[Skip to Content]
[Skip to Content Landing]

Efficacy and Safety Considerations With Dose-Reduced Direct Oral AnticoagulantsA Review

To identify the key insights or developments described in this article
1 Credit CME
Abstract

Importance  Dose-reduced regimens of direct oral anticoagulants (DOACs) may be used for 2 main purposes: dose-adjusted treatment intended as full-intensity anticoagulation (eg, for stroke prevention in atrial fibrillation [AF] in patients requiring dose reduction) or low-intensity treatment (eg, extended-duration treatment of venous thromboembolism [VTE]). We reviewed randomized clinical trials (RCTs) to understand the scenarios in which dose-adjusted or low-intensity DOACs were tested and reviewed the labeled indications by regulatory authorities, using data from large registries to assess whether the use of dose-reduced DOACs in routine practice aligned with the findings of RCTs.

Observations  Among 4191 screened publications, 35 RCTs that used dose-adjusted DOACs were identified for dabigatran, apixaban, rivaroxaban, and edoxaban. Of these 35 RCTs, 29 were related to stroke prevention in AF. Efficacy and safety results for dose-adjusted DOACs in large RCTs of AF were similar to those found for full-dose DOACs. To our knowledge, dabigatran, apixaban, and rivaroxaban have not been studied as dose-adjusted therapy for acute VTE treatment. Low-intensity DOACs were identified in 37 RCTs. Low-intensity DOACs may be used for extended-duration treatment of VTE (apixaban and rivaroxaban), primary prevention in orthopedic surgeries (dabigatran, apixaban, and rivaroxaban), primary prevention in ambulatory high-risk cancer patients (apixaban and rivaroxaban) or (postdischarge) high-risk medical patients (rivaroxaban), in stable atherosclerotic vascular disease, or after a recent revascularization for peripheral artery disease in conjunction with aspirin (rivaroxaban). Minor variations exist between regulatory authorities in different regions regarding criteria for dose adjustment of DOACs. Data from large registries indicated that dose-reduced DOACs were used occasionally with doses or for clinical scenarios different from those studied in RCTs or recommended by regulatory authorities.

Conclusions and Relevance  Dose adjustment and low-intensity treatment are 2 different forms of dose-reduced DOACs. Dose adjustment is mostly relevant for AF and should be done based on the approved criteria. Dose adjustment of DOACs should not be used for acute VTE treatment in most cases. In contrast, low-intensity DOACs may be used for primary or secondary VTE prevention for studied and approved indications. Attention should be given to routine practice patterns to align the daily clinical practice with existing evidence of safety and efficacy.

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 Credit(s)™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

CME Disclosure Statement: Unless noted, all individuals in control of content reported no relevant financial relationships. If applicable, all relevant financial relationships have been mitigated.

Article Information

Accepted for Publication: April 12, 2022.

Published Online: June 1, 2022. doi:10.1001/jamacardio.2022.1292

Correction: This article was corrected on July 1, 2022, to fix the logos in the Figure.

Corresponding Author: Behnood Bikdeli, MD, MS, Cardiovascular Medicine Division, Brigham and Women’s Hospital, 75 Francis St, Boston, MA 02115 (bbikdeli@bwh.harvard.edu; Behnood.bikdeli@yale.edu).

Author Contributions: Drs Bikdeli and Zahedi Tajrishi had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: Bikdeli, Zahedi Tajrishi, Sadeghipour, Talasaz, Fanikos, Lippi, Eikelboom, Connors, Parikh, Lopes, Mehran, Lip.

Acquisition, analysis, or interpretation of data: Bikdeli, Zahedi Tajrishi, Sadeghipour, Talasaz, Fanikos, Lippi, Siegal, Eikelboom, Monreal, Jimenez, Ageno, Barnes, Piazza, Angiolillo, Kirtane, Lopes, Bhatt, Weitz, Mehran, Krumholz, Goldhaber.

Drafting of the manuscript: Bikdeli, Zahedi Tajrishi, Sadeghipour, Talasaz, Fanikos, Lippi, Siegal, Parikh, Lip.

Critical revision of the manuscript for important intellectual content: Bikdeli, Zahedi Tajrishi, Sadeghipour, Talasaz, Fanikos, Siegal, Eikelboom, Monreal, Jimenez, Connors, Ageno, Barnes, Piazza, Angiolillo, Parikh, Kirtane, Lopes, Bhatt, Weitz, Mehran, Krumholz, Goldhaber, Lip.

Statistical analysis: Eikelboom, Jimenez.

Administrative, technical, or material support: Bikdeli, Zahedi Tajrishi, Fanikos.

Supervision: Bikdeli, Fanikos, Monreal, Ageno, Barnes, Piazza, Angiolillo, Mehran, Goldhaber, Lip.

Conflict of Interest Disclosures: Dr Bikdeli is supported by the IGNITE Award from the Mary Horrigan Connors Center for Women’s Health and Gender Biology at Brigham and Women’s Hospital and a Career Development Award from the American Heart Association outside the submitted work and is a consulting expert on behalf of the plaintiff for litigation related to 2 specific brand models of inferior vena cava filters. Dr Siegal reported honoraria paid to institution for educational presentation from Bristol Myers Squibb/Pfizer, Servier, and Roche and personal fees from Portola outside the submitted work. Dr Eikelboom reported grant support and personal fees from Bayer, Boehringer Ingelheim, Bristol Myers Squibb/Pfizer, Daiichi Sankyo, Janssen, Sanofi, and Eli Lilly and personal fees from AstraZeneca, Merck, and GlaxoSmithKline during the conduct of the study; personal fees from AstraZeneca, Daiichi Sankyo, and GlaxoSmithKline; and grant support and personal fees from Bayer, Boehringer Ingelheim, Bristol Myers Squibb/Pfizer, Janssen, Sanofi, Merck, and Eli Lilly outside the submitted work. Dr Monreal reported grants from Sanofi, Rovi, and Leo Pharma and personal fees from Pfizer during the conduct of the study and grants from Sanofi, Rovi, and Leo Pharma outside the submitted work. Dr Jimenez reported personal fees from Bayer and Bristol Myers Squibb and grants from Daiichi Sankyo, Leo Pharma, Rovi, and Sanofi during the conduct of the study. Dr Connors reported personal fees from Bristol Myers Squibb, Abbott, Anthos, Alnylam, Pfizer, Roche, and Sanofi and grants from CSL Behring paid to institution outside the submitted work. Dr Ageno reported grants from Bayer and personal fees from Bristol Myers Squibb/Pfizer, Norgine, Sanofi, Leo Pharma, and Werfen outside the submitted work. Dr Barnes reported personal fees from Pfizer, Bristol Myers Squibb, and Janssen during the conduct of the study and personal fees from Acelis and grants from Boston Scientific outside the submitted work. Dr Piazza reported grants from Bristol Myers Squibb/Pfizer, Janssen, Boston Scientific, Bayer, Alexion, and Amgen outside the submitted work. Dr Angiolillo reported individual consulting fees or honoraria from Abbott, Amgen, AstraZeneca, Bayer, Biosensors, Boehringer Ingelheim, Bristol Myers Squibb, Chiesi, Daiichi Sankyo, Eli Lilly, Haemonetics, Janssen, Merck, PhaseBio, PLx Pharma, Pfizer, and Sanofi and institutional grants from Amgen, AstraZeneca, Bayer, Biosensors, CeloNova, CSL Behring, Daiichi Sankyo, Eisai, Eli Lilly, Gilead, Idorsia, Janssen, Matsutani Chemical Industry Co, Merck, Novartis, Osprey Medical, Renal Guard Solutions, and the Scott R. MacKenzie Foundation. Dr Parikh reported grants from Abbott Vascular, Boston Scientific, Surmodics, TriReme, Veryan, Shockwave, and Acotec and personal fees from Janssen, Medtronic, Philips, Cordis, Terumo, Abiomed, Penumbra, and Inari outside the submitted work. Dr Kirtane reported institutional funding to Columbia University and/or Cardiovascular Research Foundation from Medtronic, Boston Scientific, Abbott Vascular, Amgen, Cardiovascular Systems, Inc, Philips, ReCor Medical, Neurotronic, Biotronik, Chiesi, Bolt Medical, Magenta Medical, Canon, and SoniVie and personal fees from Interventional Medical Device Solutions, Medtronic, Boston Scientific, Abbott Vascular, Cardiovascular Systems, Inc, Siemens, Philips, ReCor Medical, Chiesi, OpSens, Zoll, and Regeneron. Dr Bhatt reported grants from Amarin, AstraZeneca, Bristol Myers Squibb, Eisai, Ethicon, Medtronic, Sanofi Aventis, The Medicines Company, Roche, Pfizer, Forest Laboratories/AstraZeneca, Ischemix, PhaseBio, Boston Scientific, Amgen, Eli Lilly, Chiesi, Ironwood, Merck, Abbott, Regeneron, Idorsia, Synaptic, Boehringer Ingelheim, Novo Nordisk, Fractyl, Cereno Scientific, Afimmune, Ferring Pharmaceuticals, Lexicon, Contego Medical, CellProthera, MyoKardia/BMS, Owkin, HLS Therapeutics, Janssen, 89Bio, Novo Nordisk, Garmin, Novartis, NirvaMed, Stasys, Faraday Pharmaceuticals, Javelin, Reid Hoffman Foundation, Moderna, Beren, Aker Biomarine, Recardio, and Acesion Pharma; other support from FlowCo, PLx Pharma, Takeda, American College of Cardiology, Regado Biosciences, Boston Veteran Administration Research Institute, Society of Cardiovascular Patient Care, American Heart Association, Clinical Cardiology, Veterans Affairs Administration, St Jude Medical (now Abbott), Biotronik, Svelte, Cardiovascular Systems, Inc, and Philips; and personal fees from Duke Clinical Research Institute, Mayo Clinic, Population Health Research Institute, Belvoir Publications, Slack Publications, WebMD, Elsevier, Medscape Cardiology, HMP Global, Harvard Clinical Research Institute (now Baim Institute for Clinical Research), Journal of the American College of Cardiology, Cleveland Clinic, Mount Sinai School of Medicine, Cardax, TobeSoft, Bayer, Medtelligence/ReachMD, CSL Behring, MJH Life Sciences, Level Ex, K2P, Canadian Medical and Surgical Knowledge Translation Research Group, Arnold and Porter Law Firm, Piper Sandler, and Cowen and Company, Doctors Linq, Assistance Publique-Hôpitaux de Paris, and Rutgers University outside the submitted work. Dr Weitz reported personal fees from Bayer, Boehringer Ingelheim, Bristol Myers Squibb, Daiichi Sankyo, Ionis, Janssen, Merck, Novartis, and Pfizer outside the submitted work. Dr Mehran reports institutional research payments from Abbott, Abiomed, Alleviant Medical, AM-Pharma, Applied Therapeutics, Arena, AstraZeneca, Bayer, Biosensors, Biotronik, Boston Scientific, Bristol-Myers Squibb, CardiaWave, CellAegis, CeloNova, Chiesi, Concept Medical, CSL Behring, Cytosorbents, Daiichi Sankyo, Element Science, Faraday, Humacyte, Idorsia, Magenta, Medtronic, Novartis, OrbusNeich, Philips, RenalPro, Vivasure, Zoll; personal fees from Cine-Med Research, WebMD; consulting fees paid to the institution from Abbott, Janssen, Medtronic, Novartis; Equity <1% in Applied Therapeutics, Elixir Medical, Stel, ControlRad (spouse); Scientific Advisory Board service for the American Medical Association, American College of Cardiology (board of trustees member), Society of Cardiovascular Angiography and Interventions (Women in Innovations Committee Member), JAMA Cardiology associate editor; and faculty Cardiovascular Research Foundation (no fee) outside the submitted work. Dr Krumholz reported received expenses and/or personal fees from UnitedHealth, Element Science, Aetna, Reality Labs, Tesseract/4Catalyst, F-Prime, the Siegfried and Jensen Law Firm, Arnold and Porter Law Firm, and Martin/Baughman Law Firm. He is a co-founder of Refactor Health and HugoHealth, and is associated with contracts from the Centers for Medicare & Medicaid Services and from Johnson & Johnson through Yale University. Dr Goldhaber reported grants from Bayer, Boehringer Ingelheim, Bristol Myers Squibb, Boston Scientific, Daiichi Sankyo, Janssen, the National Heart, Lung, and Blood Institute, and the Thrombosis Research Institute and personal fees from Bayer, Agile, Boston Scientific, and Boehringer Ingelheim outside the submitted work. Dr Lip reported serving as a consultant and speaker for Bristol Myers Squibb/Pfizer, Boehringer Ingelheim, and Daiichi Sankyo. No fees are received personally. No other disclosures were reported.

Additional Contributions: We thank Fatemeh Esmaieli, MS, Tehran Heart Center, for help with the figure design. No compensation was received.

References
1.
Schulman  S , Kearon  C , Kakkar  AK ,  et al; RE-COVER Study Group.  Dabigatran versus warfarin in the treatment of acute venous thromboembolism.   N Engl J Med. 2009;361(24):2342-2352. doi:10.1056/NEJMoa0906598 PubMedGoogle ScholarCrossref
2.
Agnelli  G , Buller  HR , Cohen  A ,  et al; AMPLIFY Investigators.  Oral apixaban for the treatment of acute venous thromboembolism.   N Engl J Med. 2013;369(9):799-808. doi:10.1056/NEJMoa1302507 PubMedGoogle ScholarCrossref
3.
Bauersachs  R , Berkowitz  SD , Brenner  B ,  et al; EINSTEIN Investigators.  Oral rivaroxaban for symptomatic venous thromboembolism.   N Engl J Med. 2010;363(26):2499-2510. doi:10.1056/NEJMoa1007903 PubMedGoogle ScholarCrossref
4.
Büller  HR , Prins  MH , Lensin  AW ,  et al; EINSTEIN–PE Investigators.  Oral rivaroxaban for the treatment of symptomatic pulmonary embolism.   N Engl J Med. 2012;366(14):1287-1297. doi:10.1056/NEJMoa1113572 PubMedGoogle ScholarCrossref
5.
Büller  HR , Décousus  H , Grosso  MA ,  et al; Hokusai-VTE Investigators.  Edoxaban versus warfarin for the treatment of symptomatic venous thromboembolism.   N Engl J Med. 2013;369(15):1406-1415. doi:10.1056/NEJMoa1306638 PubMedGoogle ScholarCrossref
6.
Kearon  C , Akl  EA , Ornelas  J ,  et al.  Antithrombotic therapy for VTE disease: CHEST guideline and expert panel report.   Chest. 2016;149(2):315-352. doi:10.1016/j.chest.2015.11.026 PubMedGoogle ScholarCrossref
7.
Ortel  TL , Neumann  I , Ageno  W ,  et al.  American Society of Hematology 2020 guidelines for management of venous thromboembolism: treatment of deep vein thrombosis and pulmonary embolism.   Blood Adv. 2020;4(19):4693-4738. doi:10.1182/bloodadvances.2020001830 PubMedGoogle ScholarCrossref
8.
Konstantinides  SV , Meyer  G , Becattini  C ,  et al; ESC Scientific Document Group.  2019 ESC guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European Respiratory Society (ERS).   Eur Heart J. 2020;41(4):543-603. doi:10.1093/eurheartj/ehz405 PubMedGoogle ScholarCrossref
9.
Connolly  SJ , Ezekowitz  MD , Yusuf  S ,  et al; RE-LY Steering Committee and Investigators.  Dabigatran versus warfarin in patients with atrial fibrillation.   N Engl J Med. 2009;361(12):1139-1151. doi:10.1056/NEJMoa0905561 PubMedGoogle ScholarCrossref
10.
Patel  MR , Mahaffey  KW , Garg  J ,  et al; ROCKET AF Investigators.  Rivaroxaban versus warfarin in nonvalvular atrial fibrillation.   N Engl J Med. 2011;365(10):883-891. doi:10.1056/NEJMoa1009638 PubMedGoogle ScholarCrossref
11.
Granger  CB , Alexander  JH , McMurray  JJV ,  et al; ARISTOTLE Committees and Investigators.  Apixaban versus warfarin in patients with atrial fibrillation.   N Engl J Med. 2011;365(11):981-992. doi:10.1056/NEJMoa1107039 PubMedGoogle ScholarCrossref
12.
Giugliano  RP , Ruff  CT , Braunwald  E ,  et al; ENGAGE AF-TIMI 48 Investigators.  Edoxaban versus warfarin in patients with atrial fibrillation.   N Engl J Med. 2013;369(22):2093-2104. doi:10.1056/NEJMoa1310907 PubMedGoogle ScholarCrossref
13.
Hindricks  G , Potpara  T , Dagres  N ,  et al; ESC Scientific Document Group.  2020 ESC guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): the task force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC.   Eur Heart J. 2021;42(5):373-498. doi:10.1093/eurheartj/ehaa612 PubMedGoogle ScholarCrossref
14.
January  CT , Wann  LS , Calkins  H ,  et al.  2019 AHA/ACC/HRS focused update of the 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines and the Heart Rhythm Society.   J Am Coll Cardiol. 2019;74(1):104-132. doi:10.1016/j.jacc.2019.01.011 PubMedGoogle ScholarCrossref
15.
Steffel  J , Collins  R , Antz  M ,  et al; External reviewers.  2021 European Heart Rhythm Association practical guide on the use of non-vitamin k antagonist oral anticoagulants in patients with atrial fibrillation.   Europace. 2021;23(10):1612-1676. doi:10.1093/europace/euab065 PubMedGoogle ScholarCrossref
16.
Agnelli  G , Buller  HR , Cohen  A ,  et al; AMPLIFY-EXT Investigators.  Apixaban for extended treatment of venous thromboembolism.   N Engl J Med. 2013;368(8):699-708. doi:10.1056/NEJMoa1207541 PubMedGoogle ScholarCrossref
17.
Schulman  S , Kearon  C , Kakkar  AK ,  et al; RE-MEDY Trial Investigators; RE-SONATE Trial Investigators.  Extended use of dabigatran, warfarin, or placebo in venous thromboembolism.   N Engl J Med. 2013;368(8):709-718. doi:10.1056/NEJMoa1113697 PubMedGoogle ScholarCrossref
18.
Weitz  JI , Lensing  AWA , Prins  MH ,  et al; EINSTEIN CHOICE Investigators.  Rivaroxaban or aspirin for extended treatment of venous thromboembolism.   N Engl J Med. 2017;376(13):1211-1222. doi:10.1056/NEJMoa1700518 PubMedGoogle ScholarCrossref
19.
Eikelboom  JW , Connolly  SJ , Bosch  J ,  et al; COMPASS Investigators.  Rivaroxaban with or without aspirin in stable cardiovascular disease.   N Engl J Med. 2017;377(14):1319-1330. doi:10.1056/NEJMoa1709118 PubMedGoogle ScholarCrossref
20.
Mega  JL , Braunwald  E , Wiviott  SD ,  et al; ATLAS ACS 2–TIMI 51 Investigators.  Rivaroxaban in patients with a recent acute coronary syndrome.   N Engl J Med. 2012;366(1):9-19. doi:10.1056/NEJMoa1112277 PubMedGoogle ScholarCrossref
21.
Eikelboom  JW , Bhatt  DL , Fox  KAA ,  et al.  Mortality benefit of rivaroxaban plus aspirin in patients with chronic coronary or peripheral artery disease.   J Am Coll Cardiol. 2021;78(1):14-23. doi:10.1016/j.jacc.2021.04.083 PubMedGoogle ScholarCrossref
22.
Bonaca  MP , Bauersachs  RM , Anand  SS ,  et al.  Rivaroxaban in peripheral artery disease after revascularization.   N Engl J Med. 2020;382(21):1994-2004. doi:10.1056/NEJMoa2000052 PubMedGoogle ScholarCrossref
23.
Camm  AJ , Cools  F , Virdone  S ,  et al; GARFIELD-AF Investigators.  Mortality in patients with atrial fibrillation receiving nonrecommended doses of direct oral anticoagulants.   J Am Coll Cardiol. 2020;76(12):1425-1436. doi:10.1016/j.jacc.2020.07.045 PubMedGoogle ScholarCrossref
24.
Camporese  G , Simioni  P , Di Micco  P ,  et al; RIETE Investigators.  Edoxaban for the long-term therapy of venous thromboembolism: should the criteria for dose reduction be revised?   Clin Transl Sci. 2021;14(1):335-342. doi:10.1111/cts.12876 PubMedGoogle ScholarCrossref
25.
Trujillo-Santos  J , Beroiz  P , Moustafa  F ,  et al; RIETE Investigators.  Rivaroxaban or apixaban in fragile patients with acute venous thromboembolism.   Thromb Res. 2020;193:160-165. doi:10.1016/j.thromres.2020.06.035 PubMedGoogle ScholarCrossref
26.
Trujillo-Santos  J , Di Micco  P , Dentali  F ,  et al; RIETE Investigators.  Real-life treatment of venous thromboembolism with direct oral anticoagulants: the influence of recommended dosing and regimens.   Thromb Haemost. 2017;117(2):382-389. doi:10.1160/TH16-07-0494 PubMedGoogle ScholarCrossref
27.
Dawson  T , DeCamillo  D , Kong  X ,  et al.  Correcting inappropriate prescribing of direct oral anticoagulants: a population health approach.   J Am Heart Assoc. 2020;9(22):e016949. doi:10.1161/JAHA.120.016949 PubMedGoogle ScholarCrossref
28.
Connolly  SJ , Eikelboom  J , Joyner  C ,  et al; AVERROES Steering Committee and Investigators.  Apixaban in patients with atrial fibrillation.   N Engl J Med. 2011;364(9):806-817. doi:10.1056/NEJMoa1007432PubMedGoogle ScholarCrossref
29.
Lopes  RD , Heizer  G , Aronson  R ,  et al; AUGUSTUS Investigators.  Antithrombotic therapy after acute coronary syndrome or PCI in atrial fibrillation.   N Engl J Med. 2019;380(16):1509-1524. doi:10.1056/NEJMoa1817083 PubMedGoogle ScholarCrossref
30.
Cannon  CP , Bhatt  DL , Oldgren  J ,  et al; RE-DUAL PCI Steering Committee and Investigators.  Dual antithrombotic therapy with dabigatran after PCI in atrial fibrillation.   N Engl J Med. 2017;377(16):1513-1524. doi:10.1056/NEJMoa1708454 PubMedGoogle ScholarCrossref
31.
Hohnloser  SH , Camm  J , Cappato  R ,  et al.  Uninterrupted edoxaban vs. vitamin K antagonists for ablation of atrial fibrillation: the ELIMINATE-AF trial.   Eur Heart J. 2019;40(36):3013-3021. doi:10.1093/eurheartj/ehz190PubMedGoogle ScholarCrossref
32.
Vranckx  P , Valgimigli  M , Eckardt  L ,  et al.  Edoxaban-based versus vitamin K antagonist-based antithrombotic regimen after successful coronary stenting in patients with atrial fibrillation (ENTRUST-AF PCI): a randomised, open-label, phase 3b trial.   Lancet. 2019;394(10206):1335-1343. doi:10.1016/S0140-6736(19)31872-0 PubMedGoogle ScholarCrossref
33.
Hori  M , Matsumoto  M , Tanahashi  N ,  et al; J-ROCKET AF study investigators.  Rivaroxaban vs. warfarin in Japanese patients with atrial fibrillation—the J-ROCKET AF study.   Circ J. 2012;76(9):2104-2111. doi:10.1253/circj.CJ-12-0454 PubMedGoogle ScholarCrossref
34.
Gibson  CM , Mehran  R , Bode  C ,  et al.  Prevention of bleeding in patients with atrial fibrillation undergoing PCI.   N Engl J Med. 2016;375(25):2423-2434. doi:10.1056/NEJMoa1611594 PubMedGoogle ScholarCrossref
35.
Yasuda  S , Kaikita  K , Akao  M ,  et al; AFIRE Investigators.  Antithrombotic therapy for atrial fibrillation with stable coronary disease.   N Engl J Med. 2019;381(12):1103-1113. doi:10.1056/NEJMoa1904143 PubMedGoogle ScholarCrossref
36.
Guimarães  HP , Lopes  RD , de Barros E Silva  PGM ,  et al; RIVER Trial Investigators.  Rivaroxaban in patients with atrial fibrillation and a bioprosthetic mitral valve.   N Engl J Med. 2020;383(22):2117-2126. doi:10.1056/NEJMoa2029603PubMedGoogle ScholarCrossref
37.
De Vriese  AS , Caluwé  R , Van Der Meersch  H , De Boeck  K , De Bacquer  D .  Safety and efficacy of vitamin K antagonists versus rivaroxaban in hemodialysis patients with atrial fibrillation: a multicenter randomized controlled trial.   J Am Soc Nephrol. 2021;32(6):1474-1483. doi:10.1681/ASN.2020111566 PubMedGoogle ScholarCrossref
38.
De Vriese  AS , Caluwé  R , Pyfferoen  D ,  et al.  Multicenter randomized controlled trial of vitamin K antagonist replacement by rivaroxaban with or without vitamin K2 in hemodialysis patients with atrial fibrillation: the Valkyrie study.  J Am Soc Nephrol. 2021;32(6):1474-1483. doi:10.1681/ASN.2020111566 PubMedGoogle ScholarCrossref
39.
Lassen  MR , Raskob  GE , Gallus  A , Pineo  G , Chen  D , Hornick  P ; ADVANCE-2 investigators.  Apixaban versus enoxaparin for thromboprophylaxis after knee replacement (ADVANCE-2): a randomised double-blind trial.   Lancet. 2010;375(9717):807-815. doi:10.1016/S0140-6736(09)62125-5 PubMedGoogle ScholarCrossref
40.
Lassen  MR , Gallus  A , Raskob  GE , Pineo  G , Chen  D , Ramirez  LM ; ADVANCE-3 Investigators.  Apixaban versus enoxaparin for thromboprophylaxis after hip replacement.   N Engl J Med. 2010;363(26):2487-2498. doi:10.1056/NEJMoa1006885 PubMedGoogle ScholarCrossref
41.
Carrier  M , Abou-Nassar  K , Mallick  R ,  et al; AVERT Investigators.  Apixaban to prevent venous thromboembolism in patients with cancer.   N Engl J Med. 2019;380(8):711-719. doi:10.1056/NEJMoa1814468 PubMedGoogle ScholarCrossref
42.
Eriksson  BI , Dahl  OE , Rosencher  N ,  et al; RE-MODEL Study Group.  Oral dabigatran etexilate vs. subcutaneous enoxaparin for the prevention of venous thromboembolism after total knee replacement: the RE-MODEL randomized trial.   J Thromb Haemost. 2007;5(11):2178-2185. doi:10.1111/j.1538-7836.2007.02748.xPubMedGoogle ScholarCrossref
43.
Eriksson  BI , Dahl  OE , Rosencher  N ,  et al; RE-NOVATE Study Group.  Dabigatran etexilate versus enoxaparin for prevention of venous thromboembolism after total hip replacement: a randomised, double-blind, non-inferiority trial.   Lancet. 2007;370(9591):949-956. doi:10.1016/S0140-6736(07)61445-7 PubMedGoogle ScholarCrossref
44.
Eriksson  BI , Dahl  OE , Huo  MH ,  et al; RE-NOVATE II Study Group.  Oral dabigatran versus enoxaparin for thromboprophylaxis after primary total hip arthroplasty (RE-NOVATE II). a randomised, double-blind, non-inferiority trial.   Thromb Haemost. 2011;105(4):721-729. doi:10.1160/TH10-10-0679 PubMedGoogle ScholarCrossref
45.
Eriksson  BI , Borris  LC , Friedman  RJ ,  et al; RECORD1 Study Group.  Rivaroxaban versus enoxaparin for thromboprophylaxis after hip arthroplasty.   N Engl J Med. 2008;358(26):2765-2775. doi:10.1056/NEJMoa0800374 PubMedGoogle ScholarCrossref
46.
Kakkar  AK , Brenner  B , Dahl  OE ,  et al; RECORD2 Investigators.  Extended duration rivaroxaban versus short-term enoxaparin for the prevention of venous thromboembolism after total hip arthroplasty: a double-blind, randomised controlled trial.   Lancet. 2008;372(9632):31-39. doi:10.1016/S0140-6736(08)60880-6 PubMedGoogle ScholarCrossref
47.
Lassen  MR , Ageno  W , Borris  LC ,  et al; RECORD3 Investigators.  Rivaroxaban versus enoxaparin for thromboprophylaxis after total knee arthroplasty.   N Engl J Med. 2008;358(26):2776-2786. doi:10.1056/NEJMoa076016 PubMedGoogle ScholarCrossref
48.
Turpie  AGG , Lassen  MR , Davidson  BL ,  et al; RECORD4 Investigators.  Rivaroxaban versus enoxaparin for thromboprophylaxis after total knee arthroplasty (RECORD4): a randomised trial.   Lancet. 2009;373(9676):1673-1680. doi:10.1016/S0140-6736(09)60734-0 PubMedGoogle ScholarCrossref
49.
Cohen  AT , Spiro  TE , Büller  HR ,  et al; MAGELLAN Investigators.  Rivaroxaban for thromboprophylaxis in acutely ill medical patients.   N Engl J Med. 2013;368(6):513-523. doi:10.1056/NEJMoa1111096 PubMedGoogle ScholarCrossref
50.
Spyropoulos  AC , Ageno  W , Albers  GW ,  et al; MARINER Investigators.  Rivaroxaban for thromboprophylaxis after hospitalization for medical illness.   N Engl J Med. 2018;379(12):1118-1127. doi:10.1056/NEJMoa1805090 PubMedGoogle ScholarCrossref
51.
Sebuhyan  M , Crichi  B , Abdallah  NA ,  et al.  Drug-drug interaction (DDI) with direct oral anticoagulant (DOAC) in patients with cancer.   J Med Vasc. 2020;45(6S):S31, S38. doi:10.1016/S2542-4513(20)30517-4 PubMedGoogle ScholarCrossref
52.
Wiggins  BS , Dixon  DL , Neyens  RR , Page  RL  II , Gluckman  TJ .  Select drug-drug interactions with direct oral anticoagulants: JACC review topic of the week.   J Am Coll Cardiol. 2020;75(11):1341-1350. doi:10.1016/j.jacc.2019.12.068 PubMedGoogle ScholarCrossref
53.
Zhang  Y , Souverein  PC , Gardarsdottir  H , van den Ham  HA , Maitland-van der Zee  AH , de Boer  A .  Risk of major bleeding among users of direct oral anticoagulants combined with interacting drugs: a population-based nested case-control study.   Br J Clin Pharmacol. 2020;86(6):1150-1164. doi:10.1111/bcp.14227 PubMedGoogle ScholarCrossref
54.
Kumbhani  DJ , Cannon  CP , Beavers  CJ ,  et al.  2020 ACC expert consensus decision pathway for anticoagulant and antiplatelet therapy in patients with atrial fibrillation or venous thromboembolism undergoing percutaneous coronary intervention or with atherosclerotic cardiovascular disease: a report of the American College of Cardiology solution set oversight committee.   J Am Coll Cardiol. 2021;77(5):629-658. doi:10.1016/j.jacc.2020.09.011 PubMedGoogle ScholarCrossref
55.
Raskob  GE , van Es  N , Verhamme  P ,  et al; Hokusai VTE Cancer Investigators.  Edoxaban for the treatment of cancer-associated venous thromboembolism.   N Engl J Med. 2018;378(7):615-624. doi:10.1056/NEJMoa1711948 PubMedGoogle ScholarCrossref
56.
Schulman  S , Kakkar  AK , Goldhaber  SZ ,  et al; RE-COVER II Trial Investigators.  Treatment of acute venous thromboembolism with dabigatran or warfarin and pooled analysis.   Circulation. 2014;129(7):764-772. doi:10.1161/CIRCULATIONAHA.113.004450 PubMedGoogle ScholarCrossref
57.
Spyropoulos  AC , Lipardi  C , Xu  J ,  et al.  Improved benefit risk profile of rivaroxaban in a subpopulation of the Magellan study.   Clin Appl Thromb Hemost. 2019;25:1076029619886022. doi:10.1177/1076029619886022 PubMedGoogle ScholarCrossref
58.
Khorana  AA , Soff  GA , Kakkar  AK ,  et al; CASSINI Investigators.  Rivaroxaban for thromboprophylaxis in high-risk ambulatory patients with cancer.   N Engl J Med. 2019;380(8):720-728. doi:10.1056/NEJMoa1814630 PubMedGoogle ScholarCrossref
59.
Streiff  MB , Abutalib  SA , Farge  D , Murphy  M , Connors  JM , Piazza  G .  Update on guidelines for the management of cancer-associated thrombosis.   Oncologist. 2021;26(1):e24-e40. doi:10.1002/onco.13596 PubMedGoogle ScholarCrossref
60.
Ginsberg  JS , Davidson  BL , Comp  PC ,  et al; RE-MOBILIZE Writing Committee.  Oral thrombin inhibitor dabigatran etexilate vs North American enoxaparin regimen for prevention of venous thromboembolism after knee arthroplasty surgery.   J Arthroplasty. 2009;24(1):1-9. doi:10.1016/j.arth.2008.01.132 PubMedGoogle ScholarCrossref
61.
Zannad  F , Anker  SD , Byra  WM ,  et al; COMMANDER HF Investigators.  Rivaroxaban in patients with heart failure, sinus rhythm, and coronary disease.   N Engl J Med. 2018;379(14):1332-1342. doi:10.1056/NEJMoa1808848 PubMedGoogle ScholarCrossref
62.
Dangas  GD , Tijssen  JGP , Wöhrle  J ,  et al; GALILEO Investigators.  A controlled trial of rivaroxaban after transcatheter aortic-valve replacement.   N Engl J Med. 2020;382(2):120-129. doi:10.1056/NEJMoa1911425 PubMedGoogle ScholarCrossref
63.
Hart  RG , Sharma  M , Mundl  H ,  et al; NAVIGATE ESUS Investigators.  Rivaroxaban for stroke prevention after embolic stroke of undetermined source.   N Engl J Med. 2018;378(23):2191-2201. doi:10.1056/NEJMoa1802686 PubMedGoogle ScholarCrossref
64.
Qian  J , Yan  YD , Yang  SY , Zhang  C , Gu  ZC .  Benefits and harms of low-dose rivaroxaban in Asian patients with atrial fibrillation: a systematic review and meta-analysis of real-world studies.   Front Pharmacol. 2021;12:642907. doi:10.3389/fphar.2021.642907PubMedGoogle ScholarCrossref
65.
Steinberg  BA , Shrader  P , Pieper  K ,  et al; Outcomes Registry for Better Informed Treatment of Atrial Fibrillation (ORBIT‐AF) II Investigators.  Frequency and outcomes of reduced dose non-vitamin k antagonist anticoagulants: results from ORBIT-AF II (the Outcomes Registry for Better Informed Treatment of Atrial Fibrillation II).   J Am Heart Assoc. 2018;7(4):e007633. doi:10.1161/JAHA.117.007633 PubMedGoogle ScholarCrossref
66.
van der Wall  SJ , Teutsch  C , Dubner  SJ ,  et al; GLORIA-AF Investigators.  Anticoagulation prescription and outcomes in relation to renal function in patients with atrial fibrillation: results from GLORIA-AF.   TH Open. 2021;5(1):e35-e42. doi:10.1055/s-0040-1722706 PubMedGoogle ScholarCrossref
67.
Bikdeli  B , Jimenez  D , Hawkins  M ,  et al; RIETE Investigators.  Rationale, design and methodology of the computerized registry of patients with venous thromboembolism (RIETE).   Thromb Haemost. 2018;118(1):214-224. doi:10.1160/TH17-07-0511 PubMedGoogle ScholarCrossref
68.
Haas  S , Mantovani  LG , Kreutz  R ,  et al.  Anticoagulant treatment for venous thromboembolism: a pooled analysis and additional results of the XALIA and XALIA-LEA noninterventional studies.   Res Pract Thromb Haemost. 2021;5(3):426-438. doi:10.1002/rth2.12489 PubMedGoogle ScholarCrossref
69.
Schaefer  JK , Errickson  J , Li  Y ,  et al.  Adverse events associated with the addition of aspirin to direct oral anticoagulant therapy without a clear indication.   JAMA Intern Med. 2021;181(6):817-824. doi:10.1001/jamainternmed.2021.1197 PubMedGoogle ScholarCrossref
70.
Pokorney  SD , Chertow  GM , Al-khalidi  H ,  et al.  Apixaban versus warfarin for stroke prevention in patients with end stage renal disease on hemodialysis and atrial fibrillation: results of a randomized clinical trial assessing safety.   Circulation. 2019;140(25):E965-E1011. doi:10.1161/CIR.0000000000000742Google ScholarCrossref
71.
Raccah  BH , Perlman  A , Zwas  DR ,  et al.  Gender differences in efficacy and safety of direct oral anticoagulants in atrial fibrillation: systematic review and network meta-analysis.   Ann Pharmacother. 2018;52(11):1135-1142. doi:10.1177/1060028018771264 PubMedGoogle ScholarCrossref
72.
Zhou  B , Wu  H , Wang  C , Lou  B , She  J .  Impact of age, sex, and renal function on the efficacy and safety of direct oral anticoagulants vs vitamin K antagonists for the treatment of acute venous thromboembolism: a meta-analysis of 22 040 patients.   Front Cardiovasc Med. 2021;8:700740. doi:10.3389/fcvm.2021.700740 PubMedGoogle ScholarCrossref
73.
Deitelzweig  S , Keshishian  AV , Zhang  Y ,  et al.  Effectiveness and safety of oral anticoagulants among nonvalvular atrial fibrillation patients with active cancer.   JACC CardioOncol. 2021;3(3):411-424. doi:10.1016/j.jaccao.2021.06.004 PubMedGoogle ScholarCrossref
74.
Young  AM , Marshall  A , Thirlwall  J ,  et al.  Comparison of an oral factor Xa inhibitor with low molecular weight heparin in patients with cancer with venous thromboembolism: results of a randomized trial (Select-D).   J Clin Oncol. 2018;36(20):2017-2023. doi:10.1200/JCO.2018.78.8034 PubMedGoogle ScholarCrossref
75.
Lee  KN , Choi  JI , Kim  YG ,  et al.  Comparison of renal function estimation formulae for dosing direct oral anticoagulants in patients with atrial fibrillation.   J Clin Med. 2019;8(12):2034. doi:10.3390/jcm8122034PubMedGoogle ScholarCrossref
76.
Shen  AY , Yao  JF , Brar  SS , Jorgensen  MB , Chen  W .  Racial/ethnic differences in the risk of intracranial hemorrhage among patients with atrial fibrillation.   J Am Coll Cardiol. 2007;50(4):309-315. doi:10.1016/j.jacc.2007.01.098 PubMedGoogle ScholarCrossref
77.
Lip  GY , Wang  KL , Chiang  CE .  Non-vitamin K antagonist oral anticoagulants (NOACs) for stroke prevention in Asian patients with atrial fibrillation: time for a reappraisal.   Int J Cardiol. 2015;180:246-254. doi:10.1016/j.ijcard.2014.11.182 PubMedGoogle ScholarCrossref
78.
Kotalczyk  A , Guo  Y , Wang  Y , Lip  GY ; ChiOTEAF Registry Investigators.  Are low doses of non-vitamin K antagonists effective in Chinese patients with atrial fibrillation? a report from the Optimal Thromboprophylaxis in Elderly Chinese Patients with Atrial Fibrillation (ChiOTEAF) registry.   Int J Stroke. 2021:17474930211053140. doi:10.1177/17474930211053140 PubMedGoogle ScholarCrossref
79.
Lee  SR , Choi  EK , Han  KD , Jung  JH , Oh  S , Lip  GYH .  Optimal rivaroxaban dose in Asian patients with atrial fibrillation and normal or mildly impaired renal function.   Stroke. 2019;50(5):1140-1148. doi:10.1161/STROKEAHA.118.024210 PubMedGoogle ScholarCrossref
80.
Lin  YC , Chien  SC , Hsieh  YC ,  et al.  Effectiveness and safety of standard- and low-dose rivaroxaban in Asians with atrial fibrillation.   J Am Coll Cardiol. 2018;72(5):477-485. doi:10.1016/j.jacc.2018.04.084 PubMedGoogle ScholarCrossref
81.
Okumura  K , Akao  M , Yoshida  T ,  et al; ELDERCARE-AF Committees and Investigators.  Low-dose edoxaban in very elderly patients with atrial fibrillation.   N Engl J Med. 2020;383(18):1735-1745. doi:10.1056/NEJMoa2012883 PubMedGoogle ScholarCrossref
82.
Lippi  G , Favaloro  EJ .  Recent guidelines and recommendations for laboratory assessment of the direct oral anticoagulants (DOACs): is there consensus?   Clin Chem Lab Med. 2015;53(2):185-197. doi:10.1515/cclm-2014-0767 PubMedGoogle ScholarCrossref
83.
Tripodi  A , Ageno  W , Ciaccio  M ,  et al.  Position paper on laboratory testing for patients on direct oral anticoagulants. a consensus document from the SISET, FCSA, SIBioC and SIPMeL.   Blood Transfus. 2018;16(5):462-470. doi:10.2450/2017.0124-17PubMedGoogle Scholar
84.
Favaloro  EJ , Pasalic  L , Curnow  J , Lippi  G .  Laboratory monitoring or measurement of direct oral anticoagulants (DOACs): advantages, limitations and future challenges.   Curr Drug Metab. 2017;18(7):598-608. doi:10.2174/1389200218666170417124035 PubMedGoogle ScholarCrossref
85.
Douketis  JD , Spyropoulos  AC , Duncan  J ,  et al.  Perioperative management of patients with atrial fibrillation receiving a direct oral anticoagulant.   JAMA Intern Med. 2019;179(11):1469-1478. doi:10.1001/jamainternmed.2019.2431 PubMedGoogle ScholarCrossref
86.
Shaw  JR , Li  N , Vanassche  T ,  et al.  Predictors of preprocedural direct oral anticoagulant levels in patients having an elective surgery or procedure.   Blood Adv. 2020;4(15):3520-3527. doi:10.1182/bloodadvances.2020002335 PubMedGoogle ScholarCrossref
87.
Mueck  W , Stampfuss  J , Kubitza  D , Becka  M .  Clinical pharmacokinetic and pharmacodynamic profile of rivaroxaban.   Clin Pharmacokinet. 2014;53(1):1-16. doi:10.1007/s40262-013-0100-7 PubMedGoogle ScholarCrossref
88.
Parasrampuria  DA , Truitt  KE .  Pharmacokinetics and pharmacodynamics of edoxaban, a non-vitamin K antagonist oral anticoagulant that inhibits clotting factor Xa.   Clin Pharmacokinet. 2016;55(6):641-655. doi:10.1007/s40262-015-0342-7 PubMedGoogle ScholarCrossref
89.
Stangier  J , Clemens  A .  Pharmacology, pharmacokinetics, and pharmacodynamics of dabigatran etexilate, an oral direct thrombin inhibitor.   Clin Appl Thromb Hemost. 2009;15(suppl 1):9S-16S. doi:10.1177/1076029609343004 PubMedGoogle ScholarCrossref
90.
Graham  MM , Sessler  DI , Parlow  JL ,  et al.  Aspirin in patients with previous percutaneous coronary intervention undergoing noncardiac surgery.   Ann Intern Med. 2018;168(4):237-244. doi:10.7326/M17-2341 PubMedGoogle ScholarCrossref
91.
Tomaselli  GF , Mahaffey  KW , Cuker  A ,  et al.  2020 ACC expert consensus decision pathway on management of bleeding in patients on oral anticoagulants: a report of the American College of Cardiology solution set oversight committee.   J Am Coll Cardiol. 2020;76(5):594-622. doi:10.1016/j.jacc.2020.04.053 PubMedGoogle ScholarCrossref
92.
Cuker  A , Burnett  A , Triller  D ,  et al.  Reversal of direct oral anticoagulants: guidance from the anticoagulation forum.   Am J Hematol. 2019;94(6):697-709. doi:10.1002/ajh.25475 PubMedGoogle ScholarCrossref
93.
Levy  JH , Ageno  W , Chan  NC , Crowther  M , Verhamme  P , Weitz  JI ; Subcommittee on Control of Anticoagulation.  When and how to use antidotes for the reversal of direct oral anticoagulants: guidance from the SSC of the ISTH.   J Thromb Haemost. 2016;14(3):623-627. doi:10.1111/jth.13227 PubMedGoogle ScholarCrossref
94.
McBane  RD  II , Loprinzi  CL , Ashrani  A ,  et al.  Extending venous thromboembolism secondary prevention with apixaban in cancer patients: the EVE trial.   Eur J Haematol. 2020;104(2):88-96. doi:10.1111/ejh.13338 PubMedGoogle ScholarCrossref
95.
Bikdeli  B , Hogan  H , Morrison  R ,  et al.  Extended-duration low-intensity apixaban to prevent recurrence in patients with provoked venous thromboembolism and enduring risk factors: rationale and design of the HI-PRO trial.   Thromb Haemost. 2021. doi:10.1055/a-1646-2244 PubMedGoogle ScholarCrossref
Close
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
Close
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close

Name Your Search

Save Search
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Close
Close

Lookup An Activity

or

My Saved Searches

You currently have no searches saved.

Close

My Saved Courses

You currently have no courses saved.

Close