Plant-Based and Ketogenic Diets As Diverging Paths to Address Cancer: A Review | Cancer Screening, Prevention, Control | JN Learning | AMA Ed Hub [Skip to Content]
[Skip to Content Landing]

Plant-Based and Ketogenic Diets As Diverging Paths to Address CancerA Review

To identify the key insights or developments described in this article
1 Credit CME
Abstract

Importance  As the incidence of cancer and metabolic disorders, such as obesity, concurrently rise, there has been increasing awareness of the pervasive effect of nutrition. The whole foods plant-based diet (WFPBD) and ketogenic diet (KD) have gained popularity in oncology, and this topic is increasingly permeating clinical dialogue.

Observations  Dietary intake is associated with multiple pathways involved in carcinogenesis and tumor progression. Consumption of a plant-enriched diet is associated with reduced cancer incidence and is recommended by dietary guidelines for cancer prevention. Despite a starkly different nutrient composition, a WFPBD and KD can be associated with weight loss, decreased inflammation, and decreased insulin levels. In addition, a WFPBD is associated with increased fiber, phytochemicals, and butyrate levels and decreased insulin-like growth factor 1 levels, whereas a KD exerts potential anticancer effects by increasing β hydroxybutyrate levels. A KD may be of interest in select, less common settings, such as tumors treated with phosphatidylinositol 3-kinase inhibitors, which induce hyperinsulinemia and hyperglycemia. Completed interventional trials have focused on increasing fruit and vegetable intake or reducing fat intake but have not specifically tested WFPBD or KD for cancer prevention or treatment. Currently available data support plant-based diets as opposed to KD as part of a lifestyle associated with reduced cancer risk. In the postdiagnosis setting, there are currently no rigorously tested approaches that support the recommendation of any diet to treat cancer.

Conclusions and Relevance  The results of this review suggest that the collective evidence supports plant-enriched diets vs KD for the reduction of cancer risk and the improvement of metabolic disorders in survivors. Additional prospective randomized clinical trials are needed to encourage use of dietary modification across the cancer continuum. Rigorous trial designs that adapt classical oncologic end points may identify populations that are likely to benefit from starkly contrasting diets. Current data support prioritization of plant-based diets, and future data could further personalize dietary recommendations in cancer populations.

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 CME Credit™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

CME Disclosure Statement: Unless noted, all individuals in control of content reported no relevant financial relationships. If applicable, all relevant financial relationships have been mitigated.

Article Information

Accepted for Publication: March 29, 2022.

Published Online: July 7, 2022. doi:10.1001/jamaoncol.2022.1769

Corresponding Author: Urvi A. Shah, MD, Myeloma Service, Memorial Sloan Kettering Cancer Center, 530 E 74th St, New York, NY 10021 (shahu@mskcc.org).

Author Contributions: Drs Shah and Iyengar had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: All authors.

Acquisition, analysis, or interpretation of data: All authors.

Drafting of the manuscript: All authors.

Critical revision of the manuscript for important intellectual content: All authors.

Obtained funding: All authors.

Administrative, technical, or material support: All authors.

Supervision: Iyengar.

Conflict of Interest Disclosures: Dr Shah reported grants from Celgene/BMS and Janssen to her institution and personal fees from MJH Life Sciences, Association of Community Cancer Centers, MashUp MD, and Janssen Biotech outside the submitted work. Dr Iyengar reported grants from Novartis to his institution and personal fees from Novartis and Seattle Genetics outside the submitted work.

Funding/Support: Drs Shah and Iyengar are supported by the National Institutes of Health/National Cancer Institute Memorial Sloan Kettering Cancer Center Support grant P30 CA008748 and participated in the TREC Training Workshop (grant R25CA203650). Dr Shah is supported by research grants from International Myeloma Society Career Development Award, Paula and Rodger Riney Foundation, the Allen Foundation Inc, the HealthTree Foundation, the Parker Institute of Cancer Immunotherapy, and the National Cancer Institute MSK Paul Calabresi Career Development Award for Clinical Oncology (grant K12CA184746) to her institution. Dr Iyengar is supported by research grants from National Institutes of Health/National Cancer Institute (R01 CA235711, R01 CA241409), the American Cancer Society (Research Scholar Grant), the Breast Cancer Research Foundation, Novartis, and Kat’s Ribbon of Hope to his institution.

Role of the Funder/Sponsor: The funding organizations had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

References
1.
Zhang  FF , Cudhea  F , Shan  Z ,  et al.  Preventable cancer burden associated with poor diet in the United States.   JNCI Cancer Spectr. 2019;3(2):pkz034. doi:10.1093/jncics/pkz034PubMedGoogle ScholarCrossref
2.
Tantamango-Bartley  Y , Jaceldo-Siegl  K , Fan  J , Fraser  G .  Vegetarian diets and the incidence of cancer in a low-risk population.   Cancer Epidemiol Biomarkers Prev. 2013;22(2):286-294. doi:10.1158/1055-9965.EPI-12-1060PubMedGoogle ScholarCrossref
3.
Key  TJ , Appleby  PN , Crowe  FL , Bradbury  KE , Schmidt  JA , Travis  RC .  Cancer in British vegetarians: updated analyses of 4998 incident cancers in a cohort of 32,491 meat eaters, 8612 fish eaters, 18,298 vegetarians, and 2246 vegans.   Am J Clin Nutr. 2014;100(suppl 1):378S-385S. doi:10.3945/ajcn.113.071266PubMedGoogle ScholarCrossref
4.
Kane-Diallo  A , Srour  B , Sellem  L ,  et al.  Association between a pro plant-based dietary score and cancer risk in the prospective NutriNet-santé cohort.   Int J Cancer. 2018;143(9):2168-2176. doi:10.1002/ijc.31593PubMedGoogle ScholarCrossref
5.
Seidelmann  SB , Claggett  B , Cheng  S ,  et al.  Dietary carbohydrate intake and mortality: a prospective cohort study and meta-analysis.   Lancet Public Health. 2018;3(9):e419-e428. doi:10.1016/S2468-2667(18)30135-XPubMedGoogle ScholarCrossref
6.
Noto  H , Goto  A , Tsujimoto  T , Noda  M .  Low-carbohydrate diets and all-cause mortality: a systematic review and meta-analysis of observational studies.   PLoS One. 2013;8(1):e55030. doi:10.1371/journal.pone.0055030PubMedGoogle ScholarCrossref
7.
Levine  ME , Suarez  JA , Brandhorst  S ,  et al.  Low protein intake is associated with a major reduction in IGF-1, cancer, and overall mortality in the 65 and younger but not older population.   Cell Metab. 2014;19(3):407-417. doi:10.1016/j.cmet.2014.02.006PubMedGoogle ScholarCrossref
8.
Sun  Y , Liu  B , Snetselaar  LG ,  et al.  Association of major dietary protein sources with all-cause and cause-specific mortality: prospective cohort study.   J Am Heart Assoc. 2021;10(5):e015553. doi:10.1161/JAHA.119.015553PubMedGoogle ScholarCrossref
9.
Bouvard  V , Loomis  D , Guyton  KZ ,  et al; International Agency for Research on Cancer Monograph Working Group.  Carcinogenicity of consumption of red and processed meat.   Lancet Oncol. 2015;16(16):1599-1600. doi:10.1016/S1470-2045(15)00444-1PubMedGoogle ScholarCrossref
10.
Good  M , Braun  AC , Taylor  CA , Spees  CK .  US adults fall short of the dietary guidelines for cancer prevention regardless of BMI category.   J Acad Nutr Diet. 2021;S2212-2672(21)00120-9. doi:10.1016/j.jand.2021.02.013PubMedGoogle ScholarCrossref
11.
Lauby-Secretan  B , Scoccianti  C , Loomis  D , Grosse  Y , Bianchini  F , Straif  K ; International Agency for Research on Cancer Handbook Working Group.  Body fatness and cancer—viewpoint of the IARC Working Group.   N Engl J Med. 2016;375(8):794-798. doi:10.1056/NEJMsr1606602PubMedGoogle ScholarCrossref
12.
Sung  H , Siegel  RL , Rosenberg  PS , Jemal  A .  Emerging cancer trends among young adults in the USA: analysis of a population-based cancer registry.   Lancet Public Health. 2019;4(3):e137-e147. doi:10.1016/S2468-2667(18)30267-6PubMedGoogle ScholarCrossref
13.
Hall  KD , Guo  J , Courville  AB ,  et al.  Effect of a plant-based, low-fat diet versus an animal-based, ketogenic diet on ad libitum energy intake.   Nat Med. 2021;27(2):344-353. doi:10.1038/s41591-020-01209-1PubMedGoogle ScholarCrossref
14.
Johnston  BC , Kanters  S , Bandayrel  K ,  et al.  Comparison of weight loss among named diet programs in overweight and obese adults: a meta-analysis.   JAMA. 2014;312(9):923-933. doi:10.1001/jama.2014.10397PubMedGoogle ScholarCrossref
15.
Slavin  J , Green  H .  Dietary fibre and satiety.   Nutr Bull. 2007;32(s1):32-42. doi:10.1111/j.1467-3010.2007.00603.xGoogle ScholarCrossref
16.
Gibson  AA , Seimon  RV , Lee  CMY ,  et al.  Do ketogenic diets really suppress appetite? a systematic review and meta-analysis.   Obes Rev. 2015;16(1):64-76. doi:10.1111/obr.12230PubMedGoogle ScholarCrossref
17.
Klement  RJ , Champ  CE , Kämmerer  U ,  et al.  Impact of a ketogenic diet intervention during radiotherapy on body composition: III-final results of the KETOCOMP study for breast cancer patients.   Breast Cancer Res. 2020;22(1):94. doi:10.1186/s13058-020-01331-5PubMedGoogle ScholarCrossref
18.
Schreck  KC , Hsu  FC , Berrington  A ,  et al.  Feasibility and biological activity of a ketogenic/intermittent-fasting diet in patients with glioma.   Neurology. 2021;97(9):e953-e963. doi:10.1212/WNL.0000000000012386PubMedGoogle ScholarCrossref
19.
Freedland  SJ , Allen  J , Jarman  A ,  et al.  A randomized controlled trial of a 6-month low-carbohydrate intervention on disease progression in men with recurrent prostate cancer: Carbohydrate and Prostate Study 2 (CAPS2).   Clin Cancer Res. 2020;26(12):3035-3043. doi:10.1158/1078-0432.CCR-19-3873PubMedGoogle ScholarCrossref
20.
Ornish  D , Weidner  G , Fair  WR ,  et al.  Intensive lifestyle changes may affect the progression of prostate cancer.   J Urol. 2005;174(3):1065-1069. doi:10.1097/01.ju.0000169487.49018.73PubMedGoogle ScholarCrossref
21.
Johnston  CS , Tjonn  SL , Swan  PD , White  A , Hutchins  H , Sears  B .  Ketogenic low-carbohydrate diets have no metabolic advantage over nonketogenic low-carbohydrate diets.   Am J Clin Nutr. 2006;83(5):1055-1061. doi:10.1093/ajcn/83.5.1055PubMedGoogle ScholarCrossref
22.
Burén  J , Ericsson  M , Damasceno  NRT , Sjödin  A .  A ketogenic low-carbohydrate high-fat diet increases LDL cholesterol in healthy, young, normal-weight women: a randomized controlled feeding trial.   Nutrients. 2021;13(3):814. doi:10.3390/nu13030814PubMedGoogle ScholarCrossref
23.
Gardner  CD , Coulston  A , Chatterjee  L , Rigby  A , Spiller  G , Farquhar  JW .  The effect of a plant-based diet on plasma lipids in hypercholesterolemic adults: a randomized trial.   Ann Intern Med. 2005;142(9):725-733. doi:10.7326/0003-4819-142-9-200505030-00007PubMedGoogle ScholarCrossref
24.
Knuppel  A , Fensom  GK , Watts  EL ,  et al.  Circulating insulin-like growth factor-I concentrations and risk of 30 cancers: prospective analyses in UK Biobank.   Cancer Res. 2020;80(18):4014-4021. doi:10.1158/0008-5472.CAN-20-1281PubMedGoogle ScholarCrossref
25.
Guevara-Aguirre  J , Balasubramanian  P , Guevara-Aguirre  M ,  et al.  Growth hormone receptor deficiency is associated with a major reduction in pro-aging signaling, cancer, and diabetes in humans.   Sci Transl Med. 2011;3(70):70ra13. doi:10.1126/scitranslmed.3001845PubMedGoogle ScholarCrossref
26.
Allen  NE , Appleby  PN , Davey  GK , Kaaks  R , Rinaldi  S , Key  TJ .  The associations of diet with serum insulin-like growth factor I and its main binding proteins in 292 women meat-eaters, vegetarians, and vegans.   Cancer Epidemiol Biomarkers Prev. 2002;11(11):1441-1448.PubMedGoogle Scholar
27.
Fontana  L , Klein  S , Holloszy  JO .  Long-term low-protein, low-calorie diet and endurance exercise modulate metabolic factors associated with cancer risk.   Am J Clin Nutr. 2006;84(6):1456-1462. doi:10.1093/ajcn/84.6.1456PubMedGoogle ScholarCrossref
28.
Cohen  CW , Fontaine  KR , Arend  RC ,  et al.  A ketogenic diet reduces central obesity and serum insulin in women with ovarian or endometrial cancer.   J Nutr. 2018;148(8):1253-1260. doi:10.1093/jn/nxy119PubMedGoogle ScholarCrossref
29.
Rubio-Patiño  C , Bossowski  JP , De Donatis  GM ,  et al.  Low-protein diet induces IRE1α-dependent anticancer immunosurveillance.   Cell Metab. 2018;27(4):828-842.e7. doi:10.1016/j.cmet.2018.02.009PubMedGoogle ScholarCrossref
30.
Youngman  LD , Campbell  TC .  Inhibition of aflatoxin B1-induced gamma-glutamyl transpeptidase positive (GGT+) hepatic preneoplastic foci and tumors by low protein diets: evidence that altered GGT+ foci indicate neoplastic potential.   Carcinogenesis. 1992;13(9):1607-1613. doi:10.1093/carcin/13.9.1607PubMedGoogle ScholarCrossref
31.
Hopkins  BD , Pauli  C , Du  X ,  et al.  Suppression of insulin feedback enhances the efficacy of PI3K inhibitors.   Nature. 2018;560(7719):499-503. doi:10.1038/s41586-018-0343-4PubMedGoogle ScholarCrossref
32.
Kahleova  H , Petersen  KF , Shulman  GI ,  et al.  Effect of a low-fat vegan diet on body weight, insulin sensitivity, postprandial metabolism, and intramyocellular and hepatocellular lipid levels in overweight adults: a randomized clinical trial.   JAMA Netw Open. 2020;3(11):e2025454. doi:10.1001/jamanetworkopen.2020.25454PubMedGoogle ScholarCrossref
33.
Grandl  G , Straub  L , Rudigier  C ,  et al.  Short-term feeding of a ketogenic diet induces more severe hepatic insulin resistance than an obesogenic high-fat diet.   J Physiol. 2018;596(19):4597-4609. doi:10.1113/JP275173PubMedGoogle ScholarCrossref
34.
Aune  D , Keum  N , Giovannucci  E ,  et al.  Whole grain consumption and risk of cardiovascular disease, cancer, and all cause and cause specific mortality: systematic review and dose-response meta-analysis of prospective studies.   BMJ. 2016;353:i2716. doi:10.1136/bmj.i2716PubMedGoogle ScholarCrossref
35.
Bradbury  KE , Appleby  PN , Key  TJ .  Fruit, vegetable, and fiber intake in relation to cancer risk: findings from the European Prospective Investigation into Cancer and Nutrition (EPIC).   Am J Clin Nutr. 2014;100(suppl 1):394S-398S. doi:10.3945/ajcn.113.071357PubMedGoogle ScholarCrossref
36.
Spencer  CN , McQuade  JL , Gopalakrishnan  V ,  et al.  Dietary fiber and probiotics influence the gut microbiome and melanoma immunotherapy response.   Science. 2021;374(6575):1632-1640. doi:10.1126/science.aaz7015PubMedGoogle ScholarCrossref
37.
Coutzac  C , Jouniaux  JM , Paci  A ,  et al.  Systemic short chain fatty acids limit antitumor effect of CTLA-4 blockade in hosts with cancer.   Nat Commun. 2020;11(1):2168. doi:10.1038/s41467-020-16079-xPubMedGoogle ScholarCrossref
38.
O’Keefe  SJ , Li  JV , Lahti  L ,  et al.  Fat, fibre and cancer risk in African Americans and rural Africans.   Nat Commun. 2015;6:6342. doi:10.1038/ncomms7342PubMedGoogle ScholarCrossref
39.
Clemens  R , Kranz  S , Mobley  AR ,  et al.  Filling America’s fiber intake gap: summary of a roundtable to probe realistic solutions with a focus on grain-based foods.   J Nutr. 2012;142(7):1390S-1401S. doi:10.3945/jn.112.160176PubMedGoogle ScholarCrossref
40.
Forsythe  LK , Wallace  JM , Livingstone  MB .  Obesity and inflammation: the effects of weight loss.   Nutr Res Rev. 2008;21(2):117-133. doi:10.1017/S0954422408138732PubMedGoogle ScholarCrossref
41.
Aleksandrova  K , Koelman  L , Rodrigues  CE .  Dietary patterns and biomarkers of oxidative stress and inflammation: a systematic review of observational and intervention studies.   Redox Biol. 2021;42:101869. doi:10.1016/j.redox.2021.101869PubMedGoogle ScholarCrossref
42.
Barbaresko  J , Koch  M , Schulze  MB , Nöthlings  U .  Dietary pattern analysis and biomarkers of low-grade inflammation: a systematic literature review.   Nutr Rev. 2013;71(8):511-527. doi:10.1111/nure.12035PubMedGoogle ScholarCrossref
43.
Rosenbaum  M , Hall  KD , Guo  J ,  et al.  Glucose and lipid homeostasis and inflammation in humans following an pisocaloric ketogenic diet.   Obesity (Silver Spring). 2019;27(6):971-981. doi:10.1002/oby.22468PubMedGoogle ScholarCrossref
44.
Bondonno  NP , Dalgaard  F , Kyrø  C ,  et al.  Flavonoid intake is associated with lower mortality in the Danish Diet Cancer and Health Cohort.   Nat Commun. 2019;10(1):3651. doi:10.1038/s41467-019-11622-xPubMedGoogle ScholarCrossref
45.
Kopustinskiene  DM , Jakstas  V , Savickas  A , Bernatoniene  J .  Flavonoids as anticancer agents.   Nutrients. 2020;12(2):E457. doi:10.3390/nu12020457PubMedGoogle ScholarCrossref
46.
David  LA , Maurice  CF , Carmody  RN ,  et al.  Diet rapidly and reproducibly alters the human gut microbiome.   Nature. 2014;505(7484):559-563. doi:10.1038/nature12820PubMedGoogle ScholarCrossref
47.
McOrist  AL , Miller  RB , Bird  AR ,  et al.  Fecal butyrate levels vary widely among individuals but are usually increased by a diet high in resistant starch.   J Nutr. 2011;141(5):883-889. doi:10.3945/jn.110.128504PubMedGoogle ScholarCrossref
48.
Pryde  SE , Duncan  SH , Hold  GL , Stewart  CS , Flint  HJ .  The microbiology of butyrate formation in the human colon.   FEMS Microbiol Lett. 2002;217(2):133-139. doi:10.1111/j.1574-6968.2002.tb11467.xPubMedGoogle ScholarCrossref
49.
McQuade  JL , Daniel  CR , Helmink  BA , Wargo  JA .  Modulating the microbiome to improve therapeutic response in cancer.   Lancet Oncol. 2019;20(2):e77-e91. doi:10.1016/S1470-2045(18)30952-5PubMedGoogle ScholarCrossref
50.
Shah  U , Derkach  A , Adintori  P ,  et al.  P-042: sustained minimal residual disease negativity in multiple myeloma is impacted positively by stool butyrate and healthier plant forward diets.   Clinical Lymphoma Myeloma and Leukemia. 2021;21:S61. doi:10.1016/S2152-2650(21)02176-5Google ScholarCrossref
51.
Chriett  S , Dąbek  A , Wojtala  M , Vidal  H , Balcerczyk  A , Pirola  L .  Prominent action of butyrate over β-hydroxybutyrate as histone deacetylase inhibitor, transcriptional modulator and anti-inflammatory molecule.   Sci Rep. 2019;9(1):742. doi:10.1038/s41598-018-36941-9PubMedGoogle ScholarCrossref
52.
Ang  QY , Alexander  M , Newman  JC ,  et al.  Ketogenic diets alter the gut microbiome resulting in decreased intestinal Th17 cells.   Cell. 2020;181(6):1263-1275.e16. doi:10.1016/j.cell.2020.04.027PubMedGoogle ScholarCrossref
53.
Rodrigues  LM , Uribe-Lewis  S , Madhu  B , Honess  DJ , Stubbs  M , Griffiths  JR .  The action of β-hydroxybutyrate on the growth, metabolism and global histone H3 acetylation of spontaneous mouse mammary tumours: evidence of a β-hydroxybutyrate paradox.   Cancer Metab. 2017;5:4. doi:10.1186/s40170-017-0166-zPubMedGoogle ScholarCrossref
54.
Ferrere  G , Tidjani Alou  M , Liu  P ,  et al.  Ketogenic diet and ketone bodies enhance the anticancer effects of PD-1 blockade.   JCI Insight. 2021;6(2):145207. doi:10.1172/jci.insight.145207PubMedGoogle ScholarCrossref
55.
Xia  S , Lin  R , Jin  L ,  et al.  Prevention of dietary-fat-fueled ketogenesis attenuates BRAF V600E tumor growth.   Cell Metab. 2017;25(2):358-373. doi:10.1016/j.cmet.2016.12.010PubMedGoogle ScholarCrossref
56.
Bonuccelli  G , Tsirigos  A , Whitaker-Menezes  D ,  et al.  Ketones and lactate “fuel” tumor growth and metastasis: Evidence that epithelial cancer cells use oxidative mitochondrial metabolism.   Cell Cycle. 2010;9(17):3506-3514. doi:10.4161/cc.9.17.12731PubMedGoogle ScholarCrossref
57.
Martinez-Outschoorn  UE , Lin  Z , Whitaker-Menezes  D , Howell  A , Sotgia  F , Lisanti  MP .  Ketone body utilization drives tumor growth and metastasis.   Cell Cycle. 2012;11(21):3964-3971. doi:10.4161/cc.22137PubMedGoogle ScholarCrossref
58.
Klement  RJ , Champ  CE , Otto  C , Kämmerer  U .  Anti-tumor effects of ketogenic diets in mice: a meta-analysis.   PLoS One. 2016;11(5):e0155050. doi:10.1371/journal.pone.0155050PubMedGoogle ScholarCrossref
59.
Klement  RJ , Brehm  N , Sweeney  RA .  Ketogenic diets in medical oncology: a systematic review with focus on clinical outcomes.   Med Oncol. 2020;37(2):14. doi:10.1007/s12032-020-1337-2PubMedGoogle ScholarCrossref
60.
Chlebowski  RT , Reeves  MM .  Weight loss randomized intervention trials in female cancer survivors.   J Clin Oncol. 2016;34(35):4238-4248. doi:10.1200/JCO.2016.69.4026PubMedGoogle ScholarCrossref
61.
Frattaroli  J , Weidner  G , Dnistrian  AM ,  et al.  Clinical events in prostate cancer lifestyle trial: results from two years of follow-up.   Urology. 2008;72(6):1319-1323. doi:10.1016/j.urology.2008.04.050PubMedGoogle ScholarCrossref
62.
Ornish  D , Magbanua  MJ , Weidner  G ,  et al.  Changes in prostate gene expression in men undergoing an intensive nutrition and lifestyle intervention.   Proc Natl Acad Sci U S A. 2008;105(24):8369-8374. doi:10.1073/pnas.0803080105PubMedGoogle ScholarCrossref
63.
Ornish  D , Lin  J , Chan  JM ,  et al.  Effect of comprehensive lifestyle changes on telomerase activity and telomere length in men with biopsy-proven low-risk prostate cancer: 5-year follow-up of a descriptive pilot study.   Lancet Oncol. 2013;14(11):1112-1120. doi:10.1016/S1470-2045(13)70366-8PubMedGoogle ScholarCrossref
64.
Parsons  JK , Zahrieh  D , Mohler  JL ,  et al.  Effect of a behavioral intervention to increase vegetable consumption on cancer progression among men with early-stage prostate cancer: the MEAL randomized clinical trial.   JAMA. 2020;323(2):140-148. doi:10.1001/jama.2019.20207PubMedGoogle ScholarCrossref
65.
Chlebowski  RT , Aragaki  AK , Anderson  GL ,  et al.  Association of low-fat dietary pattern with breast cancer overall survival: a secondary analysis of the Women’s Health Initiative Randomized Clinical Trial.   JAMA Oncol. 2018;4(10):e181212-e181212. doi:10.1001/jamaoncol.2018.1212PubMedGoogle ScholarCrossref
66.
Pierce  JP , Natarajan  L , Caan  BJ ,  et al.  Influence of a diet very high in vegetables, fruit, and fiber and low in fat on prognosis following treatment for breast cancer: the Women’s Healthy Eating and Living (WHEL) randomized trial.   JAMA. 2007;298(3):289-298. doi:10.1001/jama.298.3.289PubMedGoogle ScholarCrossref
67.
Chlebowski  RT , Blackburn  GL , Thomson  CA ,  et al.  Dietary fat reduction and breast cancer outcome: interim efficacy results from the Women’s Intervention Nutrition Study.   J Natl Cancer Inst. 2006;98(24):1767-1776. doi:10.1093/jnci/djj494PubMedGoogle ScholarCrossref
68.
Chlebowski  RT , Blackburn  GL , Hoy  MK ,  et al.  Survival analyses from the Women’s Intervention Nutrition Study (WINS) evaluating dietary fat reduction and breast cancer outcome.   J Clin Oncol. 2008;26(15)(suppl):522-522. doi:10.1200/jco.2008.26.15_suppl.522Google ScholarCrossref
69.
Yang  YF , Mattamel  PB , Joseph  T ,  et al.  Efficacy of low-carbohydrate ketogenic diet as an adjuvant cancer therapy: a systematic review and meta-analysis of randomized controlled trials.   Nutrients. 2021;13(5):1388. doi:10.3390/nu13051388PubMedGoogle ScholarCrossref
70.
Kämmerer  U , Klement  RJ , Joos  FT , Sütterlin  M , Reuss-Borst  M .  Low carb and ketogenic diets increase quality of life, physical performance, body composition, and metabolic health of women with breast cancer.   Nutrients. 2021;13(3):1029. doi:10.3390/nu13031029PubMedGoogle ScholarCrossref
71.
Bruno  E , Krogh  V , Gargano  G ,  et al.  Adherence to dietary recommendations after one year of intervention in breast cancer women: the DIANA-5 Trial.   Nutrients. 2021;13(9):2990. doi:10.3390/nu13092990PubMedGoogle ScholarCrossref
72.
Vernieri  C , Fucà  G , Ligorio  F ,  et al.  Fasting-mimicking diet is safe and reshapes metabolism and antitumor immunity in patients with cancer.   Cancer Discov. 2022;12(1):90-107. doi:10.1158/2159-8290.CD-21-0030PubMedGoogle ScholarCrossref
73.
Lowe  DA , Wu  N , Rohdin-Bibby  L ,  et al.  Effects of time-restricted eating on weight loss and other metabolic parameters in women and men with overweight and obesity: the TREAT randomized clinical trial.   JAMA Intern Med. 2020;180(11):1491-1499. doi:10.1001/jamainternmed.2020.4153PubMedGoogle ScholarCrossref
74.
Nencioni  A , Caffa  I , Cortellino  S , Longo  VD .  Fasting and cancer: molecular mechanisms and clinical application.   Nat Rev Cancer. 2018;18(11):707-719. doi:10.1038/s41568-018-0061-0PubMedGoogle ScholarCrossref
75.
McDonald  D , Hyde  E , Debelius  JW ,  et al; American Gut Consortium.  American gut: an open platform for citizen science microbiome research.   mSystems. 2018;3(3):e00031-18. doi:10.1128/mSystems.00031-18PubMedGoogle ScholarCrossref
76.
Wright  N , Wilson  L , Smith  M , Duncan  B , McHugh  P .  The BROAD study: A randomised controlled trial using a whole food plant-based diet in the community for obesity, ischaemic heart disease or diabetes.   Nutr Diabetes. 2017;7(3):e256-e256. doi:10.1038/nutd.2017.3PubMedGoogle ScholarCrossref
77.
Ornish  D , Scherwitz  LW , Billings  JH ,  et al.  Intensive lifestyle changes for reversal of coronary heart disease.   JAMA. 1998;280(23):2001-2007. doi:10.1001/jama.280.23.2001PubMedGoogle ScholarCrossref
78.
Kim  H , Caulfield  LE , Garcia-Larsen  V , Steffen  LM , Coresh  J , Rebholz  CM .  Plant-based diets are associated with a lower risk of incident cardiovascular disease, cardiovascular disease mortality, and all-cause mortality in a general population of middle-aged adults.   J Am Heart Assoc. 2019;8(16):e012865. doi:10.1161/JAHA.119.012865PubMedGoogle ScholarCrossref
79.
Hawk  ET , Greenwood  A , Gritz  ER ,  et al; Translational Research Working Group.  The Translational Research Working Group developmental pathway for lifestyle alterations.   Clin Cancer Res. 2008;14(18):5707-5713. doi:10.1158/1078-0432.CCR-08-1262PubMedGoogle ScholarCrossref
80.
Rodgers  GP , Collins  FS .  Precision nutrition—the answer to “what to eat to stay healthy”.   JAMA. 2020;324(8):735-736. doi:10.1001/jama.2020.13601PubMedGoogle ScholarCrossref
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
Close
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close

Name Your Search

Save Search
Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Close

Lookup An Activity

or

Close

My Saved Searches

You currently have no searches saved.

Close

My Saved Courses

You currently have no courses saved.

Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close