Accepted for Publication: April 28, 2022.
Published Online: July 14, 2022. doi:10.1001/jamaoncol.2022.2398
Corresponding Author: Elias Jabbour, MD, Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Box 428, Houston, TX 77030 (ejabbour@mdanderson.org).
Author Contributions: Dr Jabbour had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.
Concept and design: Jabbour, Kantarjian.
Acquisition, analysis, or interpretation of data: Jabbour, Haddad, Short.
Drafting of the manuscript: Jabbour, Haddad.
Critical revision of the manuscript for important intellectual content: All authors.
Supervision: Jabbour, Kantarjian.
Other: Haddad.
Conflict of Interest Disclosures: Dr Jabbour reported grants from AbbVie, Adaptive Biotechnologies, Amgen, Pfizer, and Takeda, as well as personal fees from AbbVie, Adaptive Biotechnologies, Amgen, Bristol Myers Squibb, Genentech, Incyte, Novartis, Pfizer, and Takeda outside the submitted work. Dr Short reported grants from Takeda Oncology, Astellas, and Stemline, as well as personal fees from Amgen and Pfizer outside the submitted work. Dr Kantarjian reported grants from AbbVie, Amgen, Ascentage, Bristol Myers Squibb, Daiichi Sankyo, ImmunoGen, Jazz, Novartis, and Pfizer, as well as honoraria from AbbVie, Amgen, Aptitude Health, Ascentage, Astellas Health, AstraZeneca, Ipsen Biopharmaceuticals, KAHR Medical Ltd, NOVA Research, Novartis, Pfizer, Precision BioSciences, and Taiho Pharma Canada outside the submitted work. No other disclosures were reported.
6.Martinelli
G , Boissel
N , Chevallier
P ,
et al. Long-term follow-up of blinatumomab in patients with relapsed/refractory Philadelphia chromosome-positive B-cell precursor acute lymphoblastic leukaemia: final analysis of ALCANTARA study.
Eur J Cancer. 2021;146:107-114. doi:
10.1016/j.ejca.2020.12.022
PubMedGoogle ScholarCrossref 7.Stock
W , Martinelli
G , Stelljes
M ,
et al. Efficacy of inotuzumab ozogamicin in patients with Philadelphia chromosome-positive relapsed/refractory acute lymphoblastic leukemia.
Cancer. 2021;127(6):905-913. doi:
10.1002/cncr.33321
PubMedGoogle ScholarCrossref 8.Thomas
DA , Kantarjian
HM , Cortes
J ,
et al. Outcome after frontline therapy with the hyper-CVAD and imatinib mesylate regimen for adults with de novo or minimally treated Philadelphia chromosome (Ph) positive acute lymphoblastic leukemia (ALL).
Blood. 2008;112(11):2931. doi:
10.1182/blood.V112.11.2931.2931Google ScholarCrossref 10.Thomas
DA , Kantarjian
HM , Cortes
J ,
et al. Outcome with the hyper-CVAD and imatinib mesylate regimen as frontline therapy for adult Philadelphia (Ph) positive acute lymphocytic leukemia (ALL).
Blood. 2006;108(11):284. doi:
10.1182/blood.V108.11.284.284Google ScholarCrossref 11.Daver
N , Thomas
D , Ravandi
F ,
et al. Final report of a phase II study of imatinib mesylate with hyper-CVAD for the front-line treatment of adult patients with Philadelphia chromosome-positive acute lymphoblastic leukemia.
Haematologica. 2015;100(5):653-661. doi:
10.3324/haematol.2014.118588
PubMedGoogle ScholarCrossref 12.Lee
KH , Lee
JH , Choi
SJ ,
et al. Clinical effect of imatinib added to intensive combination chemotherapy for newly diagnosed Philadelphia chromosome-positive acute lymphoblastic leukemia.
Leukemia. 2005;19(9):1509-1516. doi:
10.1038/sj.leu.2403886
PubMedGoogle ScholarCrossref 13.Yanada
M , Takeuchi
J , Sugiura
I ,
et al; Japan Adult Leukemia Study Group. High complete remission rate and promising outcome by combination of imatinib and chemotherapy for newly diagnosed BCR-ABL-positive acute lymphoblastic leukemia: a phase II study by the Japan Adult Leukemia Study Group.
J Clin Oncol. 2006;24(3):460-466. doi:
10.1200/JCO.2005.03.2177
PubMedGoogle ScholarCrossref 14.Bassan
R , Rossi
G , Pogliani
EM ,
et al. Chemotherapy-phased imatinib pulses improve long-term outcome of adult patients with Philadelphia chromosome-positive acute lymphoblastic leukemia: Northern Italy Leukemia Group protocol 09/00.
J Clin Oncol. 2010;28(22):3644-3652. doi:
10.1200/JCO.2010.28.1287
PubMedGoogle ScholarCrossref 16.de Labarthe
A , Rousselot
P , Huguet-Rigal
F ,
et al; Group for Research on Adult Acute Lymphoblastic Leukemia (GRAALL). Imatinib combined with induction or consolidation chemotherapy in patients with de novo Philadelphia chromosome-positive acute lymphoblastic leukemia: results of the GRAAPH-2003 study.
Blood. 2007;109(4):1408-1413. doi:
10.1182/blood-2006-03-011908
PubMedGoogle ScholarCrossref 17.Tanguy-Schmidt
A , Rousselot
P , Chalandon
Y ,
et al. Long-term follow-up of the imatinib GRAAPH-2003 study in newly diagnosed patients with de novo Philadelphia chromosome-positive acute lymphoblastic leukemia: a GRAALL study.
Biol Blood Marrow Transplant. 2013;19(1):150-155. doi:
10.1016/j.bbmt.2012.08.021
PubMedGoogle ScholarCrossref 18.Lim
S-N , Joo
Y-D , Lee
K-H ,
et al. Long-term follow-up of imatinib plus combination chemotherapy in patients with newly diagnosed Philadelphia chromosome-positive acute lymphoblastic leukemia.
Am J Hematol. 2015;90(11):1013-1020. doi:
10.1002/ajh.24137
PubMedGoogle ScholarCrossref 19.Chalandon
Y , Thomas
X , Hayette
S ,
et al; Group for Research on Adult Acute Lymphoblastic Leukemia (GRAALL). Randomized study of reduced-intensity chemotherapy combined with imatinib in adults with Ph-positive acute lymphoblastic leukemia.
Blood. 2015;125(24):3711-3719. doi:
10.1182/blood-2015-02-627935
PubMedGoogle ScholarCrossref 20.Vignetti
M , Fazi
P , Cimino
G ,
et al. Imatinib plus steroids induces complete remissions and prolonged survival in elderly Philadelphia chromosome-positive patients with acute lymphoblastic leukemia without additional chemotherapy: results of the Gruppo Italiano Malattie Ematologiche dell’Adulto (GIMEMA) LAL0201-B protocol.
Blood. 2007;109(9):3676-3678. doi:
10.1182/blood-2006-10-052746
PubMedGoogle ScholarCrossref 21.Ravandi
F , O’Brien
SM , Cortes
JE ,
et al. Long-term follow-up of a phase 2 study of chemotherapy plus dasatinib for the initial treatment of patients with Philadelphia chromosome-positive acute lymphoblastic leukemia.
Cancer. 2015;121(23):4158-4164. doi:
10.1002/cncr.29646
PubMedGoogle ScholarCrossref 23.Foà
R , Vitale
A , Vignetti
M ,
et al; GIMEMA Acute Leukemia Working Party. Dasatinib as first-line treatment for adult patients with Philadelphia chromosome-positive acute lymphoblastic leukemia.
Blood. 2011;118(25):6521-6528. doi:
10.1182/blood-2011-05-351403
PubMedGoogle ScholarCrossref 24.Rousselot
P , Coudé
MM , Gokbuget
N ,
et al; European Working Group on Adult ALL (EWALL) group. Dasatinib and low-intensity chemotherapy in elderly patients with Philadelphia chromosome-positive ALL.
Blood. 2016;128(6):774-782. doi:
10.1182/blood-2016-02-700153
PubMedGoogle ScholarCrossref 25.Chiaretti
S , Vitale
A , Elia
L ,
et al. Multicenter total therapy Gimema LAL 1509 protocol for de novo adult Ph+ acute lymphoblastic leukemia (ALL) patients: updated results and refined genetic-based prognostic stratification.
Blood. 2015;126(23):81. doi:
10.1182/blood.V126.23.81.81Google ScholarCrossref 26.Kim
D-Y , Joo
Y-D , Lim
S-N ,
et al; Adult Acute Lymphoblastic Leukemia Working Party of the Korean Society of Hematology. Nilotinib combined with multiagent chemotherapy for newly diagnosed Philadelphia-positive acute lymphoblastic leukemia.
Blood. 2015;126(6):746-756. doi:
10.1182/blood-2015-03-636548
PubMedGoogle ScholarCrossref 27.Liu
B , Wang
Y , Zhou
C ,
et al. Nilotinib combined with multi-agent chemotherapy in newly diagnosed Philadelphia chromosome-positive acute lymphoblastic leukemia: a single-center prospective study with long-term follow-up.
Ann Hematol. 2019;98(3):633-645. doi:
10.1007/s00277-019-03594-1
PubMedGoogle ScholarCrossref 28.Ottmann
OG , Pfeifer
H , Cayuela
J-M ,
et al. Nilotinib (Tasigna®) and low intensity chemotherapy for first-line treatment of elderly patients with
BCR-ABL1-positive acute lymphoblastic leukemia: final results of a prospective multicenter trial (EWALL-PH02).
Blood. 2018;132(suppl 1):31. doi:
10.1182/blood-2018-99-114552Google ScholarCrossref 29.Chalandon
Y , Rousselot
P , Cayuela
JM ,
et al. Nilotinib combined with lower-intensity chemotherapy for front-line treatment of younger adults with Ph-positive acute lymphoblastic leukemia (ALL): interim analysis of the GRAAPH-2014 trial. Poster presented at: 23rd Congress of the European Hematology Association; June 16, 2018; Stockholm, Sweden.
30.Rousselot
P , Chalandon
Y , Chevret
S ,
et al. The omission of high-dose cytarabine during consolidation therapy of Ph-positive ALL patients treated with nilotinib and low-intensity chemotherapy results in an increased risk of relapses despite non-inferior levels of late
BCR-ABL1 mrd response: first results of the randomized Graaph-2014 study.
Blood. 2021;138(suppl 1):512. doi:
10.1182/blood-2021-148843Google ScholarCrossref 31.Short
NJ , Kantarjian
H , Ravandi
F ,
et al. Long-term safety and efficacy of hyper-CVAD plus ponatinib as frontline therapy for adults with Philadelphia chromosome-positive acute lymphoblastic leukemia.
Blood. 2019;134(suppl 1):283. doi:
10.1182/blood-2019-125146Google ScholarCrossref 32.Ribera
J-M , Garcia
O , Ribera
J ,
et al. Ponatinib and chemotherapy in adults with
de novo Philadelphia chromosome-positive acute lymphoblastic leukemia: final results of PONALFIL clinical trial.
Blood. 2021;138(suppl 1):1230. doi:
10.1182/blood-2021-148310Google ScholarCrossref 34.Ottmann
O , Dombret
H , Martinelli
G ,
et al. Dasatinib induces rapid hematologic and cytogenetic responses in adult patients with Philadelphia chromosome positive acute lymphoblastic leukemia with resistance or intolerance to imatinib: interim results of a phase 2 study.
Blood. 2007;110(7):2309-2315. doi:
10.1182/blood-2007-02-073528
PubMedGoogle ScholarCrossref 35.Short
NJ , Kantarjian
H , Jabbour
E , Ravandi
F . Which tyrosine kinase inhibitor should we use to treat Philadelphia chromosome-positive acute lymphoblastic leukemia?
Best Pract Res Clin Haematol. 2017;30(3):193-200. doi:
10.1016/j.beha.2017.05.001
PubMedGoogle ScholarCrossref 36.Kantarjian
HM , Hughes
TP , Larson
RA ,
et al. Long-term outcomes with frontline nilotinib versus imatinib in newly diagnosed chronic myeloid leukemia in chronic phase: ENESTnd 10-year analysis.
Leukemia. 2021;35(2):440-453. doi:
10.1038/s41375-020-01111-2
PubMedGoogle ScholarCrossref 38.Ravandi
F , O’Brien
S , Thomas
D ,
et al. First report of phase 2 study of dasatinib with hyper-CVAD for the frontline treatment of patients with Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia.
Blood. 2010;116(12):2070-2077. doi:
10.1182/blood-2009-12-261586
PubMedGoogle ScholarCrossref 39.Chiaretti
S , Ansuinelli
M , Vitale
A ,
et al. A multicenter total therapy strategy for
de novo adult Philadelphia chromosome positive acute lymphoblastic leukemia patients: final results of the GIMEMA LAL1509 protocol.
Haematologica. 2021;106(7):1828-1838. doi:
10.3324/haematol.2020.260935
PubMedGoogle ScholarCrossref 41.Gong
X , Li
L , Wei
H ,
et al. A higher dose of dasatinib may increase the possibility of crossing the blood-brain barrier in the treatment of patients with Philadelphia chromosome-positive acute lymphoblastic leukemia.
Clin Ther. 2021;43(7):1265-1271. doi:
10.1016/j.clinthera.2021.05.009
PubMedGoogle ScholarCrossref 42.O’Hare
T , Shakespeare
WC , Zhu
X ,
et al. AP24534, a pan-BCR-ABL inhibitor for chronic myeloid leukemia, potently inhibits the T315I mutant and overcomes mutation-based resistance.
Cancer Cell. 2009;16(5):401-412. doi:
10.1016/j.ccr.2009.09.028
PubMedGoogle ScholarCrossref 43.Jabbour
E , Short
NJ , Ravandi
F ,
et al. Combination of hyper-CVAD with ponatinib as first-line therapy for patients with Philadelphia chromosome-positive acute lymphoblastic leukaemia: long-term follow-up of a single-centre, phase 2 study.
Lancet Haematol. 2018;5(12):e618-e627. doi:
10.1016/S2352-3026(18)30176-5
PubMedGoogle ScholarCrossref 44.Patel
B , Kirkwood
AA , Dey
A ,
et al. Pegylated-asparaginase during induction therapy for adult acute lymphoblastic leukaemia: toxicity data from the UKALL14 trial.
Leukemia. 2017;31(1):58-64. doi:
10.1038/leu.2016.219
PubMedGoogle ScholarCrossref 47.Jabbour
E , Kantarjian
H , Ravandi
F ,
et al. Combination of hyper-CVAD with ponatinib as first-line therapy for patients with Philadelphia chromosome-positive acute lymphoblastic leukaemia: a single-centre, phase 2 study.
Lancet Oncol. 2015;16(15):1547-1555. doi:
10.1016/S1470-2045(15)00207-7
PubMedGoogle ScholarCrossref 48.Sasaki
K , Jabbour
EJ , Ravandi
F ,
et al. Hyper-CVAD plus ponatinib versus hyper-CVAD plus dasatinib as frontline therapy for patients with Philadelphia chromosome-positive acute lymphoblastic leukemia: a propensity score analysis.
Cancer. 2016;122(23):3650-3656. doi:
10.1002/cncr.30231
PubMedGoogle ScholarCrossref 49.Jabbour
E , DerSarkissian
M , Duh
MS ,
et al. Efficacy of ponatinib versus earlier generation tyrosine kinase inhibitors for front-line treatment of newly diagnosed Philadelphia-positive acute lymphoblastic leukemia.
Clin Lymphoma Myeloma Leuk. 2018;18(4):257-265. doi:
10.1016/j.clml.2018.02.010
PubMedGoogle ScholarCrossref 50.Jabbour
E , Martinelli
G , Vignetti
M ,
et al. ALL-132: ponatinib versus imatinib with reduced-intensity chemotherapy in patients with newly diagnosed Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia (ALL): PhALLCON study.
Clin Lymphoma Myeloma Leuk. 2021;21(suppl 1):S269. doi:
10.1016/S2152-2650(21)01653-0
Google ScholarCrossref 51.Assi
R , Kantarjian
H , Short
NJ ,
et al. Safety and efficacy of blinatumomab in combination with a tyrosine kinase inhibitor for the treatment of relapsed Philadelphia chromosome-positive leukemia.
Clin Lymphoma Myeloma Leuk. 2017;17(12):897-901. doi:
10.1016/j.clml.2017.08.101
PubMedGoogle ScholarCrossref 52.McCloskey
JK , Gagnon
J , McCabe
T ,
et al. Blinatumomab in combination with tyrosine kinase inhibitors safely and effectively induces rapid, deep, and durable molecular responses in relapsed and refractory Philadelphia positive acute leukemias.
Blood. 2019;134(suppl 1):3812. doi:
10.1182/blood-2019-131838Google ScholarCrossref 55.Chiaretti
S , Bassan
R , Vitale
A ,
et al. Updated results of the GIMEMA LAL2116 D-ALBA trial for newly diagnosed adults with Ph+ ALL.
HemaSphere. 2021;5(suppl 1):e566.
Google Scholar 56.Short
NJ , Kantarjian
H , Konopleva
M ,
et al. Updated results of a phase II study of ponatinib and blinatumomab for patients with Philadelphia chromosome-positive acute lymphoblastic leukemia.
Blood. 2021;138(suppl 1):2298. doi:
10.1182/blood-2021-153795Google ScholarCrossref 60.DeBoer
R , Koval
G , Mulkey
F ,
et al. Clinical impact of ABL1 kinase domain mutations and IKZF1 deletion in adults under age 60 with Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia (ALL): molecular analysis of CALGB (Alliance) 10001 and 9665.
Leuk Lymphoma. 2016;57(10):2298-2306. doi:
10.3109/10428194.2016.1144881
PubMedGoogle ScholarCrossref 61.Li
H , Zhang
W , Kuang
P ,
et al. Combination of IKZF1 deletion and early molecular response show significant roles on prognostic stratification in Philadelphia chromosome-positive acute lymphoblastic leukemia patients.
Leuk Lymphoma. 2018;59(8):1890-1898. doi:
10.1080/10428194.2017.1406933
PubMedGoogle ScholarCrossref 62.Sasaki
Y , Kantarjian
HM , Short
NJ ,
et al. Genetic correlates in patients with Philadelphia chromosome-positive acute lymphoblastic leukemia treated with Hyper-CVAD plus dasatinib or ponatinib.
Leukemia. 2022;36(5):1253-1260. doi:
10.1038/s41375-021-01496-8
PubMedGoogle ScholarCrossref 63.Slayton
WB , Schultz
KR , Kairalla
JA ,
et al. Dasatinib plus intensive chemotherapy in children, adolescents, and young adults with Philadelphia chromosome-positive acute lymphoblastic leukemia: results of Children’s Oncology Group Trial AALL0622.
J Clin Oncol. 2018;36(22):2306-2314. doi:
10.1200/JCO.2017.76.7228
PubMedGoogle ScholarCrossref 64.Paul
S , Kantarjian
H , Sasaki
K ,
et al. Intrathecal prophylaxis with 12 versus 8 administrations reduces the incidence of central nervous system relapse in patients with newly diagnosed Philadelphia chromosome positive acute lymphoblastic leukemia.
Am J Hematol. Published online May 28, 2022. doi:
10.1002/ajh.26622PubMedGoogle ScholarCrossref 66.Sasaki
K , Kantarjian
HM , Short
NJ ,
et al. Prognostic factors for progression in patients with Philadelphia chromosome-positive acute lymphoblastic leukemia in complete molecular response within 3 months of therapy with tyrosine kinase inhibitors.
Cancer. 2021;127(15):2648-2656. doi:
10.1002/cncr.33529
PubMedGoogle ScholarCrossref 67.Cazzaniga
G , De Lorenzo
P , Alten
J ,
et al. Predictive value of minimal residual disease in Philadelphia-chromosome-positive acute lymphoblastic leukemia treated with imatinib in the European intergroup study of post-induction treatment of Philadelphia-chromosome-positive acute lymphoblastic leukemia, based on immunoglobulin/T-cell receptor and BCR/ABL1 methodologies.
Haematologica. 2018;103(1):107-115. doi:
10.3324/haematol.2017.176917
PubMedGoogle ScholarCrossref 69.Zaliova
M , Fronkova
E , Krejcikova
K ,
et al. Quantification of fusion transcript reveals a subgroup with distinct biological properties and predicts relapse in BCR/ABL-positive ALL: implications for residual disease monitoring.
Leukemia. 2009;23(5):944-951. doi:
10.1038/leu.2008.386
PubMedGoogle ScholarCrossref 70.Haddad
FG , Sasaki
K , Issa
GC ,
et al. Treatment-free remission in patients with chronic myeloid leukemia following the discontinuation of tyrosine kinase inhibitors.
Am J Hematol. Published online March 31, 2022. doi:
10.1002/ajh.26550
PubMedGoogle ScholarCrossref