[Skip to Content]
[Skip to Content Landing]

Subclinical Leaflet Thrombosis and Anticoagulation After Transcatheter Aortic Valve ReplacementA Review

To identify the key insights or developments described in this article
1 Credit CME
Abstract

Importance  Subclinical leaflet thrombosis affects approximately 15% of patients after transcatheter aortic valve replacement (TAVR). The pathophysiology and clinical significance of leaflet thrombosis remain incompletely understood. Defining the optimal management strategy in patients who are asymptomatic, including the role for oral anticoagulation (OAC), is a key challenge for the field.

Observations  Three recent randomized trials have evaluated the role of OAC in patients after TAVR. These studies have confirmed prior observational data suggesting that OAC is effective at prevention of subclinical leaflet thrombosis. Overall, however, OAC does not lead to a clinical benefit over the period studied, and in some patients may be harmful owing to bleeding risk.

Conclusions and Relevance  Strategies for identification of patients in whom the benefit of OAC outweighs the risks are required for optimization of long-term outcome after TAVR. This requires clearer insights into the mechanisms of asymptomatic leaflet thrombosis, its clinical significance, and patient-specific risks of bleeding and structural valve degeneration.

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 Credit(s)™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

CME Disclosure Statement: Unless noted, all individuals in control of content reported no relevant financial relationships. If applicable, all relevant financial relationships have been mitigated.

Article Information

Accepted for Publication: April 20, 2022.

Published Online: June 22, 2022. doi:10.1001/jamacardio.2022.1591

Corresponding Author: Susheel Kodali, MD, Structural Heart & Valve Center, New York–Presbyterian Hospital/Columbia University Irving Medical Center, 177 Fort Washington Ave, 5th Floor, Room 5C-501, New York, NY 10032 (sk2427@columbia.edu).

Author Contributions: Dr Kodali had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: Cahill, Kirtane, Kodali.

Acquisition, analysis, or interpretation of data: Cahill, Leon.

Drafting of the manuscript: Cahill.

Critical revision of the manuscript for important intellectual content: All authors.

Supervision: Kirtane, Leon, Kodali.

Conflict of Interest Disclosures: Dr Kirtane reported receiving institutional funding from Medtronic, Boston Scientific, Abbott Vascular, Amgen, CSI, CathWorks, Siemens, Philips, Neurotronic, Biotronik, Chiesi, Bolt Medical, and ReCor Medical; fees paid to Columbia University and/or Cardiovascular Research Foundation for speaking engagements and/or consulting in which he controlled the content; being a consultant for Neurotronic; receiving travel expenses/meals from Medtronic, Boston Scientific, Abbott Vascular, Abiomed, CSI, CathWorks, Siemens, Philips, ReCor Medical, Chiesi, OpSens, Zoll, and Regeneron; and working as Associate Editor for JAMA Cardiology. Dr Leon reported being an early physician founder of and having an equity relationship with (<1% of the company) Mitralign. Dr Kodali reported receiving consultant honoraria from Admedus, Dura Biotech, TriCares, Philips, and TriFlo; having equity in Dura Biotech, MicroInterventional Devices, Thubrikar Aortic Valve Inc, Supira, Admedus, TriFlo, Tioga, X-Dot, and Adona; and receiving institutional research grants from Edwards Lifesciences, Medtronic, Abbott Vascular, Boston Scientific, and JenaValve. No other disclosures were reported.

References
1.
Urban  P , Mehran  R , Colleran  R ,  et al.  Defining high bleeding risk in patients undergoing percutaneous coronary intervention: a consensus document from the Academic Research Consortium for High Bleeding Risk.   Eur Heart J. 2019;40(31):2632-2653. doi:10.1093/eurheartj/ehz372PubMedGoogle ScholarCrossref
2.
Mangieri  A , Montalto  C , Poletti  E ,  et al.  Thrombotic vs bleeding risk after transcatheter aortic valve replacement: JACC review topic of the week.   J Am Coll Cardiol. 2019;74(16):2088-2101. doi:10.1016/j.jacc.2019.08.1032PubMedGoogle ScholarCrossref
3.
Cahill  TJ , Chen  M , Hayashida  K ,  et al.  Transcatheter aortic valve implantation: current status and future perspectives.   Eur Heart J. 2018;39(28):2625-2634. doi:10.1093/eurheartj/ehy244PubMedGoogle ScholarCrossref
4.
Ten Berg  J , Sibbing  D , Rocca  B ,  et al.  Management of antithrombotic therapy in patients undergoing transcatheter aortic valve implantation: a consensus document of the ESC Working Group on Thrombosis and the European Association of Percutaneous Cardiovascular Interventions (EAPCI), in collaboration with the ESC Council on Valvular Heart Disease.   Eur Heart J. 2021;42(23):2265-2269. doi:10.1093/eurheartj/ehab196PubMedGoogle ScholarCrossref
5.
D’Ascenzo  F , Salizzoni  S , Saglietto  A ,  et al.  Incidence, predictors, and cerebrovascular consequences of leaflet thrombosis after transcatheter aortic valve implantation: a systematic review and meta-analysis.   Eur J Cardiothorac Surg. 2019;56(3):488-494. doi:10.1093/ejcts/ezz099PubMedGoogle ScholarCrossref
6.
Trusty  PM , Sadri  V , Madukauwa-David  ID ,  et al.  Neosinus flow stasis correlates with thrombus volume post-TAVR: a patient-specific in vitro study.   JACC Cardiovasc Interv. 2019;12(13):1288-1290. doi:10.1016/j.jcin.2019.03.022PubMedGoogle ScholarCrossref
7.
Sellers  SL , Turner  CT , Sathananthan  J ,  et al.  Transcatheter aortic heart valves: histological analysis providing insight to leaflet thickening and structural valve degeneration.   JACC Cardiovasc Imaging. 2019;12(1):135-145. doi:10.1016/j.jcmg.2018.06.028PubMedGoogle ScholarCrossref
8.
Bendayan  M , Messas  N , Perrault  LP ,  et al.  Frailty and bleeding in older adults undergoing TAVR or SAVR: insights from the FRAILTY-AVR study.   JACC Cardiovasc Interv. 2020;13(9):1058-1068. doi:10.1016/j.jcin.2020.01.238PubMedGoogle ScholarCrossref
9.
Généreux  P , Cohen  DJ , Mack  M ,  et al.  Incidence, predictors, and prognostic impact of late bleeding complications after transcatheter aortic valve replacement.   J Am Coll Cardiol. 2014;64(24):2605-2615. doi:10.1016/j.jacc.2014.08.052PubMedGoogle ScholarCrossref
10.
Brouwer  J , Nijenhuis  VJ , Delewi  R ,  et al.  Aspirin with or without clopidogrel after transcatheter aortic-valve implantation.   N Engl J Med. 2020;383(15):1447-1457. doi:10.1056/NEJMoa2017815PubMedGoogle ScholarCrossref
11.
Nijenhuis  VJ , Brouwer  J , Delewi  R ,  et al.  Anticoagulation with or without clopidogrel after transcatheter aortic-valve implantation.   N Engl J Med. 2020;382(18):1696-1707. doi:10.1056/NEJMoa1915152PubMedGoogle ScholarCrossref
12.
Hatoum  H , Maureira  P , Lilly  S , Dasi  LP .  Impact of leaflet laceration on transcatheter aortic valve-in-valve washout.   JACC Cardiovasc Interv. 2019;12(13):1229-1237. doi:10.1016/j.jcin.2019.04.013PubMedGoogle ScholarCrossref
13.
Madukauwa-David  ID , Sadri  V , Kamioka  N ,  et al.  Transcatheter aortic valve deployment influences neo-sinus thrombosis risk: An in vitro flow study.   Catheter Cardiovasc Interv. 2020;95(5):1009-1016. doi:10.1002/ccd.28388PubMedGoogle ScholarCrossref
14.
Mangione  FM , Jatene  T , Gonçalves  A ,  et al.  Leaflet thrombosis in surgically explanted or postmortem TAVR valves.   JACC Cardiovasc Imaging. 2017;10(1):82-85. doi:10.1016/j.jcmg.2016.11.009PubMedGoogle ScholarCrossref
15.
Hatoum  H , Dollery  J , Lilly  SM , Crestanello  JA , Dasi  LP .  Implantation Depth and Rotational Orientation Effect on Valve-in-Valve Hemodynamics and Sinus Flow.   Ann Thorac Surg. 2018;106(1):70-78. doi:10.1016/j.athoracsur.2018.01.070PubMedGoogle ScholarCrossref
16.
Bogyi  M , Schernthaner  RE , Loewe  C ,  et al.  Subclinical leaflet thrombosis after transcatheter aortic valve replacement: a meta-analysis.   JACC Cardiovasc Interv. 2021;14(24):2643-2656. doi:10.1016/j.jcin.2021.09.019PubMedGoogle ScholarCrossref
17.
Midha  PA , Raghav  V , Sharma  R ,  et al.  The fluid mechanics of transcatheter heart valve leaflet thrombosis in the neosinus.   Circulation. 2017;136(17):1598-1609. doi:10.1161/CIRCULATIONAHA.117.029479PubMedGoogle ScholarCrossref
18.
Fuchs  A , De Backer  O , Brooks  M ,  et al.  Subclinical leaflet thickening and stent frame geometry in self-expanding transcatheter heart valves.   EuroIntervention. 2017;13(9):e1067-e1075. doi:10.4244/EIJ-D-17-00373PubMedGoogle ScholarCrossref
19.
Abdel-Wahab  M , Simonato  M , Latib  A ,  et al.  Clinical valve thrombosis after transcatheter aortic valve-in-valve implantation.   Circ Cardiovasc Interv. 2018;11(11):e006730. doi:10.1161/CIRCINTERVENTIONS.118.006730PubMedGoogle ScholarCrossref
20.
Pache  G , Blanke  P , Zeh  W , Jander  N .  Cusp thrombosis after transcatheter aortic valve replacement detected by computed tomography and echocardiography.   Eur Heart J. 2013;34(46):3546-3546. doi:10.1093/eurheartj/eht316PubMedGoogle ScholarCrossref
21.
Leetmaa  T , Hansson  NC , Leipsic  J ,  et al.  Early aortic transcatheter heart valve thrombosis: diagnostic value of contrast-enhanced multidetector computed tomography.   Circ Cardiovasc Interv. 2015;8(4):e001596. doi:10.1161/CIRCINTERVENTIONS.114.001596PubMedGoogle ScholarCrossref
22.
Hansson  NC , Grove  EL , Andersen  HR ,  et al.  Transcatheter aortic valve thrombosis: incidence, predisposing factors, and clinical implications.   J Am Coll Cardiol. 2016;68(19):2059-2069. doi:10.1016/j.jacc.2016.08.010PubMedGoogle ScholarCrossref
23.
Chakravarty  T , Søndergaard  L , Friedman  J ,  et al; RESOLVE; SAVORY Investigators.  Subclinical leaflet thrombosis in surgical and transcatheter bioprosthetic aortic valves: an observational study.   Lancet. 2017;389(10087):2383-2392. doi:10.1016/S0140-6736(17)30757-2PubMedGoogle ScholarCrossref
24.
Makkar  RR , Fontana  G , Jilaihawi  H ,  et al.  Possible subclinical leaflet thrombosis in bioprosthetic aortic valves.   N Engl J Med. 2015;373(21):2015-2024. doi:10.1056/NEJMoa1509233PubMedGoogle ScholarCrossref
25.
Tang  L , Lesser  JR , Schneider  LM ,  et al.  Prospective Evaluation for Hypoattenuated Leaflet Thickening Following Transcatheter Aortic Valve Implantation.   Am J Cardiol. 2019;123(4):658-666. doi:10.1016/j.amjcard.2018.11.012PubMedGoogle ScholarCrossref
26.
Rheude  T , Pellegrini  C , Stortecky  S ,  et al.  Meta-analysis of bioprosthetic valve thrombosis after transcatheter aortic valve implantation.   Am J Cardiol. 2021;138:92-99. doi:10.1016/j.amjcard.2020.10.018PubMedGoogle ScholarCrossref
27.
Dvir  D , Bourguignon  T , Otto  CM ,  et al; VIVID (Valve in Valve International Data) Investigators.  Standardized definition of structural valve degeneration for surgical and transcatheter bioprosthetic aortic valves.   Circulation. 2018;137(4):388-399. doi:10.1161/CIRCULATIONAHA.117.030729PubMedGoogle ScholarCrossref
28.
Cartlidge  TRG , Doris  MK , Sellers  SL ,  et al.  Detection and prediction of bioprosthetic aortic valve degeneration.   J Am Coll Cardiol. 2019;73(10):1107-1119. doi:10.1016/j.jacc.2018.12.056PubMedGoogle ScholarCrossref
29.
Makkar  RR , Blanke  P , Leipsic  J ,  et al.  Subclinical leaflet thrombosis in transcatheter and surgical bioprosthetic valves: PARTNER 3 cardiac computed tomography substudy.   J Am Coll Cardiol. 2020;75(24):3003-3015. doi:10.1016/j.jacc.2020.04.043PubMedGoogle ScholarCrossref
30.
Blanke  P , Leipsic  JA , Popma  JJ ,  et al; Evolut Low Risk LTI Substudy Investigators.  Bioprosthetic aortic valve leaflet thickening in the Evolut Low Risk substudy.   J Am Coll Cardiol. 2020;75(19):2430-2442. doi:10.1016/j.jacc.2020.03.022PubMedGoogle ScholarCrossref
31.
Sannino  A , Hahn  RT , Leipsic  J , Mack  MJ , Grayburn  PA .  Meta-analysis of incidence, predictors, and consequences of clinical and subclinical bioprosthetic leaflet thrombosis after transcatheter aortic valve implantation.   Am J Cardiol. 2020;132:106-113. doi:10.1016/j.amjcard.2020.07.018PubMedGoogle ScholarCrossref
32.
Dangas  GD , Tijssen  JGP , Wöhrle  J ,  et al; GALILEO Investigators.  A controlled trial of rivaroxaban after transcatheter aortic-valve replacement.   N Engl J Med. 2020;382(2):120-129. doi:10.1056/NEJMoa1911425PubMedGoogle ScholarCrossref
33.
Collet JP, Van Belle E, Thiele H, et al. Antithrombotic Strategy to Lower All Cardiovascular and Neurologic Ischemic and Hemorrhagic Events After Transaortic Valve Implantation for Aortic Stenosis (ATLANTIS): a randomized, open-label, phase 3 trial. Presented at the American College of Cardiology; May 15, 2021; Atlanta, GA.
34.
Rogers  T , Shults  C , Torguson  R ,  et al.  Randomized trial of aspirin vs warfarin after transcatheter aortic valve replacement in low-risk patients.   Circ Cardiovasc Interv. 2021;14(1):e009983. doi:10.1161/CIRCINTERVENTIONS.120.009983PubMedGoogle ScholarCrossref
35.
De Backer  O , Dangas  GD , Jilaihawi  H ,  et al; GALILEO-4D Investigators.  Reduced leaflet motion after transcatheter aortic-valve replacement.   N Engl J Med. 2020;382(2):130-139. doi:10.1056/NEJMoa1911426PubMedGoogle ScholarCrossref
36.
Montalescot  G , Redheuil  A , Vincent  F ,  et al. Apixaban and valve thrombosis after transcatheter aortic valve implantation: the ATLANTIS-4D-CT substudy. Presented at the American College of Cardiology; May 15, 2021; Atlanta, GA.
AMA CME Accreditation Information

Credit Designation Statement: The American Medical Association designates this Journal-based CME activity activity for a maximum of 1.00  AMA PRA Category 1 Credit(s)™. Physicians should claim only the credit commensurate with the extent of their participation in the activity.

Successful completion of this CME activity, which includes participation in the evaluation component, enables the participant to earn up to:

  • 1.00 Medical Knowledge MOC points in the American Board of Internal Medicine's (ABIM) Maintenance of Certification (MOC) program;;
  • 1.00 Self-Assessment points in the American Board of Otolaryngology – Head and Neck Surgery’s (ABOHNS) Continuing Certification program;
  • 1.00 MOC points in the American Board of Pediatrics’ (ABP) Maintenance of Certification (MOC) program;
  • 1.00 Lifelong Learning points in the American Board of Pathology’s (ABPath) Continuing Certification program; and
  • 1.00 CME points in the American Board of Surgery’s (ABS) Continuing Certification program

It is the CME activity provider's responsibility to submit participant completion information to ACCME for the purpose of granting MOC credit.

Close
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
Close
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close

Name Your Search

Save Search
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Close
Close

Lookup An Activity

or

My Saved Searches

You currently have no searches saved.

Close

My Saved Courses

You currently have no courses saved.

Close