[Skip to Content]
[Skip to Content Landing]

Secondary Analyses of the Childhood Adenotonsillectomy TrialA Narrative Review

To identify the key insights or developments described in this article
1 Credit CME

Importance  Adenotonsillectomy, performed for approximately 500 000 children annually in the US alone, is the first line of treatment of pediatric obstructive sleep apnea (OSA). The Childhood Adenotonsillectomy Trial (CHAT), the first randomized clinical trial to test the efficacy of adenotonsillectomy, compared the management of pediatric nonsevere OSA by early adenotonsillectomy (eAT) vs watchful waiting with supportive care. Since the publication of the primary article in 2013, the CHAT study data set were made available via the National Sleep Research Resource, which allowed researchers to address a range of additional clinical questions relevant to the care of children with OSA. This review focuses on secondary analyses associated with the CHAT data set as grouped by the outcome of interest.

Observations  The results of most secondary analyses suggest that children who underwent eAT experienced the greatest improvements in symptom burden, sleepiness, parent-reported behavior, and quality of life. Changes in other domains, such as cognition, cardiovascular physiology, and metabolic indicators, were modest and selective. The associations between most treatment outcomes and polysomnographic parameters were weak. Symptoms were poor predictors of OSA severity. The results from these secondary analyses benefitted from the rigor of multicenter design and centralized polysomnography interpretation in CHAT. However, the exclusion of younger preschool-aged children and children with primary snoring limited the generalizability of findings. In addition, because caregivers were not masked, some of the parent-reported outcomes may have been inflated.

Conclusions and Relevance  The results of this narrative review suggest that CHAT provides a model for future OSA-related studies in children for design, conduct, and subsequent reuse of the study data set, and its findings have advanced our understanding of the pathophysiology and management of pediatric nonsevere OSA. Directions for future research include whether the findings from this landmark study are generalizable to younger children and children with primary snoring and severe OSA. Similar studies may help address practice variability associated with pediatric OSA and help identify children who are most likely to benefit from undergoing eAT.

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 Credit(s)™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

CME Disclosure Statement: Unless noted, all individuals in control of content reported no relevant financial relationships. If applicable, all relevant financial relationships have been mitigated.

Article Information

Accepted for Publication: April 23, 2022.

Published Online: June 23, 2022. doi:10.1001/jamaoto.2022.1330

Corresponding Author: Amal Isaiah, MD, PhD, Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, 16 S Eutaw St, Ste 500, Baltimore, MD 21201 (aisaiah@som.umaryland.edu).

Author Contributions: Drs Decuzzi and Isaiah had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: Isaiah.

Acquisition, analysis, or interpretation of data: All authors.

Drafting of the manuscript: Decuzzi, Isaiah.

Critical revision of the manuscript for important intellectual content: Redline, Isaiah.

Obtained funding: Redline.

Administrative, technical, or material support: All authors.

Supervision: Isaiah.

Conflict of Interest Disclosures: Dr Redline reported grants from the National Institutes of Health during the conduct of the study as well as personal fees from Apnimed, Jazz Pharma, and Eli Lilly outside the submitted work. Dr Isaiah reported patents with royalties paid from the University of Maryland. No other disclosures were reported.

Funding/Support: The Childhood Adenotonsillectomy Trial was supported by the National Institutes of Health (grants HL083075, HL083129, UL1-RR-024134, and UL1 RR024989). The National Sleep Research Resource was supported by the National Heart, Lung, and Blood Institute (grants R24 HL114473 and 75N92019R002).

Role of the Funder/Sponsor: The funders had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Beebe  DW .  Neurobehavioral morbidity associated with disordered breathing during sleep in children: a comprehensive review.   Sleep. 2006;29(9):1115-1134. doi:10.1093/sleep/29.9.1115PubMedGoogle ScholarCrossref
Isaiah  A , Ernst  T , Cloak  CC , Clark  DB , Chang  L .  Associations between frontal lobe structure, parent-reported obstructive sleep disordered breathing and childhood behavior in the ABCD dataset.   Nat Commun. 2021;12(1):2205. doi:10.1038/s41467-021-22534-0PubMedGoogle ScholarCrossref
Baldassari  CM , Mitchell  RB , Schubert  C , Rudnick  EF .  Pediatric obstructive sleep apnea and quality of life: a meta-analysis.   Otolaryngol Head Neck Surg. 2008;138(3):265-273. doi:10.1016/j.otohns.2007.11.003PubMedGoogle ScholarCrossref
Smith  DF , Amin  RS .  OSA and cardiovascular risk in pediatrics.   Chest. 2019;156(2):402-413. doi:10.1016/j.chest.2019.02.011PubMedGoogle ScholarCrossref
Marcus  CL , Brooks  LJ , Draper  KA ,  et al; American Academy of Pediatrics.  Diagnosis and management of childhood obstructive sleep apnea syndrome.   Pediatrics. 2012;130(3):e714-e755. doi:10.1542/peds.2012-1672PubMedGoogle ScholarCrossref
Bhattacharyya  N , Lin  HW .  Changes and consistencies in the epidemiology of pediatric adenotonsillar surgery, 1996-2006.   Otolaryngol Head Neck Surg. 2010;143(5):680-684. doi:10.1016/j.otohns.2010.06.918PubMedGoogle ScholarCrossref
Redline  S , Amin  R , Beebe  D ,  et al.  The Childhood Adenotonsillectomy Trial (CHAT): rationale, design, and challenges of a randomized controlled trial evaluating a standard surgical procedure in a pediatric population.   Sleep. 2011;34(11):1509-1517. doi:10.5665/sleep.1388PubMedGoogle ScholarCrossref
Marcus  CL , Moore  RH , Rosen  CL ,  et al; Childhood Adenotonsillectomy Trial.  A randomized trial of adenotonsillectomy for childhood sleep apnea.   N Engl J Med. 2013;368(25):2366-2376. doi:10.1056/NEJMoa1215881PubMedGoogle ScholarCrossref
Zhang  GQ , Cui  L , Mueller  R ,  et al.  The National Sleep Research Resource: towards a sleep data commons.   J Am Med Inform Assoc. 2018;25(10):1351-1358. doi:10.1093/jamia/ocy064PubMedGoogle ScholarCrossref
Dean  DA  II , Goldberger  AL , Mueller  R ,  et al.  Scaling up scientific discovery in sleep medicine: the National Sleep Research Resource.   Sleep. 2016;39(5):1151-1164. doi:10.5665/sleep.5774PubMedGoogle ScholarCrossref
Weinstock  TG , Rosen  CL , Marcus  CL ,  et al.  Predictors of obstructive sleep apnea severity in adenotonsillectomy candidates.   Sleep. 2014;37(2):261-269. doi:10.5665/sleep.3394PubMedGoogle ScholarCrossref
Wang  R , Dong  Y , Weng  J ,  et al.  Associations among neighborhood, race, and sleep apnea severity in children: a six-city analysis.   Ann Am Thorac Soc. 2017;14(1):76-84. doi:10.1513/AnnalsATS.201609-662OCPubMedGoogle ScholarCrossref
Mitchell  RB , Garetz  S , Moore  RH ,  et al.  The use of clinical parameters to predict obstructive sleep apnea syndrome severity in children: the Childhood Adenotonsillectomy (CHAT) study randomized clinical trial.   JAMA Otolaryngol Head Neck Surg. 2015;141(2):130-136. doi:10.1001/jamaoto.2014.3049PubMedGoogle ScholarCrossref
Isaiah  A , Shikara  M , Pereira  KD , Das  G .  Refining screening questionnaires for prediction of sleep apnea severity in children.   Sleep Breath. 2020;24(4):1349-1356. doi:10.1007/s11325-019-01964-7PubMedGoogle ScholarCrossref
Paruthi  S , Buchanan  P , Weng  J ,  et al.  Effect of adenotonsillectomy on parent-reported sleepiness in children with obstructive sleep apnea.   Sleep. 2016;39(11):2005-2012. doi:10.5665/sleep.6232PubMedGoogle ScholarCrossref
Chervin  RD , Ellenberg  SS , Hou  X ,  et al; Childhood Adenotonsillectomy Trial.  Prognosis for spontaneous resolution of OSA in children.   Chest. 2015;148(5):1204-1213. doi:10.1378/chest.14-2873PubMedGoogle ScholarCrossref
Gourishetti  SC , Hamburger  E , Pereira  KD , Mitchell  RB , Isaiah  A .  Baseline apnea-hypopnea index threshold and adenotonsillectomy consideration in children with OSA.   Int J Pediatr Otorhinolaryngol. 2021;151:110959. doi:10.1016/j.ijporl.2021.110959PubMedGoogle ScholarCrossref
Kaditis  AG , Alonso Alvarez  ML , Boudewyns  A ,  et al.  Obstructive sleep disordered breathing in 2- to 18-year-old children: diagnosis and management.   Eur Respir J. 2016;47(1):69-94. doi:10.1183/13993003.00385-2015PubMedGoogle ScholarCrossref
Rosen  CL , Wang  R , Taylor  HG ,  et al.  Utility of symptoms to predict treatment outcomes in obstructive sleep apnea syndrome.   Pediatrics. 2015;135(3):e662-e671. doi:10.1542/peds.2014-3099PubMedGoogle ScholarCrossref
Hilmisson  H , Berman  S , Magnusdottir  S .  Sleep apnea diagnosis in children using software-generated apnea-hypopnea index (AHI) derived from data recorded with a single photoplethysmogram sensor (PPG): results from the Childhood Adenotonsillectomy Study (CHAT) based on cardiopulmonary coupling analysis.   Sleep Breath. 2020;24(4):1739-1749. doi:10.1007/s11325-020-02049-6PubMedGoogle ScholarCrossref
Park  JW , Hamoda  MM , Almeida  FR ,  et al.  Socioeconomic inequalities in pediatric obstructive sleep apnea.   J Clin Sleep Med. 2022;18(2):637-645. doi:10.5664/jcsm.9494PubMedGoogle ScholarCrossref
Friberg  D , Lundkvist  K , Li  X , Sundquist  K .  Parental poverty and occupation as risk factors for pediatric sleep-disordered breathing.   Sleep Med. 2015;16(9):1169-1175. doi:10.1016/j.sleep.2015.05.012PubMedGoogle ScholarCrossref
Mietchen  JJ , Bennett  DP , Huff  T , Hedges  DW , Gale  SD .  Executive function in pediatric sleep-disordered breathing: a meta-analysis.   J Int Neuropsychol Soc. 2016;22(8):839-850. doi:10.1017/S1355617716000643PubMedGoogle ScholarCrossref
Garagozzo  A , Hunter  SJ .  Cognition in pediatric SDB-Yes, no, maybe?   Pediatr Pulmonol. 2021. Published online April 26, 2021. doi:10.1002/ppul.25420PubMedGoogle ScholarCrossref
Korkman  M , Kirk  U , Kemp  S .  Developmental Neuropsychological Assessment (NEPSY). Harcourt Assessment, Inc; 1998.
Taylor  HG , Bowen  SR , Beebe  DW ,  et al.  Cognitive effects of adenotonsillectomy for obstructive sleep apnea.   Pediatrics. 2016;138(2):e20154458. doi:10.1542/peds.2015-4458PubMedGoogle ScholarCrossref
Waters  KA , Chawla  J , Harris  MA ,  et al.  Cognition after early tonsillectomy for mild OSA.   Pediatrics. 2020;145(2):e20191450. doi:10.1542/peds.2019-1450PubMedGoogle ScholarCrossref
Fehrm  J , Nerfeldt  P , Browaldh  N , Friberg  D .  Effectiveness of adenotonsillectomy vs watchful waiting in young children with mild to moderate obstructive sleep apnea: a randomized clinical trial.   JAMA Otolaryngol Head Neck Surg. 2020;146(7):647-654. doi:10.1001/jamaoto.2020.0869PubMedGoogle ScholarCrossref
Wang  R , Bakker  JP , Chervin  RD ,  et al.  Pediatric Adenotonsillectomy Trial for Snoring (PATS): protocol for a randomised controlled trial to evaluate the effect of adenotonsillectomy in treating mild obstructive sleep-disordered breathing.   BMJ Open. 2020;10(3):e033889. doi:10.1136/bmjopen-2019-033889PubMedGoogle ScholarCrossref
Thomas  NH , Xanthopoulos  MS , Kim  JY ,  et al.  Effects of adenotonsillectomy on parent-reported behavior in children with obstructive sleep apnea.   Sleep. 2017;40(4). doi:10.1093/sleep/zsx018PubMedGoogle ScholarCrossref
Isaiah  A , Spanier  AJ , Grattan  LM , Wang  Y , Pereira  KD .  Predictors of behavioral changes after adenotonsillectomy in pediatric obstructive sleep apnea: a secondary analysis of a randomized clinical trial.   JAMA Otolaryngol Head Neck Surg. 2020;146(10):900-908. doi:10.1001/jamaoto.2020.2432PubMedGoogle ScholarCrossref
Hodges  E , Marcus  CL , Kim  JY ,  et al.  Depressive symptomatology in school-aged children with obstructive sleep apnea syndrome: incidence, demographic factors, and changes following a randomized controlled trial of adenotonsillectomy.   Sleep. 2018;41(12). doi:10.1093/sleep/zsy180PubMedGoogle ScholarCrossref
Chervin  RD , Ruzicka  DL , Giordani  BJ ,  et al.  Sleep-disordered breathing, behavior, and cognition in children before and after adenotonsillectomy.   Pediatrics. 2006;117(4):e769-e778. doi:10.1542/peds.2005-1837PubMedGoogle ScholarCrossref
Mitchell  RB , Boss  EF .  Pediatric obstructive sleep apnea in obese and normal-weight children: impact of adenotonsillectomy on quality-of-life and behavior.   Dev Neuropsychol. 2009;34(5):650-661. doi:10.1080/87565640903133657PubMedGoogle ScholarCrossref
Garetz  SL , Mitchell  RB , Parker  PD ,  et al.  Quality of life and obstructive sleep apnea symptoms after pediatric adenotonsillectomy.   Pediatrics. 2015;135(2):e477-e486. doi:10.1542/peds.2014-0620PubMedGoogle ScholarCrossref
Bandyopadhyay  A , Slaven  JE .  Health outcomes associated with improvement in mouth breathing in children with OSA.   Sleep Breath Schlaf Atm. Published online January 7, 2021. doi:10.1007/s11325-020-02247-2Google ScholarCrossref
Snow  A , Vazifedan  T , Baldassari  CM .  Evaluation of nocturnal enuresis after adenotonsillectomy in children with obstructive sleep apnea: a secondary analysis of a randomized clinical trial.   JAMA Otolaryngol Head Neck Surg. 2021;147(10):887-892. doi:10.1001/jamaoto.2021.2303PubMedGoogle ScholarCrossref
Brooks  LJ , Topol  HI .  Enuresis in children with sleep apnea.   J Pediatr. 2003;142(5):515-518. doi:10.1067/mpd.2003.158PubMedGoogle ScholarCrossref
Liu  X , Immanuel  S , Pamula  Y , Kennedy  D , Martin  J , Baumert  M .  Adenotonsillectomy for childhood obstructive sleep apnoea reduces thoraco-abdominal asynchrony but spontaneous apnoea-hypopnoea index normalisation does not.   Eur Respir J. 2017;49(1):1601177. doi:10.1183/13993003.01177-2016PubMedGoogle ScholarCrossref
Hammer  J , Newth  CJL .  Assessment of thoraco-abdominal asynchrony.   Paediatr Respir Rev. 2009;10(2):75-80. doi:10.1016/j.prrv.2009.02.004PubMedGoogle ScholarCrossref
Isaiah  A , Pereira  KD , Das  G .  Polysomnography and treatment-related outcomes of childhood sleep apnea.   Pediatrics. 2019;144(4):e20191097. doi:10.1542/peds.2019-1097PubMedGoogle ScholarCrossref
Bonuck  K , Parikh  S , Bassila  M .  Growth failure and sleep disordered breathing: a review of the literature.   Int J Pediatr Otorhinolaryngol. 2006;70(5):769-778. doi:10.1016/j.ijporl.2005.11.012PubMedGoogle ScholarCrossref
Bonuck  KA , Freeman  K , Henderson  J .  Growth and growth biomarker changes after adenotonsillectomy: systematic review and meta-analysis.   Arch Dis Child. 2009;94(2):83-91. doi:10.1136/adc.2008.141192PubMedGoogle ScholarCrossref
Keefe  KR , Patel  PN , Levi  JR .  The shifting relationship between weight and pediatric obstructive sleep apnea: a historical review.   Laryngoscope. 2019;129(10):2414-2419. doi:10.1002/lary.27606PubMedGoogle ScholarCrossref
Katz  ES , Moore  RH , Rosen  CL ,  et al.  Growth after adenotonsillectomy for obstructive sleep apnea: an RCT.   Pediatrics. 2014;134(2):282-289. doi:10.1542/peds.2014-0591PubMedGoogle ScholarCrossref
Gourishetti  SC , Chu  M , Isaiah  A .  The impact of sleep events on weight gain following early adenotonsillectomy compared to supportive care for pediatric OSA.   Int J Pediatr Otorhinolaryngol. 2022;154:111049. doi:10.1016/j.ijporl.2022.111049PubMedGoogle ScholarCrossref
Kirkham  EM , Leis  AM , Chervin  RD .  Weight gain in children after adenotonsillectomy: undesirable weight gain or catch-up growth?   Sleep Med. 2021;85:147-149. doi:10.1016/j.sleep.2021.07.010PubMedGoogle ScholarCrossref
Vlahandonis  A , Walter  LM , Horne  RSC .  Does treatment of SDB in children improve cardiovascular outcome?   Sleep Med Rev. 2013;17(1):75-85. doi:10.1016/j.smrv.2012.04.004PubMedGoogle ScholarCrossref
Quante  M , Wang  R , Weng  J ,  et al; Childhood Adenotonsillectomy Trial.  The effect of adenotonsillectomy for childhood sleep apnea on cardiometabolic measures.   Sleep. 2015;38(9):1395-1403. doi:10.5665/sleep.4976PubMedGoogle ScholarCrossref
Boettler  P , Hartmann  M , Watzl  K ,  et al.  Heart rate effects on strain and strain rate in healthy children.   J Am Soc Echocardiogr. 2005;18(11):1121-1130. doi:10.1016/j.echo.2005.08.014PubMedGoogle ScholarCrossref
Hansen  HS , Froberg  K , Hyldebrandt  N , Nielsen  JR .  A controlled study of eight months of physical training and reduction of blood pressure in children: the Odense schoolchild study.   BMJ. 1991;303(6804):682-685. doi:10.1136/bmj.303.6804.682PubMedGoogle ScholarCrossref
Baumert  M , Pamula  Y , Martin  J ,  et al.  The effect of adenotonsillectomy for childhood sleep apnoea on cardiorespiratory control.   ERJ Open Res. 2016;2(2):00003-02016. doi:10.1183/23120541.00003-2016PubMedGoogle ScholarCrossref
Shaffer  F , Ginsberg  JP .  An overview of heart rate variability metrics and norms.   Front Public Health. 2017;5:258. doi:10.3389/fpubh.2017.00258PubMedGoogle ScholarCrossref
Liu  X , Immanuel  S , Kennedy  D , Martin  J , Pamula  Y , Baumert  M .  Effect of adenotonsillectomy for childhood obstructive sleep apnea on nocturnal heart rate patterns.   Sleep. 2018;41(11). doi:10.1093/sleep/zsy171PubMedGoogle ScholarCrossref
Isaiah  A , Bertoni  D , Pereira  KD , Diaz-Abad  M , Mitchell  RB , Das  G .  Treatment-related changes in heart rate variability in children with sleep apnea.   Otolaryngol Head Neck Surg. 2020;162(5):737-745. doi:10.1177/0194599820907882PubMedGoogle ScholarCrossref
Martín-Montero  A , Gutiérrez-Tobal  GC , Kheirandish-Gozal  L ,  et al.  Heart rate variability spectrum characteristics in children with sleep apnea.   Pediatr Res. 2021;89(7):1771-1779. doi:10.1038/s41390-020-01138-2PubMedGoogle ScholarCrossref
Muzet  A .  Alteration of sleep microstructure in psychiatric disorders.   Dialogues Clin Neurosci. 2005;7(4):315-321. doi:10.31887/DCNS.2005.7.4/amuzetPubMedGoogle ScholarCrossref
Hartmann  S , Bruni  O , Ferri  R , Redline  S , Baumert  M .  Cyclic alternating pattern in children with obstructive sleep apnea and its relationship with adenotonsillectomy, behavior, cognition, and quality of life.   Sleep. 2021;44(1):zsaa145. doi:10.1093/sleep/zsaa145PubMedGoogle ScholarCrossref
Hilmisson  H , Lange  N , Magnusdottir  S .  Objective sleep quality and metabolic risk in healthy weight children results from the randomized Childhood Adenotonsillectomy Trial (CHAT).   Sleep Breath. 2019;23(4):1197-1208. doi:10.1007/s11325-019-01802-wPubMedGoogle ScholarCrossref
Thomas  RJ , Mietus  JE , Peng  CK , Goldberger  AL .  An electrocardiogram-based technique to assess cardiopulmonary coupling during sleep.   Sleep. 2005;28(9):1151-1161. doi:10.1093/sleep/28.9.1151PubMedGoogle ScholarCrossref
Fatima  Y , Doi  SA , Mamun  AA .  Sleep quality and obesity in young subjects: a meta-analysis.   Obes Rev. 2016;17(11):1154-1166. doi:10.1111/obr.12444PubMedGoogle ScholarCrossref
AMA CME Accreditation Information

Credit Designation Statement: The American Medical Association designates this Journal-based CME activity activity for a maximum of 1.00  AMA PRA Category 1 Credit(s)™. Physicians should claim only the credit commensurate with the extent of their participation in the activity.

Successful completion of this CME activity, which includes participation in the evaluation component, enables the participant to earn up to:

  • 1.00 Medical Knowledge MOC points in the American Board of Internal Medicine's (ABIM) Maintenance of Certification (MOC) program;;
  • 1.00 Self-Assessment points in the American Board of Otolaryngology – Head and Neck Surgery’s (ABOHNS) Continuing Certification program;
  • 1.00 MOC points in the American Board of Pediatrics’ (ABP) Maintenance of Certification (MOC) program;
  • 1.00 Lifelong Learning points in the American Board of Pathology’s (ABPath) Continuing Certification program; and
  • 1.00 CME points in the American Board of Surgery’s (ABS) Continuing Certification program

It is the CME activity provider's responsibility to submit participant completion information to ACCME for the purpose of granting MOC credit.

Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right

Name Your Search

Save Search
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience

Lookup An Activity


My Saved Searches

You currently have no searches saved.


My Saved Courses

You currently have no courses saved.