Corresponding Author: Roger Chou, MD, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Mail Code: BICC, Portland, OR 97239 (chour@ohsu.edu).
Accepted for Publication: April 4, 2022.
Author Contributions: Dr Chou had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.
Concept and design: Chou, Jonas.
Acquisition, analysis, or interpretation of data: Chou, Selph, Blazina, Bougatsos, Jungbauer, Fu, Grusing, Tehrani.
Drafting of the manuscript: Chou, Selph, Blazina, Bougatsos, Jungbauer, Fu, Grusing.
Critical revision of the manuscript for important intellectual content: Chou, Blazina, Jonas, Tehrani.
Statistical analysis: Chou, Selph, Blazina, Fu.
Obtained funding: Chou, Bougatsos, Jonas.
Administrative, technical, or material support: Blazina, Bougatsos, Jungbauer, Grusing, Jonas, Tehrani.
Supervision: Chou, Jonas, Tehrani.
Conflict of Interest Disclosures: None reported.
Funding/Support: This research was funded under contract HHSA-290-2015-00011-I, Task Order 75Q80119F32015, from the Agency for Healthcare Research and Quality (AHRQ), US Department of Health and Human Services, under a contract to support the US Preventive Services Task Force (USPSTF).
Role of the Funder/Sponsor: Investigators worked with US Preventive Services Task Force members and AHRQ staff to develop the scope, analytic framework, and key questions for this review. AHRQ had no role in study selection, quality assessment, or synthesis. AHRQ staff provided project oversight, reviewed the report to ensure that the analysis met methodological standards, and distributed the draft for peer review. Otherwise, AHRQ had no role in the conduct of the study; collection, management, analysis, and interpretation of the data; and preparation, review, or approval of the manuscript findings. The opinions expressed in this document are those of the authors and do not reflect the official position of AHRQ or the US Department of Health and Human Services.
Additional Contributions: We thank the following individuals for their contributions to this project: Pacific Northwest Evidence-based Practice Center Librarian, Tracy Dana, MLS; Agency for Healthcare Research and Quality Medical Officer, Justin Mills, MD, MPH; as well as the US Preventive Services Task Force. We also acknowledge past and current USPSTF members who contributed to topic deliberations. The USPSTF members, external reviewers, and federal partner reviewers did not receive financial compensation for their contributions.
Additional Information: A draft version of this evidence report underwent external peer review from 4 content experts (April Maa, MD, Emory University School of Medicine, Emory Eye Center; Atlanta VA Medical Center; Nancy Weintraub, MD, David Geffen School of Medicine at University of California at Los Angeles; Jennifer Evans, PhD, MSc, London School of Hygiene and Tropical Medicine; and 1 nondisclosed reviewer) and federal partners representing the Centers for Disease Control and Prevention. Comments were presented to the USPSTF during its deliberation of the evidence and were considered in preparing the final evidence report.
Editorial Disclaimer: This evidence report is presented as a document in support of the accompanying USPSTF Recommendation Statement. It did not undergo additional peer review after submission to JAMA.
3.Kwon
M , Huisingh
C , Rhodes
LA , McGwin
G
Jr , Wood
JM , Owsley
C . Association between glaucoma and at-fault motor vehicle collision involvement among older drivers: a population-based study.
Ophthalmology. 2016;123(1):109-116. doi:
10.1016/j.ophtha.2015.08.043PubMedGoogle ScholarCrossref 5.Ervin
A-M , Boland
M , Myrowitz
E ,
et al. Screening for Glaucoma: Comparative Effectiveness. Comparative Effectiveness Review No. 59. Agency for Healthcare Research and Quality; 2013. AHRQ publication 12-EHC037-EF.
6.Boland
MV , Ervin
AM , Friedman
D ,
et al. Treatment for Glaucoma: Comparative Effectiveness. Comparative Effectiveness Review No. 60. Agency for Healthcare Research and Quality; 2012. AHRQ publication 12-EHC038-EF.
8.Chou
R , Selph
SS , Blazina
I ,
et al. Screening for Glaucoma in Adults: A Systematic Review for the US Preventive Services Task Force. Evidence Synthesis No. 214. Agency for Healthcare Research and Quality; 2020. AHRQ publication 21-05286-EF-1.
14.Aptel
F , Sayous
R , Fortoul
V , Beccat
S , Denis
P . Structure-function relationships using spectral-domain optical coherence tomography: comparison with scanning laser polarimetry.
Am J Ophthalmol. 2010;150(6):825-833. doi:
10.1016/j.ajo.2010.06.011PubMedGoogle ScholarCrossref 15.Arnould
L , De Lazzer
A , Seydou
A , Binquet
C , Bron
AM , Creuzot-Garcher
C . Diagnostic ability of spectral-domain optical coherence tomography peripapillary retinal nerve fiber layer thickness to discriminate glaucoma patients from controls in an elderly population (the MONTRACHET study).
Acta Ophthalmol. 2020;98(8):e1009-e1016. doi:
10.1111/aos.14448PubMedGoogle ScholarCrossref 16.Asrani
S , Bacharach
J , Holland
E ,
et al. Fixed-dose combination of netarsudil and latanoprost in ocular hypertension and open-angle glaucoma: pooled efficacy/safety analysis of phase 3 MERCURY-1 and -2.
Adv Ther. 2020;37(4):1620-1631. doi:
10.1007/s12325-020-01277-2PubMedGoogle ScholarCrossref 17.Asrani
S , Robin
AL , Serle
JB ,
et al; MERCURY-1 Study Group. Netarsudil/latanoprost fixed-dose combination for elevated intraocular pressure: three-month data from a randomized phase 3 trial.
Am J Ophthalmol. 2019;207:248-257. doi:
10.1016/j.ajo.2019.06.016PubMedGoogle ScholarCrossref 18.Azuara-Blanco
A , Banister
K , Boachie
C ,
et al. Automated imaging technologies for the diagnosis of glaucoma: a comparative diagnostic study for the evaluation of the diagnostic accuracy, performance as triage tests and cost-effectiveness (GATE study).
Health Technol Assess. 2016;20(8):1-168. doi:
10.3310/hta20080PubMedGoogle ScholarCrossref 24.Bonomi
L , Marchini
G , Marraffa
M , Morbio
R . The relationship between intraocular pressure and glaucoma in a defined population: data from the Egna-Neumarkt Glaucoma Study.
Ophthalmologica. 2001;215(1):34-38. doi:
10.1159/000050823PubMedGoogle ScholarCrossref 25.Brubaker
JW , Teymoorian
S , Lewis
RA ,
et al. One year of netarsudil and latanoprost fixed-dose combination for elevated intraocular pressure: phase 3, randomized MERCURY-1 study.
Ophthalmol Glaucoma. 2020;3(5):327-338. doi:
10.1016/j.ogla.2020.05.008PubMedGoogle ScholarCrossref 26.Casado
A , Cerveró
A , López-de-Eguileta
A ,
et al. Topographic correlation and asymmetry analysis of ganglion cell layer thinning and the retinal nerve fiber layer with localized visual field defects.
PLoS One. 2019;14(9):e0222347. doi:
10.1371/journal.pone.0222347PubMedGoogle ScholarCrossref 30.Cifuentes-Canorea
P , Ruiz-Medrano
J , Gutierrez-Bonet
R ,
et al. Analysis of inner and outer retinal layers using spectral domain optical coherence tomography automated segmentation software in ocular hypertensive and glaucoma patients.
PLoS One. 2018;13(4):e0196112. doi:
10.1371/journal.pone.0196112PubMedGoogle ScholarCrossref 33.Danesh-Meyer
HV , Gaskin
BJ , Jayusundera
T , Donaldson
M , Gamble
GD . Comparison of disc damage likelihood scale, cup to disc ratio, and Heidelberg retina tomograph in the diagnosis of glaucoma.
Br J Ophthalmol. 2006;90(4):437-441. doi:
10.1136/bjo.2005.077131PubMedGoogle ScholarCrossref 39.Francis
BA , Varma
R , Vigen
C ,
et al; Los Angeles Latino Eye Study Group. Population and high-risk group screening for glaucoma: the Los Angeles Latino Eye Study.
Invest Ophthalmol Vis Sci. 2011;52(9):6257-6264. doi:
10.1167/iovs.09-5126PubMedGoogle ScholarCrossref 40.Garas
A , Vargha
P , Holló
G . Diagnostic accuracy of nerve fibre layer, macular thickness and optic disc measurements made with the RTVue-100 optical coherence tomograph to detect glaucoma.
Eye (Lond). 2011;25(1):57-65. doi:
10.1038/eye.2010.139PubMedGoogle ScholarCrossref 42.Gazzard
G , Konstantakopoulou
E , Garway-Heath
D ,
et al; LiGHT Trial Study Group. Selective laser trabeculoplasty versus eye drops for first-line treatment of ocular hypertension and glaucoma (LiGHT): a multicentre randomised controlled trial.
Lancet. 2019;393(10180):1505-1516. doi:
10.1016/S0140-6736(18)32213-XPubMedGoogle ScholarCrossref 43.Gazzard
G , Konstantakopoulou
E , Garway-Heath
D ,
et al. Selective laser trabeculoplasty versus drops for newly diagnosed ocular hypertension and glaucoma: the LiGHT RCT.
Health Technol Assess. 2019;23(31):1-102. doi:
10.3310/hta23310PubMedGoogle ScholarCrossref 51.Jones
L , Garway-Heath
DF , Azuara-Blanco
A , Crabb
DP ; United Kingdom Glaucoma Treatment Study Investigators. Are patient self-reported outcome measures sensitive enough to be used as end points in clinical trials? evidence from the United Kingdom Glaucoma Treatment Study.
Ophthalmology. 2019;126(5):682-689. doi:
10.1016/j.ophtha.2018.09.034PubMedGoogle ScholarCrossref 52.Kahook
MY , Serle
JB , Mah
FS ,
et al; ROCKET-2 Study Group. Long-term safety and ocular hypotensive efficacy evaluation of netarsudil ophthalmic solution: rho kinase elevated IOP treatment trial (ROCKET-2).
Am J Ophthalmol. 2019;200(200):130-137. doi:
10.1016/j.ajo.2019.01.003PubMedGoogle ScholarCrossref 56.Kass
MA , Heuer
DK , Higginbotham
EJ ,
et al. The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma.
Arch Ophthalmol. 2002;120(6):701-713. doi:
10.1001/archopht.120.6.701PubMedGoogle ScholarCrossref 57.Katz
J , Tielsch
JM , Quigley
HA , Javitt
J , Witt
K , Sommer
A . Automated suprathreshold screening for glaucoma: the Baltimore Eye Survey.
Invest Ophthalmol Vis Sci. 1993;34(12):3271-3277.
PubMedGoogle Scholar 58.Kaushik
S , Kataria
P , Jain
V ,
et al. Evaluation of macular ganglion cell analysis compared to retinal nerve fiber layer thickness for preperimetric glaucoma diagnosi s.
Indian J Ophthalmol. 2018;66(4):511-516. doi:
10.4103/ijo.IJO_1039_17PubMedGoogle ScholarCrossref 59.Kaushik
S , Singh Pandav
S , Ichhpujani
P , Gupta
A , Gupta
P . Retinal nerve fiber layer measurement and diagnostic capability of spectral-domain versus time-domain optical coherence tomography.
Eur J Ophthalmol. 2011;21(5):566-572. doi:
10.5301/EJO.2011.6289PubMedGoogle ScholarCrossref 60.Khouri
AS , Serle
JB , Bacharach
J ,
et al; Rocket-4 Study Group. Once-daily netarsudil versus twice-daily timolol in patients with elevated intraocular pressure: the randomized phase 3 ROCKET-4 study.
Am J Ophthalmol. 2019;204:97-104. doi:
10.1016/j.ajo.2019.03.002PubMedGoogle ScholarCrossref 61.Kiddee
W , Tantisarasart
T , Wangsupadilok
B . Performance of optical coherence tomography for distinguishing between normal eyes, glaucoma suspect and glaucomatous eyes.
J Med Assoc Thai. 2013;96(6):689-695.
PubMedGoogle Scholar 62.Kim
SY , Park
HY , Park
CK . The effects of peripapillary atrophy on the diagnostic ability of Stratus and Cirrus OCT in the analysis of optic nerve head parameters and disc size.
Invest Ophthalmol Vis Sci. 2012;53(8):4475-4484. doi:
10.1167/iovs.12-9682PubMedGoogle ScholarCrossref 63.Koh
V , Tham
YC , Cheung
CY ,
et al. Diagnostic accuracy of macular ganglion cell-inner plexiform layer thickness for glaucoma detection in a population-based study: comparison with optic nerve head imaging parameters.
PLoS One. 2018;13(6):e0199134. doi:
10.1371/journal.pone.0199134PubMedGoogle ScholarCrossref 67.Lee
WJ , Na
KI , Kim
YK , Jeoung
JW , Park
KH . Diagnostic ability of wide-field retinal nerve fiber layer maps using swept-source optical coherence tomography for detection of preperimetric and early perimetric glaucoma.
J Glaucoma. 2017;26(6):577-585. doi:
10.1097/IJG.0000000000000662PubMedGoogle ScholarCrossref 69.Leibowitz
HM , Krueger
DE , Maunder
LR ,
et al. The Framingham Eye Study monograph: an ophthalmological and epidemiological study of cataract, glaucoma, diabetic retinopathy, macular degeneration, and visual acuity in a general population of 2631 adults, 1973-1975.
Surv Ophthalmol. 1980;24(suppl):335-610.
PubMedGoogle Scholar 70.Liu
S , Lam
S , Weinreb
RN ,
et al. Comparison of standard automated perimetry, frequency-doubling technology perimetry, and short-wavelength automated perimetry for detection of glaucoma.
Invest Ophthalmol Vis Sci. 2011;52(10):7325-7331. doi:
10.1167/iovs.11-7795PubMedGoogle ScholarCrossref 72.Maa
AY , McCord
S , Lu
X ,
et al. The impact of OCT on diagnostic accuracy of the technology-based eye care services protocol: part II of the Technology-Based Eye Care Services Compare Trial.
Ophthalmology. 2020;127(4):544-549. doi:
10.1016/j.ophtha.2019.10.025PubMedGoogle ScholarCrossref 74.Marraffa
M , Marchini
G , Albertini
R , Bonomi
L . Comparison of different screening methods for the detection of visual field defects in early glaucoma.
Int Ophthalmol. 1989;13(1-2):43-45. doi:
10.1007/BF02028636PubMedGoogle ScholarCrossref 75.Medeiros
FA , Martin
KR , Peace
J , Scassellati Sforzolini
B , Vittitow
JL , Weinreb
RN . Comparison of latanoprostene bunod 0.024% and timolol maleate 0.5% in open-angle glaucoma or ocular hypertension: the LUNAR Study.
Am J Ophthalmol. 2016;168:250-259. doi:
10.1016/j.ajo.2016.05.012PubMedGoogle ScholarCrossref 77.Miglior
S , Zeyen
T , Pfeiffer
N , Cunha-Vaz
J , Torri
V , Adamsons
I ; European Glaucoma Prevention Study Group. The European Glaucoma Prevention Study design and baseline description of the participants.
Ophthalmology. 2002;109(9):1612-1621. doi:
10.1016/S0161-6420(02)01167-3PubMedGoogle ScholarCrossref 78.Morejon
A , Mayo-Iscar
A , Martin
R , Ussa
F . Development of a new algorithm based on FDT Matrix perimetry and SD-OCT to improve early glaucoma detection in primary care.
Clin Ophthalmol. 2018;13:33-42. doi:
10.2147/OPTH.S177581PubMedGoogle ScholarCrossref 81.Nagar
M , Ogunyomade
A , O’Brart
DP , Howes
F , Marshall
J . A randomised, prospective study comparing selective laser trabeculoplasty with latanoprost for the control of intraocular pressure in ocular hypertension and open angle glaucoma.
Br J Ophthalmol. 2005;89(11):1413-1417. doi:
10.1136/bjo.2004.052795PubMedGoogle ScholarCrossref 86.Ravalico
G , Salvetat
L , Toffoli
G ,
et al. Ocular hypertension: a follow-up study in treated and untreated patients.
New Trends Ophthalmol. 1994;9(2):97-101.
Google Scholar 87.Sall
K ; Brinzolamide Primary Therapy Study Group. The efficacy and safety of brinzolamide 1% ophthalmic suspension (Azopt) as a primary therapy in patients with open-angle glaucoma or ocular hypertension.
Surv Ophthalmol. 2000;44(suppl 2):S155-S162. doi:
10.1016/S0039-6257(99)00107-1PubMedGoogle ScholarCrossref 91.Schweitzer
C , Korobelnik
JF , Le Goff
M ,
et al. Diagnostic performance of peripapillary retinal nerve fiber layer thickness for detection of glaucoma in an elderly population: the ALIENOR Study.
Invest Ophthalmol Vis Sci. 2016;57(14):5882-5891. doi:
10.1167/iovs.16-20104PubMedGoogle ScholarCrossref 92.Serle
JB , Katz
LJ , McLaurin
E ,
et al; ROCKET-1 and ROCKET-2 Study Groups. Two phase 3 clinical trials comparing the safety and efficacy of netarsudil to timolol in patients with elevated intraocular pressure: rho kinase elevated IOP treatment trial 1 and 2 (ROCKET-1 and ROCKET-2).
Am J Ophthalmol. 2018;186:116-127. doi:
10.1016/j.ajo.2017.11.019PubMedGoogle ScholarCrossref 93.Soh
ZD , Chee
ML , Thakur
S ,
et al. Asian-specific vertical cup-to-disc ratio cut-off for glaucoma screening: an evidence-based recommendation from a multi-ethnic Asian population.
Clin Exp Ophthalmol. 2020;48(9):1210-1218. doi:
10.1111/ceo.13836PubMedGoogle ScholarCrossref 102.Wahl
J , Barleon
L , Morfeld
P , Lichtmeß
A , Haas-Brähler
S , Pfeiffer
N . The Evonik-Mainz Eye Care Study (EMECS): development of an expert system for glaucoma risk detection in a working population.
PLoS One. 2016;11(8):e0158824. doi:
10.1371/journal.pone.0158824PubMedGoogle ScholarCrossref 104.Weinreb
RN , Ong
T , Scassellati Sforzolini
B , Vittitow
JL , Singh
K , Kaufman
PL ; VOYAGER Study Group. A randomised, controlled comparison of latanoprostene bunod and latanoprost 0.005% in the treatment of ocular hypertension and open angle glaucoma: the VOYAGER study.
Br J Ophthalmol. 2015;99(6):738-745. doi:
10.1136/bjophthalmol-2014-305908PubMedGoogle ScholarCrossref 105.Weinreb
RN , Scassellati Sforzolini
B , Vittitow
J , Liebmann
J . Latanoprostene bunod 0.024% versus timolol maleate 0.5% in subjects with open-angle glaucoma or ocular hypertension: the APOLLO Study.
Ophthalmology. 2016;123(5):965-973. doi:
10.1016/j.ophtha.2016.01.019PubMedGoogle ScholarCrossref