Screening for Glaucoma in Adults: Updated Evidence Report and Systematic Review for the US Preventive Services Task Force | Geriatrics | JN Learning | AMA Ed Hub [Skip to Content]
[Skip to Content Landing]

Screening for Glaucoma in AdultsUpdated Evidence Report and Systematic Review for the US Preventive Services Task Force

To identify the key insights or developments described in this article
1 Credit CME
Abstract

Importance  Two 2013 systematic reviews to inform the US Preventive Services Task Force (USPSTF) found insufficient evidence to assess benefits and harms of screening for primary open-angle glaucoma (OAG) in adults.

Objective  To update the 2013 reviews on screening for glaucoma, to inform the USPSTF.

Data Sources  Ovid MEDLINE, the Cochrane Central Register of Controlled Trials, and the Cochrane Database of Systematic Reviews (to February 2021); surveillance through January 21, 2022.

Study Selection  Randomized clinical trials (RCTs) of screening, referral, and treatment; and studies of screening test diagnostic accuracy.

Data Extraction and Synthesis  One investigator abstracted data and a second checked accuracy. Two investigators independently assessed study quality.

Results  Eighty-three studies (N = 75 887) were included (30 trials and 53 diagnostic accuracy studies). One RCT (n = 616) found screening of frail elderly persons associated with no difference in vision outcomes vs no screening but with significantly greater falls risk (relative risk [RR], 1.31 [95% CI, 1.13-1.50]). No study evaluated referral to an eye health professional. For glaucoma diagnosis, spectral domain optical coherence tomography (providing high-resolution cross-sectional imaging; 15 studies, n = 4242) was associated with sensitivity of 0.79 (95% CI, 0.75-0.83) and specificity of 0.92 (95% CI, 0.87-0.96) and the Humphrey Visual Field Analyzer (for perimetry, or measurement of visual fields; 6 studies, n = 11 244) with sensitivity of 0.87 (95% CI, 0.69-0.95) and specificity 0.82 (95% CI, 0.66-0.92); tonometry (for measurement of intraocular pressure; 13 studies, n = 32 892) had low sensitivity (0.48 [95% CI, 0.31-0.66]). Medical therapy for ocular hypertension and untreated glaucoma was significantly associated with decreased intraocular pressure and decreased likelihood of glaucoma progression (7 trials, n = 3771; RR, 0.68 [95% CI, 0.49-0.96]; absolute risk difference −4.2%) vs placebo, but 1 trial (n = 461) found no differences in visual acuity, quality of life, or function. Selective laser trabeculoplasty and medical therapy had similar outcomes (4 trials, n = 957).

Conclusions and Relevance  This review found limited direct evidence on glaucoma screening, showing no association with benefits. Screening tests can identify persons with glaucoma and treatment was associated with a lower risk of glaucoma progression, but evidence of improvement in visual outcomes, quality of life, and function remains lacking.

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 CME Credit™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

CME Disclosure Statement: Unless noted, all individuals in control of content reported no relevant financial relationships. If applicable, all relevant financial relationships have been mitigated.

Article Information

Corresponding Author: Roger Chou, MD, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Mail Code: BICC, Portland, OR 97239 (chour@ohsu.edu).

Accepted for Publication: April 4, 2022.

Author Contributions: Dr Chou had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: Chou, Jonas.

Acquisition, analysis, or interpretation of data: Chou, Selph, Blazina, Bougatsos, Jungbauer, Fu, Grusing, Tehrani.

Drafting of the manuscript: Chou, Selph, Blazina, Bougatsos, Jungbauer, Fu, Grusing.

Critical revision of the manuscript for important intellectual content: Chou, Blazina, Jonas, Tehrani.

Statistical analysis: Chou, Selph, Blazina, Fu.

Obtained funding: Chou, Bougatsos, Jonas.

Administrative, technical, or material support: Blazina, Bougatsos, Jungbauer, Grusing, Jonas, Tehrani.

Supervision: Chou, Jonas, Tehrani.

Conflict of Interest Disclosures: None reported.

Funding/Support: This research was funded under contract HHSA-290-2015-00011-I, Task Order 75Q80119F32015, from the Agency for Healthcare Research and Quality (AHRQ), US Department of Health and Human Services, under a contract to support the US Preventive Services Task Force (USPSTF).

Role of the Funder/Sponsor: Investigators worked with US Preventive Services Task Force members and AHRQ staff to develop the scope, analytic framework, and key questions for this review. AHRQ had no role in study selection, quality assessment, or synthesis. AHRQ staff provided project oversight, reviewed the report to ensure that the analysis met methodological standards, and distributed the draft for peer review. Otherwise, AHRQ had no role in the conduct of the study; collection, management, analysis, and interpretation of the data; and preparation, review, or approval of the manuscript findings. The opinions expressed in this document are those of the authors and do not reflect the official position of AHRQ or the US Department of Health and Human Services.

Additional Contributions: We thank the following individuals for their contributions to this project: Pacific Northwest Evidence-based Practice Center Librarian, Tracy Dana, MLS; Agency for Healthcare Research and Quality Medical Officer, Justin Mills, MD, MPH; as well as the US Preventive Services Task Force. We also acknowledge past and current USPSTF members who contributed to topic deliberations. The USPSTF members, external reviewers, and federal partner reviewers did not receive financial compensation for their contributions.

Additional Information: A draft version of this evidence report underwent external peer review from 4 content experts (April Maa, MD, Emory University School of Medicine, Emory Eye Center; Atlanta VA Medical Center; Nancy Weintraub, MD, David Geffen School of Medicine at University of California at Los Angeles; Jennifer Evans, PhD, MSc, London School of Hygiene and Tropical Medicine; and 1 nondisclosed reviewer) and federal partners representing the Centers for Disease Control and Prevention. Comments were presented to the USPSTF during its deliberation of the evidence and were considered in preparing the final evidence report.

Editorial Disclaimer: This evidence report is presented as a document in support of the accompanying USPSTF Recommendation Statement. It did not undergo additional peer review after submission to JAMA.

References
1.
Rodriguez  J , Sanchez  R , Munoz  B ,  et al.  Causes of blindness and visual impairment in a population-based sample of US Hispanics.   Ophthalmology. 2002;109(4):737-743. doi:10.1016/S0161-6420(01)01008-9PubMedGoogle ScholarCrossref
2.
Sommer  A , Tielsch  JM , Katz  J ,  et al.  Relationship between intraocular pressure and primary open angle glaucoma among white and black Americans: the Baltimore Eye Survey.   Arch Ophthalmol. 1991;109(8):1090-1095. doi:10.1001/archopht.1991.01080080050026PubMedGoogle ScholarCrossref
3.
Kwon  M , Huisingh  C , Rhodes  LA , McGwin  G  Jr , Wood  JM , Owsley  C .  Association between glaucoma and at-fault motor vehicle collision involvement among older drivers: a population-based study.   Ophthalmology. 2016;123(1):109-116. doi:10.1016/j.ophtha.2015.08.043PubMedGoogle ScholarCrossref
4.
Vajaranant  TS , Wu  S , Torres  M , Varma  R .  The changing face of primary open-angle glaucoma in the United States: demographic and geographic changes from 2011 to 2050.   Am J Ophthalmol. 2012;154(2):303-314. doi:10.1016/j.ajo.2012.02.024PubMedGoogle ScholarCrossref
5.
Ervin  A-M , Boland  M , Myrowitz  E ,  et al.  Screening for Glaucoma: Comparative Effectiveness. Comparative Effectiveness Review No. 59. Agency for Healthcare Research and Quality; 2013. AHRQ publication 12-EHC037-EF.
6.
Boland  MV , Ervin  AM , Friedman  D ,  et al.  Treatment for Glaucoma: Comparative Effectiveness. Comparative Effectiveness Review No. 60. Agency for Healthcare Research and Quality; 2012. AHRQ publication 12-EHC038-EF.
7.
Boland  MV , Ervin  AM , Friedman  DS ,  et al.  Comparative effectiveness of treatments for open-angle glaucoma: a systematic review for the US Preventive Services Task Force.   Ann Intern Med. 2013;158(4):271-279. doi:10.7326/0003-4819-158-4-201302190-00008PubMedGoogle ScholarCrossref
8.
Chou  R , Selph  SS , Blazina  I ,  et al.  Screening for Glaucoma in Adults: A Systematic Review for the US Preventive Services Task Force. Evidence Synthesis No. 214. Agency for Healthcare Research and Quality; 2020. AHRQ publication 21-05286-EF-1.
9.
US Preventive Services Task Force. US Preventive Services Task Force Procedure Manual. Published 2018. Accessed September 16, 2020. https://www.uspreventiveservicestaskforce.org/uspstf/procedure-manual
10.
Aspberg  J , Heijl  A , Bengtsson  B .  Screening for open-angle glaucoma and its effect on blindness.   Am J Ophthalmol. 2021;228:106-116. doi:10.1016/j.ajo.2021.03.030PubMedGoogle ScholarCrossref
11.
Whiting  PF , Rutjes  AW , Westwood  ME ,  et al; QUADAS-2 Group.  QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies.   Ann Intern Med. 2011;155(8):529-536. doi:10.7326/0003-4819-155-8-201110180-00009PubMedGoogle ScholarCrossref
12.
Higgins  JP , Thompson  SG .  Quantifying heterogeneity in a meta-analysis.   Stat Med. 2002;21(11):1539-1558. doi:10.1002/sim.1186PubMedGoogle ScholarCrossref
13.
Aksoy  FE , Altan  C , Yılmaz  BS ,  et al.  A comparative evaluation of segmental analysis of macular layers in patients with early glaucoma, ocular hypertension, and healthy eyes.   J Fr Ophtalmol. 2020;43(9):869-878. doi:10.1016/j.jfo.2019.12.020PubMedGoogle ScholarCrossref
14.
Aptel  F , Sayous  R , Fortoul  V , Beccat  S , Denis  P .  Structure-function relationships using spectral-domain optical coherence tomography: comparison with scanning laser polarimetry.   Am J Ophthalmol. 2010;150(6):825-833. doi:10.1016/j.ajo.2010.06.011PubMedGoogle ScholarCrossref
15.
Arnould  L , De Lazzer  A , Seydou  A , Binquet  C , Bron  AM , Creuzot-Garcher  C .  Diagnostic ability of spectral-domain optical coherence tomography peripapillary retinal nerve fiber layer thickness to discriminate glaucoma patients from controls in an elderly population (the MONTRACHET study).   Acta Ophthalmol. 2020;98(8):e1009-e1016. doi:10.1111/aos.14448PubMedGoogle ScholarCrossref
16.
Asrani  S , Bacharach  J , Holland  E ,  et al.  Fixed-dose combination of netarsudil and latanoprost in ocular hypertension and open-angle glaucoma: pooled efficacy/safety analysis of phase 3 MERCURY-1 and -2.   Adv Ther. 2020;37(4):1620-1631. doi:10.1007/s12325-020-01277-2PubMedGoogle ScholarCrossref
17.
Asrani  S , Robin  AL , Serle  JB ,  et al; MERCURY-1 Study Group.  Netarsudil/latanoprost fixed-dose combination for elevated intraocular pressure: three-month data from a randomized phase 3 trial.   Am J Ophthalmol. 2019;207:248-257. doi:10.1016/j.ajo.2019.06.016PubMedGoogle ScholarCrossref
18.
Azuara-Blanco  A , Banister  K , Boachie  C ,  et al.  Automated imaging technologies for the diagnosis of glaucoma: a comparative diagnostic study for the evaluation of the diagnostic accuracy, performance as triage tests and cost-effectiveness (GATE study).   Health Technol Assess. 2016;20(8):1-168. doi:10.3310/hta20080PubMedGoogle ScholarCrossref
19.
Bagga  H , Feuer  WJ , Greenfield  DS .  Detection of psychophysical and structural injury in eyes with glaucomatous optic neuropathy and normal standard automated perimetry.   Arch Ophthalmol. 2006;124(2):169-176. doi:10.1001/archopht.124.2.169PubMedGoogle ScholarCrossref
20.
Banister  K , Boachie  C , Bourne  R ,  et al.  Can automated imaging for optic disc and retinal nerve fiber layer analysis aid glaucoma detection?   Ophthalmology. 2016;123(5):930-938. doi:10.1016/j.ophtha.2016.01.041PubMedGoogle ScholarCrossref
21.
Bensinger  RE , Keates  EU , Gofman  JD , Novack  GD , Duzman  E .  Levobunolol: a three-month efficacy study in the treatment of glaucoma and ocular hypertension.   Arch Ophthalmol. 1985;103(3):375-378. doi:10.1001/archopht.1985.01050030071024PubMedGoogle ScholarCrossref
22.
Bergstrand  IC , Heijl  A , Harris  A .  Dorzolamide and ocular blood flow in previously untreated glaucoma patients: a controlled double-masked study.   Acta Ophthalmol Scand. 2002;80(2):176-182. doi:10.1034/j.1600-0420.2002.800211.xPubMedGoogle ScholarCrossref
23.
Blumberg  DM , De Moraes  CG , Liebmann  JM ,  et al.  Technology and the glaucoma suspect.   Invest Ophthalmol Vis Sci. 2016;57(9):OCT80-5. doi:10.1167/iovs.15-18931PubMedGoogle ScholarCrossref
24.
Bonomi  L , Marchini  G , Marraffa  M , Morbio  R .  The relationship between intraocular pressure and glaucoma in a defined population: data from the Egna-Neumarkt Glaucoma Study.   Ophthalmologica. 2001;215(1):34-38. doi:10.1159/000050823PubMedGoogle ScholarCrossref
25.
Brubaker  JW , Teymoorian  S , Lewis  RA ,  et al.  One year of netarsudil and latanoprost fixed-dose combination for elevated intraocular pressure: phase 3, randomized MERCURY-1 study.   Ophthalmol Glaucoma. 2020;3(5):327-338. doi:10.1016/j.ogla.2020.05.008PubMedGoogle ScholarCrossref
26.
Casado  A , Cerveró  A , López-de-Eguileta  A ,  et al.  Topographic correlation and asymmetry analysis of ganglion cell layer thinning and the retinal nerve fiber layer with localized visual field defects.   PLoS One. 2019;14(9):e0222347. doi:10.1371/journal.pone.0222347PubMedGoogle ScholarCrossref
27.
Chan  MPY , Broadway  DC , Khawaja  AP ,  et al.  Glaucoma and intraocular pressure in EPIC-Norfolk Eye Study: cross sectional study.   BMJ. 2017;358:j3889. doi:10.1136/bmj.j3889PubMedGoogle ScholarCrossref
28.
Charalel  RA , Lin  HS , Singh  K .  Glaucoma screening using relative afferent pupillary defect.   J Glaucoma. 2014;23(3):169-173. doi:10.1097/IJG.0b013e31826a9742PubMedGoogle ScholarCrossref
29.
Choudhari  NS , George  R , Baskaran  M , Ve  RS , Raju  P , Vijaya  L .  Can intraocular pressure asymmetry indicate undiagnosed primary glaucoma? the Chennai Glaucoma Study.   J Glaucoma. 2013;22(1):31-35. doi:10.1097/IJG.0b013e31822af25fPubMedGoogle ScholarCrossref
30.
Cifuentes-Canorea  P , Ruiz-Medrano  J , Gutierrez-Bonet  R ,  et al.  Analysis of inner and outer retinal layers using spectral domain optical coherence tomography automated segmentation software in ocular hypertensive and glaucoma patients.   PLoS One. 2018;13(4):e0196112. doi:10.1371/journal.pone.0196112PubMedGoogle ScholarCrossref
31.
Cumming  RG , Ivers  R , Clemson  L ,  et al.  Improving vision to prevent falls in frail older people: a randomized trial.   J Am Geriatr Soc. 2007;55(2):175-181. doi:10.1111/j.1532-5415.2007.01046.xPubMedGoogle ScholarCrossref
32.
Dabasia  PL , Fidalgo  BR , Edgar  DF , Garway-Heath  DF , Lawrenson  JG .  Diagnostic accuracy of technologies for glaucoma case-finding in a community setting.   Ophthalmology. 2015;122(12):2407-2415. doi:10.1016/j.ophtha.2015.08.019PubMedGoogle ScholarCrossref
33.
Danesh-Meyer  HV , Gaskin  BJ , Jayusundera  T , Donaldson  M , Gamble  GD .  Comparison of disc damage likelihood scale, cup to disc ratio, and Heidelberg retina tomograph in the diagnosis of glaucoma.   Br J Ophthalmol. 2006;90(4):437-441. doi:10.1136/bjo.2005.077131PubMedGoogle ScholarCrossref
34.
Deshpande  G , Gupta  R , Bawankule  P ,  et al.  Structural evaluation of preperimetric and perimetric glaucoma.   Indian J Ophthalmol. 2019;67(11):1843-1849. doi:10.4103/ijo.IJO_1955_18PubMedGoogle ScholarCrossref
35.
Deshpande  GA , Bawankule  PK , Raje  DV , Chakraborty  M .  Linear discriminant score for differentiating early primary open angle glaucoma from glaucoma suspects.   Indian J Ophthalmol. 2019;67(1):75-81. doi:10.4103/ijo.IJO_678_18PubMedGoogle ScholarCrossref
36.
Ehrlich  JR , Radcliffe  NM , Shimmyo  M .  Goldmann applanation tonometry compared with corneal-compensated intraocular pressure in the evaluation of primary open-angle glaucoma.   BMC Ophthalmol. 2012;12:52. doi:10.1186/1471-2415-12-52PubMedGoogle ScholarCrossref
37.
Epstein  DL , Krug  JH  Jr , Hertzmark  E , Remis  LL , Edelstein  DJ .  A long-term clinical trial of timolol therapy versus no treatment in the management of glaucoma suspects.   Ophthalmology. 1989;96(10):1460-1467. doi:10.1016/S0161-6420(89)32688-1PubMedGoogle ScholarCrossref
38.
Field  MG , Alasil  T , Baniasadi  N ,  et al.  Facilitating glaucoma diagnosis with intereye retinal nerve fiber layer asymmetry using spectral-domain optical coherence tomography.   J Glaucoma. 2016;25(2):167-176. doi:10.1097/IJG.0000000000000080PubMedGoogle ScholarCrossref
39.
Francis  BA , Varma  R , Vigen  C ,  et al; Los Angeles Latino Eye Study Group.  Population and high-risk group screening for glaucoma: the Los Angeles Latino Eye Study.   Invest Ophthalmol Vis Sci. 2011;52(9):6257-6264. doi:10.1167/iovs.09-5126PubMedGoogle ScholarCrossref
40.
Garas  A , Vargha  P , Holló  G .  Diagnostic accuracy of nerve fibre layer, macular thickness and optic disc measurements made with the RTVue-100 optical coherence tomograph to detect glaucoma.   Eye (Lond). 2011;25(1):57-65. doi:10.1038/eye.2010.139PubMedGoogle ScholarCrossref
41.
Garway-Heath  DF , Crabb  DP , Bunce  C ,  et al.  Latanoprost for open-angle glaucoma (UKGTS): a randomised, multicentre, placebo-controlled trial.   Lancet. 2015;385(9975):1295-1304. doi:10.1016/S0140-6736(14)62111-5PubMedGoogle ScholarCrossref
42.
Gazzard  G , Konstantakopoulou  E , Garway-Heath  D ,  et al; LiGHT Trial Study Group.  Selective laser trabeculoplasty versus eye drops for first-line treatment of ocular hypertension and glaucoma (LiGHT): a multicentre randomised controlled trial.   Lancet. 2019;393(10180):1505-1516. doi:10.1016/S0140-6736(18)32213-XPubMedGoogle ScholarCrossref
43.
Gazzard  G , Konstantakopoulou  E , Garway-Heath  D ,  et al.  Selective laser trabeculoplasty versus drops for newly diagnosed ocular hypertension and glaucoma: the LiGHT RCT.   Health Technol Assess. 2019;23(31):1-102. doi:10.3310/hta23310PubMedGoogle ScholarCrossref
44.
Gordon  MO , Kass  MA .  The Ocular Hypertension Treatment Study: design and baseline description of the participants.   Arch Ophthalmol. 1999;117(5):573-583. doi:10.1001/archopht.117.5.573PubMedGoogle ScholarCrossref
45.
Hammond  EA , Begley  PK .  Screening for glaucoma: a comparison of ophthalmoscopy and tonometry.   Nurs Res. 1979;28(6):371-372. doi:10.1097/00006199-197911000-00024PubMedGoogle ScholarCrossref
46.
Hark  LA , Myers  JS , Ines  A ,  et al.  Philadelphia Telemedicine Glaucoma Detection and Follow-up Study: confirmation between eye screening and comprehensive eye examination diagnoses.   Br J Ophthalmol. 2019;103(12):1820-1826. doi:10.1136/bjophthalmol-2018-313451PubMedGoogle ScholarCrossref
47.
Hark  LA , Myers  JS , Pasquale  LR ,  et al.  Philadelphia telemedicine glaucoma detection and follow-up study: intraocular pressure measurements found in a population at high risk for glaucoma.   J Glaucoma. 2019;28(4):294-301. doi:10.1097/IJG.0000000000001207PubMedGoogle ScholarCrossref
48.
Heijl  A , Bengtsson  B .  Long-term effects of timolol therapy in ocular hypertension: a double-masked, randomised trial.   Graefes Arch Clin Exp Ophthalmol. 2000;238(11):877-883. doi:10.1007/s004170000189PubMedGoogle ScholarCrossref
49.
Hong  S , Ahn  H , Ha  SJ , Yeom  HY , Seong  GJ , Hong  YJ .  Early glaucoma detection using the Humphrey Matrix Perimeter, GDx VCC, Stratus OCT, and retinal nerve fiber layer photography.   Ophthalmology. 2007;114(2):210-215. doi:10.1016/j.ophtha.2006.09.021PubMedGoogle ScholarCrossref
50.
Ivers  RQ , Optom  B , Macaskill  P ,  et al.  Sensitivity and specificity of tests to detect eye disease in an older population.   Ophthalmology. 2001;108(5):968-975. doi:10.1016/s0161-6420(00)00649-7PubMedGoogle ScholarCrossref
51.
Jones  L , Garway-Heath  DF , Azuara-Blanco  A , Crabb  DP ; United Kingdom Glaucoma Treatment Study Investigators.  Are patient self-reported outcome measures sensitive enough to be used as end points in clinical trials? evidence from the United Kingdom Glaucoma Treatment Study.   Ophthalmology. 2019;126(5):682-689. doi:10.1016/j.ophtha.2018.09.034PubMedGoogle ScholarCrossref
52.
Kahook  MY , Serle  JB , Mah  FS ,  et al; ROCKET-2 Study Group.  Long-term safety and ocular hypotensive efficacy evaluation of netarsudil ophthalmic solution: rho kinase elevated IOP treatment trial (ROCKET-2).   Am J Ophthalmol. 2019;200(200):130-137. doi:10.1016/j.ajo.2019.01.003PubMedGoogle ScholarCrossref
53.
Kamal  D , Garway-Heath  D , Ruben  S ,  et al.  Results of the betaxolol versus placebo treatment trial in ocular hypertension.   Graefes Arch Clin Exp Ophthalmol. 2003;241(3):196-203. doi:10.1007/s00417-002-0614-4PubMedGoogle ScholarCrossref
54.
Karvonen  E , Stoor  K , Luodonpää  M ,  et al.  Diagnostic performance of modern imaging instruments in glaucoma screening.   Br J Ophthalmol. 2020;104(10):1399-1405. doi:10.1136/bjophthalmol-2019-314795PubMedGoogle ScholarCrossref
55.
Kass  MA , Gordon  MO , Hoff  MR ,  et al.  Topical timolol administration reduces the incidence of glaucomatous damage in ocular hypertensive individuals: a randomized, double-masked, long-term clinical trial.   Arch Ophthalmol. 1989;107(11):1590-1598. doi:10.1001/archopht.1989.01070020668025PubMedGoogle ScholarCrossref
56.
Kass  MA , Heuer  DK , Higginbotham  EJ ,  et al.  The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma.   Arch Ophthalmol. 2002;120(6):701-713. doi:10.1001/archopht.120.6.701PubMedGoogle ScholarCrossref
57.
Katz  J , Tielsch  JM , Quigley  HA , Javitt  J , Witt  K , Sommer  A .  Automated suprathreshold screening for glaucoma: the Baltimore Eye Survey.   Invest Ophthalmol Vis Sci. 1993;34(12):3271-3277.PubMedGoogle Scholar
58.
Kaushik  S , Kataria  P , Jain  V ,  et al.  Evaluation of macular ganglion cell analysis compared to retinal nerve fiber layer thickness for preperimetric glaucoma diagnosi s.  Indian J Ophthalmol. 2018;66(4):511-516. doi:10.4103/ijo.IJO_1039_17PubMedGoogle ScholarCrossref
59.
Kaushik  S , Singh Pandav  S , Ichhpujani  P , Gupta  A , Gupta  P .  Retinal nerve fiber layer measurement and diagnostic capability of spectral-domain versus time-domain optical coherence tomography.   Eur J Ophthalmol. 2011;21(5):566-572. doi:10.5301/EJO.2011.6289PubMedGoogle ScholarCrossref
60.
Khouri  AS , Serle  JB , Bacharach  J ,  et al; Rocket-4 Study Group.  Once-daily netarsudil versus twice-daily timolol in patients with elevated intraocular pressure: the randomized phase 3 ROCKET-4 study.   Am J Ophthalmol. 2019;204:97-104. doi:10.1016/j.ajo.2019.03.002PubMedGoogle ScholarCrossref
61.
Kiddee  W , Tantisarasart  T , Wangsupadilok  B .  Performance of optical coherence tomography for distinguishing between normal eyes, glaucoma suspect and glaucomatous eyes.   J Med Assoc Thai. 2013;96(6):689-695.PubMedGoogle Scholar
62.
Kim  SY , Park  HY , Park  CK .  The effects of peripapillary atrophy on the diagnostic ability of Stratus and Cirrus OCT in the analysis of optic nerve head parameters and disc size.   Invest Ophthalmol Vis Sci. 2012;53(8):4475-4484. doi:10.1167/iovs.12-9682PubMedGoogle ScholarCrossref
63.
Koh  V , Tham  YC , Cheung  CY ,  et al.  Diagnostic accuracy of macular ganglion cell-inner plexiform layer thickness for glaucoma detection in a population-based study: comparison with optic nerve head imaging parameters.   PLoS One. 2018;13(6):e0199134. doi:10.1371/journal.pone.0199134PubMedGoogle ScholarCrossref
64.
Kozobolis  VP , Detorakis  ET , Tsilimbaris  M , Siganos  DS , Vlachonikolis  IG , Pallikaris  IG .  Crete, Greece glaucoma study.   J Glaucoma. 2000;9(2):143-149. doi:10.1097/00061198-200004000-00003PubMedGoogle ScholarCrossref
65.
Lai  JS , Chua  JK , Tham  CC , Lam  DS .  Five-year follow up of selective laser trabeculoplasty in Chinese eyes.   Clin Exp Ophthalmol. 2004;32(4):368-372. doi:10.1111/j.1442-9071.2004.00839.xPubMedGoogle ScholarCrossref
66.
Lee  KM , Lee  EJ , Kim  TW , Kim  H .  Comparison of the abilities of SD-OCT and SS-OCT in evaluating the thickness of the macular inner retinal layer for glaucoma diagnosis.   PLoS One. 2016;11(1):e0147964. doi:10.1371/journal.pone.0147964PubMedGoogle ScholarCrossref
67.
Lee  WJ , Na  KI , Kim  YK , Jeoung  JW , Park  KH .  Diagnostic ability of wide-field retinal nerve fiber layer maps using swept-source optical coherence tomography for detection of preperimetric and early perimetric glaucoma.   J Glaucoma. 2017;26(6):577-585. doi:10.1097/IJG.0000000000000662PubMedGoogle ScholarCrossref
68.
Lee  WJ , Oh  S , Kim  YK ,  et al.  Comparison of glaucoma-diagnostic ability between wide-field swept-source OCT retinal nerve fiber layer maps and spectral-domain OCT.   Eye. 2018;32(9):1483-1492. doi:10.1038/s41433-018-0104-5PubMedGoogle ScholarCrossref
69.
Leibowitz  HM , Krueger  DE , Maunder  LR ,  et al.  The Framingham Eye Study monograph: an ophthalmological and epidemiological study of cataract, glaucoma, diabetic retinopathy, macular degeneration, and visual acuity in a general population of 2631 adults, 1973-1975.   Surv Ophthalmol. 1980;24(suppl):335-610.PubMedGoogle Scholar
70.
Liu  S , Lam  S , Weinreb  RN ,  et al.  Comparison of standard automated perimetry, frequency-doubling technology perimetry, and short-wavelength automated perimetry for detection of glaucoma.   Invest Ophthalmol Vis Sci. 2011;52(10):7325-7331. doi:10.1167/iovs.11-7795PubMedGoogle ScholarCrossref
71.
Maa  AY , Evans  C , DeLaune  WR , Patel  PS , Lynch  MG .  A novel tele-eye protocol for ocular disease detection and access to eye care services.   Telemed J E Health. 2014;20(4):318-323. doi:10.1089/tmj.2013.0185PubMedGoogle ScholarCrossref
72.
Maa  AY , McCord  S , Lu  X ,  et al.  The impact of OCT on diagnostic accuracy of the technology-based eye care services protocol: part II of the Technology-Based Eye Care Services Compare Trial.   Ophthalmology. 2020;127(4):544-549. doi:10.1016/j.ophtha.2019.10.025PubMedGoogle ScholarCrossref
73.
Maa  AY , Medert  CM , Lu  X ,  et al.  Diagnostic accuracy of technology-based eye care services: the Technology-based Eye Care Services Compare Trial part I.   Ophthalmology. 2020;127(1):38-44. doi:10.1016/j.ophtha.2019.07.026PubMedGoogle ScholarCrossref
74.
Marraffa  M , Marchini  G , Albertini  R , Bonomi  L .  Comparison of different screening methods for the detection of visual field defects in early glaucoma.   Int Ophthalmol. 1989;13(1-2):43-45. doi:10.1007/BF02028636PubMedGoogle ScholarCrossref
75.
Medeiros  FA , Martin  KR , Peace  J , Scassellati Sforzolini  B , Vittitow  JL , Weinreb  RN .  Comparison of latanoprostene bunod 0.024% and timolol maleate 0.5% in open-angle glaucoma or ocular hypertension: the LUNAR Study.   Am J Ophthalmol. 2016;168:250-259. doi:10.1016/j.ajo.2016.05.012PubMedGoogle ScholarCrossref
76.
Miglior  S , Zeyen  T , Pfeiffer  N , Cunha-Vaz  J , Torri  V , Adamsons  I ; European Glaucoma Prevention Study (EGPS) Group.  Results of the European Glaucoma Prevention Study.   Ophthalmology. 2005;112(3):366-375. doi:10.1016/j.ophtha.2004.11.030PubMedGoogle ScholarCrossref
77.
Miglior  S , Zeyen  T , Pfeiffer  N , Cunha-Vaz  J , Torri  V , Adamsons  I ; European Glaucoma Prevention Study Group.  The European Glaucoma Prevention Study design and baseline description of the participants.   Ophthalmology. 2002;109(9):1612-1621. doi:10.1016/S0161-6420(02)01167-3PubMedGoogle ScholarCrossref
78.
Morejon  A , Mayo-Iscar  A , Martin  R , Ussa  F .  Development of a new algorithm based on FDT Matrix perimetry and SD-OCT to improve early glaucoma detection in primary care.   Clin Ophthalmol. 2018;13:33-42. doi:10.2147/OPTH.S177581PubMedGoogle ScholarCrossref
79.
Mundorf  TK , Zimmerman  TJ , Nardin  GF , Kendall  KS .  Automated perimetry, tonometry, and questionnaire in glaucoma screening.   Am J Ophthalmol. 1989;108(5):505-508. doi:10.1016/0002-9394(89)90425-XPubMedGoogle ScholarCrossref
80.
Nagar  M , Luhishi  E , Shah  N .  Intraocular pressure control and fluctuation: the effect of treatment with selective laser trabeculoplasty.   Br J Ophthalmol. 2009;93(4):497-501. doi:10.1136/bjo.2008.148510PubMedGoogle ScholarCrossref
81.
Nagar  M , Ogunyomade  A , O’Brart  DP , Howes  F , Marshall  J .  A randomised, prospective study comparing selective laser trabeculoplasty with latanoprost for the control of intraocular pressure in ocular hypertension and open angle glaucoma.   Br J Ophthalmol. 2005;89(11):1413-1417. doi:10.1136/bjo.2004.052795PubMedGoogle ScholarCrossref
82.
Park  HY , Park  CK .  Structure-function relationship and diagnostic value of RNFL Area Index compared with circumpapillary RNFL thickness by spectral-domain OCT.   J Glaucoma. 2013;22(2):88-97. doi:10.1097/IJG.0b013e318231202fPubMedGoogle ScholarCrossref
83.
Pazos  M , Dyrda  AA , Biarnes  M ,  et al.  Diagnostic accuracy of spectralis SD OCT automated macular layers segmentation to discriminate normal from early glaucomatous eyes.   Ophthalmology. 2017;124(8):1218-1228. doi:10.1016/j.ophtha.2017.03.044PubMedGoogle ScholarCrossref
84.
Radius  RL .  Use of betaxolol in the reduction of elevated intraocular pressure.   Arch Ophthalmol. 1983;101(6):898-900. doi:10.1001/archopht.1983.01040010898008PubMedGoogle ScholarCrossref
85.
Rao  HL , Yadav  RK , Addepalli  UK ,  et al.  Comparing spectral-domain optical coherence tomography and standard automated perimetry to diagnose glaucomatous optic neuropathy.   J Glaucoma. 2015;24(5):e69-e74. doi:10.1097/IJG.0000000000000048PubMedGoogle ScholarCrossref
86.
Ravalico  G , Salvetat  L , Toffoli  G ,  et al.  Ocular hypertension: a follow-up study in treated and untreated patients.   New Trends Ophthalmol. 1994;9(2):97-101.Google Scholar
87.
Sall  K ; Brinzolamide Primary Therapy Study Group.  The efficacy and safety of brinzolamide 1% ophthalmic suspension (Azopt) as a primary therapy in patients with open-angle glaucoma or ocular hypertension.   Surv Ophthalmol. 2000;44(suppl 2):S155-S162. doi:10.1016/S0039-6257(99)00107-1PubMedGoogle ScholarCrossref
88.
Sarıgül Sezenöz  A , Gür Güngör  S , Akman  A ,  et al.  The diagnostic ability of ganglion cell complex thickness-to-total retinal thickness ratio in glaucoma in a Caucasian population.   Turk J Ophthalmol. 2020;50(1):26-30. doi:10.4274/tjo.galenos.2019.19577PubMedGoogle ScholarCrossref
89.
Schulzer  M , Drance  SM , Douglas  GR .  A comparison of treated and untreated glaucoma suspects.   Ophthalmology. 1991;98(3):301-307. doi:10.1016/S0161-6420(91)32296-6PubMedGoogle ScholarCrossref
90.
Schwartz  B , Lavin  P , Takamoto  T , Araujo  DF , Smits  G .  Decrease of optic disc cupping and pallor of ocular hypertensives with timolol therapy.   Acta Ophthalmol Scand Suppl. 1995;(215):5-21. doi:10.1111/j.1600-0420.1995.tb00588.xPubMedGoogle ScholarCrossref
91.
Schweitzer  C , Korobelnik  JF , Le Goff  M ,  et al.  Diagnostic performance of peripapillary retinal nerve fiber layer thickness for detection of glaucoma in an elderly population: the ALIENOR Study.   Invest Ophthalmol Vis Sci. 2016;57(14):5882-5891. doi:10.1167/iovs.16-20104PubMedGoogle ScholarCrossref
92.
Serle  JB , Katz  LJ , McLaurin  E ,  et al; ROCKET-1 and ROCKET-2 Study Groups.  Two phase 3 clinical trials comparing the safety and efficacy of netarsudil to timolol in patients with elevated intraocular pressure: rho kinase elevated IOP treatment trial 1 and 2 (ROCKET-1 and ROCKET-2).   Am J Ophthalmol. 2018;186:116-127. doi:10.1016/j.ajo.2017.11.019PubMedGoogle ScholarCrossref
93.
Soh  ZD , Chee  ML , Thakur  S ,  et al.  Asian-specific vertical cup-to-disc ratio cut-off for glaucoma screening: an evidence-based recommendation from a multi-ethnic Asian population.   Clin Exp Ophthalmol. 2020;48(9):1210-1218. doi:10.1111/ceo.13836PubMedGoogle ScholarCrossref
94.
Sung  KR , Kim  DY , Park  SB ,  et al.  Comparison of retinal nerve fiber layer thickness measured by Cirrus HD and Stratus optical coherence tomography.   Ophthalmology. 2009;116(7):1264-1270. doi:10.1016/j.ophtha.2008.12.045PubMedGoogle ScholarCrossref
95.
Swamy  B , Cumming  RG , Ivers  R ,  et al.  Vision screening for frail older people: a randomised trial.   Br J Ophthalmol. 2009;93(6):736-741. doi:10.1136/bjo.2007.134650PubMedGoogle ScholarCrossref
96.
Tielsch  JM , Katz  J , Singh  K ,  et al.  A population-based evaluation of glaucoma screening: the Baltimore Eye Survey.   Am J Epidemiol. 1991;134(10):1102-1110. doi:10.1093/oxfordjournals.aje.a116013PubMedGoogle ScholarCrossref
97.
Toris  CB , Camras  CB , Yablonski  ME .  Acute versus chronic effects of brimonidine on aqueous humor dynamics in ocular hypertensive patients.   Am J Ophthalmol. 1999;128(1):8-14. doi:10.1016/S0002-9394(99)00076-8PubMedGoogle ScholarCrossref
98.
Varma  R , Ying-Lai  M , Francis  BA ,  et al; Los Angeles Latino Eye Study Group.  Prevalence of open-angle glaucoma and ocular hypertension in Latinos: the Los Angeles Latino Eye Study.   Ophthalmology. 2004;111(8):1439-1448. doi:10.1016/j.ophtha.2004.01.025PubMedGoogle ScholarCrossref
99.
Vernon  SA , Henry  DJ , Cater  L , Jones  SJ .  Screening for glaucoma in the community by non-ophthalmologically trained staff using semi automated equipment.   Eye (Lond). 1990;4(pt 1):89-97. doi:10.1038/eye.1990.10PubMedGoogle ScholarCrossref
100.
Vidas  S , Popović-Suić  S , Novak Lauš  K ,  et al.  Analysis of ganglion cell complex and retinal nerve fiber layer thickness in glaucoma diagnosis.   Acta Clin Croat. 2017;56(3):382-390. doi:10.20471/acc.2017.56.03.04PubMedGoogle ScholarCrossref
101.
Virgili  G , Michelessi  M , Cook  J ,  et al.  Diagnostic accuracy of optical coherence tomography for diagnosing glaucoma: secondary analyses of the GATE study.   Br J Ophthalmol. 2018;102(5):604-610. doi:10.1136/bjophthalmol-2017-310642PubMedGoogle ScholarCrossref
102.
Wahl  J , Barleon  L , Morfeld  P , Lichtmeß  A , Haas-Brähler  S , Pfeiffer  N .  The Evonik-Mainz Eye Care Study (EMECS): development of an expert system for glaucoma risk detection in a working population.   PLoS One. 2016;11(8):e0158824. doi:10.1371/journal.pone.0158824PubMedGoogle ScholarCrossref
103.
Weinreb  RN , Liebmann  JM , Martin  KR , Kaufman  PL , Vittitow  JL .  Latanoprostene bunod 0.024% in subjects with open-angle glaucoma or ocular hypertension: pooled phase 3 study findings.   J Glaucoma. 2018;27(1):7-15. doi:10.1097/IJG.0000000000000831PubMedGoogle ScholarCrossref
104.
Weinreb  RN , Ong  T , Scassellati Sforzolini  B , Vittitow  JL , Singh  K , Kaufman  PL ; VOYAGER Study Group.  A randomised, controlled comparison of latanoprostene bunod and latanoprost 0.005% in the treatment of ocular hypertension and open angle glaucoma: the VOYAGER study.   Br J Ophthalmol. 2015;99(6):738-745. doi:10.1136/bjophthalmol-2014-305908PubMedGoogle ScholarCrossref
105.
Weinreb  RN , Scassellati Sforzolini  B , Vittitow  J , Liebmann  J .  Latanoprostene bunod 0.024% versus timolol maleate 0.5% in subjects with open-angle glaucoma or ocular hypertension: the APOLLO Study.   Ophthalmology. 2016;123(5):965-973. doi:10.1016/j.ophtha.2016.01.019PubMedGoogle ScholarCrossref
106.
Wilkerson  M , Cyrlin  M , Lippa  EA ,  et al.  Four-week safety and efficacy study of dorzolamide, a novel, active topical carbonic anhydrase inhibitor.   Arch Ophthalmol. 1993;111(10):1343-1350. doi:10.1001/archopht.1993.01090100051026PubMedGoogle ScholarCrossref
107.
Wishart  PK , Batterbury  M .  Ocular hypertension: correlation of anterior chamber angle width and risk of progression to glaucoma.   Eye (Lond). 1992;6(pt 3):248-256. doi:10.1038/eye.1992.48PubMedGoogle ScholarCrossref
108.
Xu  X , Xiao  H , Guo  X ,  et al.  Diagnostic ability of macular ganglion cell-inner plexiform layer thickness in glaucoma suspects.   Medicine (Baltimore). 2017;96(51):e9182. doi:10.1097/MD.0000000000009182PubMedGoogle ScholarCrossref
109.
Alibhai  AY , Or  C , Witkin  AJ .  Swept source optical coherence tomography: a review.   Curr Ophthalmol Rep. 2018;6(1):7-16. doi:10.1007/s40135-018-0158-3Google ScholarCrossref
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
Close
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close

Name Your Search

Save Search
Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Close

Lookup An Activity

or

Close

My Saved Searches

You currently have no searches saved.

Close

My Saved Courses

You currently have no courses saved.

Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close