Accepted for Publication: May 20, 2022.
Published Online: July 25, 2022. doi:10.1001/jamaneurol.2022.1936
Corresponding Author: Daniel M. Goldenholz, MD, PhD, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Baker 5, Boston, MA 02215 (daniel.goldenholz@bidmc.harvard.edu).
Author Contributions: Drs Goldenholz and Niesvizky-Kogan had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.
Concept and design: Niesvizky-Kogan, D. Goldenholz.
Acquisition, analysis, or interpretation of data: All authors.
Drafting of the manuscript: Niesvizky-Kogan, Bass.
Critical revision of the manuscript for important intellectual content: Niesvizky-Kogan, S. Goldenholz, D. Goldenholz.
Obtained funding: D. Goldenholz.
Administrative, technical, or material support: Niesvizky-Kogan, Bass, D. Goldenholz.
Supervision: D. Goldenholz.
Conflict of Interest Disclosures: None reported.
Funding/Support: This study was funded in part by the National Institutes of Health (grant KL2 5KL2TR002542).
Role of the Funder/Sponsor: The funder had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.
3.Institute of Medicine (US) Committee on the Public Health Dimensions of the Epilepsies, England MJ, Liverman CT, Schultz AM, Strawbridge LM, eds.
Epilepsy Across the Spectrum: Promoting Health and Understanding. National Academies Press; 2012. doi:
10.17226/13379 7.Heck
CN , King-Stephens
D , Massey
AD ,
et al. Two-year seizure reduction in adults with medically intractable partial onset epilepsy treated with responsive neurostimulation: final results of the RNS System Pivotal trial.
Epilepsia. 2014;55(3):432-441. doi:
10.1111/epi.12534PubMedGoogle ScholarCrossref 10.Neves
GS , Lunardi
MS , Lin
K , Rieger
DK , Ribeiro
LC , Moreira
JD . Ketogenic diet, seizure control, and cardiometabolic risk in adult patients with pharmacoresistant epilepsy: a review.
Nutr Rev. 2021;79(8):931-944. doi:
10.1093/nutrit/nuaa112PubMedGoogle ScholarCrossref 13.Health Quality Ontario. Epilepsy surgery: an evidence summary.
Ont Health Technol Assess Ser. 2012;12(17):1-28.
PubMedGoogle Scholar 23.Shankaran
S , Laptook
AR , Ehrenkranz
RA ,
et al; National Institute of Child Health and Human Development Neonatal Research Network. Whole-body hypothermia for neonates with hypoxic-ischemic encephalopathy.
N Engl J Med. 2005;353(15):1574-1584. doi:
10.1056/NEJMcps050929PubMedGoogle ScholarCrossref 27.Soriano
J , Kubo
T , Inoue
T ,
et al. Differential temperature sensitivity of synaptic and firing processes in a neural mass model of epileptic discharges explains heterogeneous response of experimental epilepsy to focal brain cooling.
PLoS Comput Biol. 2017;13(10):e1005736. doi:
10.1371/journal.pcbi.1005736PubMedGoogle ScholarCrossref 31.Nomura
S , Fujii
M , Inoue
T ,
et al. Changes in glutamate concentration, glucose metabolism, and cerebral blood flow during focal brain cooling of the epileptogenic cortex in humans.
Epilepsia. 2014;55(5):770-776. doi:
10.1111/epi.12600PubMedGoogle ScholarCrossref 48.Hou
KC , Chang
CW , Chiou
JC , Huang
YH , Shaw
FZ . Wireless and batteryless biomedical microsystem for neural recording and epilepsy suppression based on brain focal cooling.
IET Nanobiotechnol. 2011;5(4):143-147. doi:
10.1049/iet-nbt.2011.0017PubMedGoogle ScholarCrossref 52.Iaichnikov
IK . [Changes in the EEG of rabbits induced by local cooling or heating of the central thermosensory area].
Fiziol Zh SSSR Im I M Sechenova. 1979;65(2):224-229.
PubMedGoogle Scholar 54.Inoue
T , Fujii
M , He
Y ,
et al. Development of a focal cerebral cooling system for the treatment of intractable epilepsy: an experimental study in cats and non-human primates. 2011 IEEE International Conference on Systems, Man, and Cybernetics. Accessed June 15, 2022. doi:
10.1109/ICSMC.2011.6083721 72.Chang
C-W , Hou
K-C , Chou
L-C ,
et al. Miniaturized cortex cooling device and system for hypothermia therapy application on freely moving rat. 2012 IEEE Sensors. Accessed June 15, 2022. doi:
10.1109/ICSENS.2012.6411273 73.Nemoto
EM , Jungreis
C , Jovin
T ,
et al. Safety of direct local cooling (15° C) of the cerebral cortex with the Chillerstrip during focal cerebral ischemia in monkeys. In:
Oxygen Transport to Tissue XXVII. Springer US; 2006:317-322. doi:
10.1007/0-387-29540-2_50 78.Guerra
RA , Carey
V , Rubinsky
B ,
et al. Characterization of the focal cooling necessary to suppress spontaneous epileptiform activity. In: 7th ASME/JSME Thermal Engineering Conference/Summer Heat Transfer Conference. Am Soc Mechanical Engineers; 2007:375-384.
82.Cooke
DF , Goldring
AB , Yamayoshi
I ,
et al. Fabrication of an inexpensive, implantable cooling device for reversible brain deactivation in animals ranging from rodents to primates.
J Neurophysiol. 2012;107(12):3543-3558. doi:
10.1152/jn.01101.2011PubMedGoogle ScholarCrossref 83.Hata
K , Fujiwara
K , Kano
M ,
et al. Design of focal brain cooling system for suppressing epileptic seizures. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Accessed June 15, 2022. doi:
10.1109/EMBC.2017.8036817 85.Abe
T , Fujiwara
K , Inoue
T ,
et al. Optimal design of neuroprotective focal brain cooling device using surrogate model approach.
IEEE Transactions on Medical Robotics and Bionics. 2020;2(4):681-691. doi:
10.1109/TMRB.2020.3020687Google ScholarCrossref 92.Faghri
A . Heat Pipe Science and Technology. Global Digital Press; 2016.
93.Uchiyama
J , Fujii
M , Imoto
H ,
et al. Suppressive effect of a new focal cooling device with a heat pipe on epileptiform discharges in an experimental seizure model.
Epilepsia. 2007;48:94-95.
Google Scholar 94.Cattaneo
G , Schumacher
M , Maurer
C ,
et al. Endovascular cooling catheter for selective brain hypothermia: an animal feasibility study of cooling performance.
AJNR Am J Neuroradiol. 2016;37(5):885-891. doi:
10.3174/ajnr.A4625PubMedGoogle ScholarCrossref 96.Attaluri
A , Zhongping
H , Liang
Z . Evaluation of an interstitial cooling device for carotid arterial cooling using a tissue equivalent gel phantom.
J Therm Sci Eng Appl. 2010;2(1):11007. doi:
10.1115/1.4002196Google ScholarCrossref 98.Choi
JH , Marshall
RS , Neimark
MA ,
et al. Selective brain cooling with endovascular intracarotid infusion of cold saline: a pilot feasibility study.
AJNR Am J Neuroradiol. 2010;31(5):928-934. doi:
10.3174/ajnr.A1961PubMedGoogle ScholarCrossref 99.Dinis
H , Fernandes
J , Mendes
PM . Slot antenna design for a wirelessly powered implantable microcooler for neuronal applications. 11th European Conference on Antennas and Propagation (EUCAP). Accessed June 15, 2022.
https://ieeexplore.ieee.org/document/7928775 103.Yamakawa
T , Niwayama
M , Inoue
T ,
et al. Implantable electronics for diagnosis and treatment of intractable epilepsy. 6th International Conference on Electronics, Computers and Artificial Intelligence (ECAI); 2014.