2020;5(6):709-713. doi:10.1001/jamacardio.2020.0728PubMedGoogle ScholarCrossref
28.
Langsted  A , Nordestgaard  BG , Kamstrup  PR .  Elevated lipoprotein(a) and risk of ischemic stroke.   J Am Coll Cardiol. 2019;74(1):54-66. doi:10.1016/j.jacc.2019.03.524PubMedGoogle ScholarCrossref
29.
Trinder  M , Uddin  MM , Finneran  P , Aragam  KG , Natarajan  P .  Clinical utility of lipoprotein(a) and LPA genetic risk score in risk prediction of incident atherosclerotic cardiovascular disease.   JAMA Cardiol. 2020;6(3):1-9.PubMedGoogle Scholar
30.
Waldeyer  C , Makarova  N , Zeller  T ,  et al.  Lipoprotein(a) and the risk of cardiovascular disease in the European population: results from the BiomarCaRE consortium.   Eur Heart J. 2017;38(32):2490-2498. doi:10.1093/eurheartj/ehx166PubMedGoogle ScholarCrossref
31.
Willeit  P , Kiechl  S , Kronenberg  F ,  et al.  Discrimination and net reclassification of cardiovascular risk with lipoprotein(a): prospective 15-year outcomes in the Bruneck study.   J Am Coll Cardiol. 2014;64(9):851-860. doi:10.1016/j.jacc.2014.03.061PubMedGoogle ScholarCrossref
32.
Kyriakou  T , Seedorf  U , Goel  A ,  et al; PROCARDIS Consortium.  A common LPA null allele associates with lower lipoprotein(a) levels and coronary artery disease risk.   Arterioscler Thromb Vasc Biol. 2014;34(9):2095-2099. doi:10.1161/ATVBAHA.114.303462PubMedGoogle ScholarCrossref
33.
Lim  ET , Würtz  P , Havulinna  AS ,  et al; Sequencing Initiative Suomi (SISu) Project.  Distribution and medical impact of loss-of-function variants in the Finnish founder population.   PLoS Genet. 2014;10(7):e1004494. doi:10.1371/journal.pgen.1004494PubMedGoogle ScholarCrossref
34.
Deloukas  P , Kanoni  S , Willenborg  C ,  et al; CARDIoGRAMplusC4D Consortium; DIAGRAM Consortium; CARDIOGENICS Consortium; MuTHER Consortium; Wellcome Trust Case Control Consortium.  Large-scale association analysis identifies new risk loci for coronary artery disease.   Nat Genet. 2013;45(1):25-33. doi:10.1038/ng.2480PubMedGoogle ScholarCrossref
35.
Kouvari  M , Panagiotakos  DB .  The role of lipoprotein (a) in primary and secondary cardiovascular disease prevention: a systematic review of epidemiological studies.   Curr Opin Cardiol. 2019;34(4):424-434. doi:10.1097/HCO.0000000000000628PubMedGoogle ScholarCrossref
36.
Konishi  H , Miyauchi  K , Kasai  T ,  et al.  Impact of lipoprotein(a) as residual risk on long-term outcomes in patients after percutaneous coronary intervention.   Am J Cardiol. 2015;115(2):157-160. doi:10.1016/j.amjcard.2014.10.015PubMedGoogle ScholarCrossref
37.
Feng  Z , Li  HL , Bei  WJ ,  et al.  Association of lipoprotein(a) with long-term mortality following coronary angiography or percutaneous coronary intervention.   Clin Cardiol. 2017;40(9):674-678. doi:10.1002/clc.22712PubMedGoogle ScholarCrossref
38.
Albers  JJ , Slee  A , O’Brien  KD ,  et al.  Relationship of apolipoproteins A-1 and B, and lipoprotein(a) to cardiovascular outcomes: the AIM-HIGH trial (Atherothrombosis Intervention in Metabolic Syndrome with Low HDL/High Triglyceride and Impact on Global Health Outcomes).   J Am Coll Cardiol. 2013;62(17):1575-1579. doi:10.1016/j.jacc.2013.06.051PubMedGoogle ScholarCrossref
39.
Khera  AV , Everett  BM , Caulfield  MP ,  et al.  Lipoprotein(a) concentrations, rosuvastatin therapy, and residual vascular risk: an analysis from the JUPITER trial (Justification for the Use of Statins in Prevention: an Intervention Trial Evaluating Rosuvastatin).   Circulation. 2014;129(6):635-642. doi:10.1161/CIRCULATIONAHA.113.004406PubMedGoogle ScholarCrossref
40.
Thanassoulis  G .  Lipoprotein (a) in calcific aortic valve disease: from genomics to novel drug target for aortic stenosis.   J Lipid Res. 2016;57(6):917-924. doi:10.1194/jlr.R051870PubMedGoogle ScholarCrossref
41.
Langsted  A , Varbo  A , Kamstrup  PR , Nordestgaard  BG .  Elevated lipoprotein(a) does not cause low-grade inflammation despite causal association with aortic valve stenosis and myocardial infarction: a study of 100,578 individuals from the general population.   J Clin Endocrinol Metab. 2015;100(7):2690-2699. doi:10.1210/jc.2015-1096PubMedGoogle ScholarCrossref
42.
Guddeti  RR , Patil  S , Ahmed  A ,  et al.  Lipoprotein(a) and calcific aortic valve stenosis: a systematic review.   Prog Cardiovasc Dis. 2020;63(4):496-502. doi:10.1016/j.pcad.2020.06.002PubMedGoogle ScholarCrossref
43.
Kamstrup  PR .  Lipoprotein(a) and cardiovascular disease.   Clin Chem. 2021;67(1):154-166. doi:10.1093/clinchem/hvaa247PubMedGoogle ScholarCrossref
44.
Puri  R , Mehta  V , Iyengar  SS ,  et al.  Lipid association of India expert consensus statement on management of dyslipidemia in Indians 2020: part III.   J Assoc Physicians India. 2020;68(11[special]):8-9.PubMedGoogle Scholar
45.
Visseren  FLJ , Mach  F , Smulders  YM ,  et al; ESC National Cardiac Societies; ESC Scientific Document Group.  2021 ESC guidelines on cardiovascular disease prevention in clinical practice.   Eur Heart J. 2021;42(34):3227-3337. doi:10.1093/eurheartj/ehab484PubMedGoogle ScholarCrossref
46.
Ellis  KL , Pérez de Isla  L , Alonso  R , Fuentes  F , Watts  GF , Mata  P .  Value of measuring lipoprotein(a) during cascade testing for familial hypercholesterolemia.   J Am Coll Cardiol. 2019;73(9):1029-1039. doi:10.1016/j.jacc.2018.12.037PubMedGoogle ScholarCrossref
47.
Trinder  M , Paruchuri  K , Haidermota  S ,  et al.  Repeat measures of lipoprotein(a) molar concentration and cardiovascular risk.   J Am Coll Cardiol. 2022;79(7):617-628. doi:10.1016/j.jacc.2021.11.055PubMedGoogle ScholarCrossref
48.
Engler  RJM , Brede  E , Villines  T , Vernalis  MN .  Lipoprotein(a) elevation: a new diagnostic code with relevance to service members and veterans.   Fed Pract. 2019;36(suppl 7):S19-S31.PubMedGoogle Scholar
49.
Wilkinson  M , Huynh  A , AlGhawi  R ,  et al.  Trends in testing for lipoprotein(a) at an academic medical center over 13 years.   J Clin Lipidol. 2017;11(3):773. doi:10.1016/j.jacl.2017.04.006Google ScholarCrossref
50.
Saeed  A . Poll results: lipoprotein(a): what is your clinical practice? Accessed January 19, 2022. https://www.acc.org/latest-in-cardiology/articles/2021/08/31/18/47/poll-results-lipoprotein-a
51.
Tsimikas  S , Stroes  ESG .  The dedicated “Lp(a) clinic”: a concept whose time has arrived?   Atherosclerosis. 2020;300:1-9. doi:10.1016/j.atherosclerosis.2020.03.003PubMedGoogle ScholarCrossref
52.
Burgess  S , Ference  BA , Staley  JR ,  et al; European Prospective Investigation Into Cancer and Nutrition–Cardiovascular Disease (EPIC-CVD) Consortium.  Association of LPA variants with risk of coronary disease and the implications for lipoprotein(a)-lowering therapies: a mendelian randomization analysis.   JAMA Cardiol. 2018;3(7):619-627. doi:10.1001/jamacardio.2018.1470PubMedGoogle ScholarCrossref
53.
Madsen  CM , Kamstrup  PR , Langsted  A , Varbo  A , Nordestgaard  BG .  Lipoprotein(a)-lowering by 50 mg/dL (105 nmol/L) may be needed to reduce cardiovascular disease 20% in secondary prevention: a population-based study.   Arterioscler Thromb Vasc Biol. 2020;40(1):255-266. doi:10.1161/ATVBAHA.119.312951PubMedGoogle ScholarCrossref
54.
Enkhmaa  B , Petersen  KS , Kris-Etherton  PM , Berglund  L .  Diet and Lp(a): does dietary change modify residual cardiovascular risk conferred by Lp(a)?   Nutrients. 2020;12(7):E2024. doi:10.3390/nu12072024PubMedGoogle ScholarCrossref
55.
Willeit  P , Ridker  PM , Nestel  PJ ,  et al.  Baseline and on-statin treatment lipoprotein(a) levels for prediction of cardiovascular events: individual patient-data meta-analysis of statin outcome trials.   Lancet. 2018;392(10155):1311-1320. doi:10.1016/S0140-6736(18)31652-0PubMedGoogle ScholarCrossref
56.
Tsimikas  S , Gordts  PLSM , Nora  C , Yeang  C , Witztum  JL .  Statin therapy increases lipoprotein(a) levels.   Eur Heart J. 2020;41(24):2275-2284. doi:10.1093/eurheartj/ehz310PubMedGoogle ScholarCrossref
57.
Bittner  VA , Szarek  M , Aylward  PE ,  et al; ODYSSEY OUTCOMES Committees and Investigators.  Effect of alirocumab on lipoprotein(a) and cardiovascular risk after acute coronary syndrome.   J Am Coll Cardiol. 2020;75(2):133-144. doi:10.1016/j.jacc.2019.10.057PubMedGoogle ScholarCrossref
58.
Koren  MJ , Moriarty  PM , Baum  SJ ,  et al.  Preclinical development and phase 1 trial of a novel siRNA targeting lipoprotein(a).   Nat Med. 2022;28(1):96-103. doi:10.1038/s41591-021-01634-wPubMedGoogle ScholarCrossref
59.
Viney  NJ , van Capelleveen  JC , Geary  RS ,  et al.  Antisense oligonucleotides targeting apolipoprotein(a) in people with raised lipoprotein(a): two randomised, double-blind, placebo-controlled, dose-ranging trials.   Lancet. 2016;388(10057):2239-2253. doi:10.1016/S0140-6736(16)31009-1PubMedGoogle ScholarCrossref
60.
Tsimikas  S , Karwatowska-Prokopczuk  E , Gouni-Berthold  I ,  et al; AKCEA-APO(a)-LRx Study Investigators.  Lipoprotein(a) reduction in persons with cardiovascular disease.   N Engl J Med. 2020;382(3):244-255. doi:10.1056/NEJMoa1905239PubMedGoogle ScholarCrossref
61.
Mehta  A , Vasquez  N , Ayers  CR ,  et al.  Independent association of lipoprotein(a) and coronary artery calcification with atherosclerotic cardiovascular risk.   J Am Coll Cardiol. 2022;79(8):757-768. doi:10.1016/j.jacc.2021.11.058PubMedGoogle ScholarCrossref
62.
Sabatine  MS , Giugliano  RP , Keech  AC ,  et al; FOURIER Steering Committee and Investigators.  Evolocumab and clinical outcomes in patients with cardiovascular disease.   N Engl J Med. 2017;376(18):1713-1722. doi:10.1056/NEJMoa1615664PubMedGoogle ScholarCrossref
63.
Schwartz  GG , Steg  PG , Szarek  M ,  et al; ODYSSEY OUTCOMES Committees and Investigators.  Alirocumab and cardiovascular outcomes after acute coronary syndrome.   N Engl J Med. 2018;379(22):2097-2107. doi:10.1056/NEJMoa1801174PubMedGoogle ScholarCrossref
64.
Schwartz  GG , Szarek  M , Bittner  VA ,  et al; ODYSSEY Outcomes Committees and Investigators.  Lipoprotein(a) and benefit of PCSK9 inhibition in patients with nominally controlled LDL cholesterol.   J Am Coll Cardiol. 2021;78(5):421-433. doi:10.1016/j.jacc.2021.04.102PubMedGoogle ScholarCrossref
65.
Gudbjartsson  DF , Thorgeirsson  G , Sulem  P ,  et al.  Lipoprotein(a) concentration and risks of cardiovascular disease and diabetes.   J Am Coll Cardiol. 2019;74(24):2982-2994. doi:10.1016/j.jacc.2019.10.019PubMedGoogle ScholarCrossref
66.
Schwartz  GG , Szarek  M , Bittner  VA ,  et al; ODYSSEY OUTCOMES Committees and Investigators.  Relation of lipoprotein(a) levels to incident type 2 diabetes and modification by alirocumab treatment.   Diabetes Care. 2021;44(5):1219-1227. doi:10.2337/dc20-2842PubMedGoogle ScholarCrossref
67.
Ward  NC , Vickneswaran  S , Watts  GF .  Lipoprotein (a) and diabetes mellitus: causes and consequences.   Curr Opin Endocrinol Diabetes Obes. 2021;28(2):181-187. doi:10.1097/MED.0000000000000597PubMedGoogle ScholarCrossref
68.
Franchini  M , Capuzzo  E , Liumbruno  GM .  Lipoprotein apheresis for the treatment of elevated circulating levels of lipoprotein(a): a critical literature review.   Blood Transfus. 2016;14(5):413-418.PubMedGoogle Scholar
69.
Padmanabhan  A , Connelly-Smith  L , Aqui  N ,  et al.  Guidelines on the use of therapeutic apheresis in clinical practice—evidence-based approach from the Writing Committee of the American Society for Apheresis: the Eighth Special Issue.   J Clin Apher. 2019;34(3):171-354. doi:10.1002/jca.21705PubMedGoogle ScholarCrossref
70.
Effect of Lipoprotein(a) Elimination by Lipoprotein Apheresis on Cardiovascular Outcomes (MultiSELECT). ClinicalTrials.gov identifier: NCT02791802. Updated February 11, 2019. Accessed January 19, 2022. https://clinicaltrials.gov/show/NCT02791802
71.
Katzmann  JL , Packard  CJ , Chapman  MJ , Katzmann  I , Laufs  U .  Targeting RNA with antisense oligonucleotides and small interfering rna: JACC State-of-the-Art Review.   J Am Coll Cardiol. 2020;76(5):563-579. doi:10.1016/j.jacc.2020.05.070PubMedGoogle ScholarCrossref
72.
Tsimikas  S , Viney  NJ , Hughes  SG ,  et al.  Antisense therapy targeting apolipoprotein(a): a randomised, double-blind, placebo-controlled phase 1 study.   Lancet. 2015;386(10002):1472-1483. doi:10.1016/S0140-6736(15)61252-1PubMedGoogle ScholarCrossref
73.
Assessing the Impact of Lipoprotein(a) Lowering With TQJ230 on Major Cardiovascular Events in Patients With CVD (Lp(a)HORIZON). ClinicalTrials.gov identifier: NCT04023552. Updated January 14, 2022. Accessed January 19, 2022. https://clinicaltrials.gov/show/NCT04023552
74.
Olpasiran trials of cardiovascular events and lipoprotein(a) reduction - DOSE Finding study. ClinicalTrials.gov identifier: NCT04270760. Updated January 12, 2022. Accessed January 19, 2022. https://clinicaltrials.gov/show/NCT04270760
75.
Nissen  SE , Wolski  K , Balog  C ,  et al.  Single ascending dose study of a short interfering RNA targeting lipoprotein(a) production in individuals with elevated plasma lipoprotein(a) levels.   JAMA. Published online April 3, 2022. doi:10.1001/jama.2022.5050PubMedGoogle ScholarCrossref
Close
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
Close
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close

Name Your Search

Save Search
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Close
Close

Lookup An Activity

or

My Saved Searches

You currently have no searches saved.

Close

My Saved Courses

You currently have no courses saved.

Close