[Skip to Content]
[Skip to Content Landing]

Treatment of Adults With Philadelphia Chromosome–Positive Acute Lymphoblastic Leukemia—From Intensive Chemotherapy Combinations to Chemotherapy-Free RegimensA Review

To identify the key insights or developments described in this article
1 Credit CME
Abstract

Importance  With the advent of potent BCR::ABL1 tyrosine kinase inhibitors (TKIs), Philadelphia chromosome-positive (Ph-positive) acute lymphoblastic leukemia (ALL) is now a relatively favorable-risk acute leukemia. In this review, we discuss the current evidence for frontline therapies of Ph-positive ALL, the major principles that guide therapy, and the progress with chemotherapy-free regimens.

Observations  Incorporating TKIs into the chemotherapy regimens of patients with newly diagnosed Ph-positive ALL has led to improved remission rates, higher probability of reaching allogeneic stem cell transplantation (SCT), and longer survival compared with chemotherapy alone. Early achievement of a complete molecular remission (CMR) is an important end point in Ph-positive ALL and identifies patients who have excellent long-term survival and may not need allogeneic SCT. Second-generation TKIs combined with intensive or low-intensity chemotherapy resulted in higher CMR rates compared with imatinib-based regimens. This translated into better outcomes, with less reliance on allogeneic SCT. To further improve the outcomes, the potent third-generation TKI ponatinib was added to chemotherapy. The combination of hyper-CVAD and ponatinib resulted in an overall CMR rate of 84% and a 5-year survival rate of 73% and 86% among patients who did and did not undergo allogeneic SCT, respectively, suggesting that allogeneic SCT may not be needed with this regimen. The recent chemotherapy-free combination of dasatinib and blinatumomab was safe and effective in patients with newly diagnosed Ph-positive ALL and resulted in an estimated 3-year OS rate of 80%; 50% of patients underwent allogeneic SCT. The chemotherapy-free regimen of ponatinib and blinatumomab resulted in a CMR rate of 86% and a 2-year survival rate of 93%, with no relapses or leukemia-related deaths, and with only 1 patient proceeding to allogeneic SCT.

Conclusions and Relevance  The promising results obtained with the chemotherapy-free regimens of blinatumomab plus TKIs question the role of allogeneic SCT in first remission. Patients with Ph-positive ALL who achieve early and deep molecular responses have excellent long-term outcomes and may not benefit from allogeneic SCT.

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 Credit(s)™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

CME Disclosure Statement: Unless noted, all individuals in control of content reported no relevant financial relationships. If applicable, all relevant financial relationships have been mitigated.

Article Information

Accepted for Publication: April 28, 2022.

Published Online: July 14, 2022. doi:10.1001/jamaoncol.2022.2398

Corresponding Author: Elias Jabbour, MD, Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Box 428, Houston, TX 77030 (ejabbour@mdanderson.org).

Author Contributions: Dr Jabbour had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: Jabbour, Kantarjian.

Acquisition, analysis, or interpretation of data: Jabbour, Haddad, Short.

Drafting of the manuscript: Jabbour, Haddad.

Critical revision of the manuscript for important intellectual content: All authors.

Supervision: Jabbour, Kantarjian.

Other: Haddad.

Conflict of Interest Disclosures: Dr Jabbour reported grants from AbbVie, Adaptive Biotechnologies, Amgen, Pfizer, and Takeda, as well as personal fees from AbbVie, Adaptive Biotechnologies, Amgen, Bristol Myers Squibb, Genentech, Incyte, Novartis, Pfizer, and Takeda outside the submitted work. Dr Short reported grants from Takeda Oncology, Astellas, and Stemline, as well as personal fees from Amgen and Pfizer outside the submitted work. Dr Kantarjian reported grants from AbbVie, Amgen, Ascentage, Bristol Myers Squibb, Daiichi Sankyo, ImmunoGen, Jazz, Novartis, and Pfizer, as well as honoraria from AbbVie, Amgen, Aptitude Health, Ascentage, Astellas Health, AstraZeneca, Ipsen Biopharmaceuticals, KAHR Medical Ltd, NOVA Research, Novartis, Pfizer, Precision BioSciences, and Taiho Pharma Canada outside the submitted work. No other disclosures were reported.

References
1.
Short  NJ , Kantarjian  H , Jabbour  E .  Optimizing the treatment of acute lymphoblastic leukemia in younger and older adults: new drugs and evolving paradigms.   Leukemia. 2021;35(11):3044-3058. doi:10.1038/s41375-021-01277-3 PubMedGoogle ScholarCrossref
2.
Jabbour  E , Pui  C-H , Kantarjian  H .  Progress and innovations in the management of adult acute lymphoblastic leukemia.   JAMA Oncol. 2018;4(10):1413-1420. doi:10.1001/jamaoncol.2018.1915 PubMedGoogle ScholarCrossref
3.
Samra  B , Jabbour  E , Ravandi  F , Kantarjian  H , Short  NJ .  Evolving therapy of adult acute lymphoblastic leukemia: state-of-the-art treatment and future directions.   J Hematol Oncol. 2020;13(1):70. doi:10.1186/s13045-020-00905-2 PubMedGoogle ScholarCrossref
4.
Kantarjian  H , Stein  A , Gökbuget  N ,  et al.  Blinatumomab versus chemotherapy for advanced acute lymphoblastic leukemia.   N Engl J Med. 2017;376(9):836-847. doi:10.1056/NEJMoa1609783 PubMedGoogle ScholarCrossref
5.
Kantarjian  HM , DeAngelo  DJ , Stelljes  M ,  et al.  Inotuzumab ozogamicin versus standard therapy for acute lymphoblastic leukemia.   N Engl J Med. 2016;375(8):740-753. doi:10.1056/NEJMoa1509277 PubMedGoogle ScholarCrossref
6.
Martinelli  G , Boissel  N , Chevallier  P ,  et al.  Long-term follow-up of blinatumomab in patients with relapsed/refractory Philadelphia chromosome-positive B-cell precursor acute lymphoblastic leukaemia: final analysis of ALCANTARA study.   Eur J Cancer. 2021;146:107-114. doi:10.1016/j.ejca.2020.12.022 PubMedGoogle ScholarCrossref
7.
Stock  W , Martinelli  G , Stelljes  M ,  et al.  Efficacy of inotuzumab ozogamicin in patients with Philadelphia chromosome-positive relapsed/refractory acute lymphoblastic leukemia.   Cancer. 2021;127(6):905-913. doi:10.1002/cncr.33321 PubMedGoogle ScholarCrossref
8.
Thomas  DA , Kantarjian  HM , Cortes  J ,  et al.  Outcome after frontline therapy with the hyper-CVAD and imatinib mesylate regimen for adults with de novo or minimally treated Philadelphia chromosome (Ph) positive acute lymphoblastic leukemia (ALL).   Blood. 2008;112(11):2931. doi:10.1182/blood.V112.11.2931.2931Google ScholarCrossref
9.
Thomas  DA , Faderl  S , Cortes  J ,  et al.  Treatment of Philadelphia chromosome-positive acute lymphocytic leukemia with hyper-CVAD and imatinib mesylate.   Blood. 2004;103(12):4396-4407. doi:10.1182/blood-2003-08-2958 PubMedGoogle ScholarCrossref
10.
Thomas  DA , Kantarjian  HM , Cortes  J ,  et al.  Outcome with the hyper-CVAD and imatinib mesylate regimen as frontline therapy for adult Philadelphia (Ph) positive acute lymphocytic leukemia (ALL).   Blood. 2006;108(11):284. doi:10.1182/blood.V108.11.284.284Google ScholarCrossref
11.
Daver  N , Thomas  D , Ravandi  F ,  et al.  Final report of a phase II study of imatinib mesylate with hyper-CVAD for the front-line treatment of adult patients with Philadelphia chromosome-positive acute lymphoblastic leukemia.   Haematologica. 2015;100(5):653-661. doi:10.3324/haematol.2014.118588 PubMedGoogle ScholarCrossref
12.
Lee  KH , Lee  JH , Choi  SJ ,  et al.  Clinical effect of imatinib added to intensive combination chemotherapy for newly diagnosed Philadelphia chromosome-positive acute lymphoblastic leukemia.   Leukemia. 2005;19(9):1509-1516. doi:10.1038/sj.leu.2403886 PubMedGoogle ScholarCrossref
13.
Yanada  M , Takeuchi  J , Sugiura  I ,  et al; Japan Adult Leukemia Study Group.  High complete remission rate and promising outcome by combination of imatinib and chemotherapy for newly diagnosed BCR-ABL-positive acute lymphoblastic leukemia: a phase II study by the Japan Adult Leukemia Study Group.   J Clin Oncol. 2006;24(3):460-466. doi:10.1200/JCO.2005.03.2177 PubMedGoogle ScholarCrossref
14.
Bassan  R , Rossi  G , Pogliani  EM ,  et al.  Chemotherapy-phased imatinib pulses improve long-term outcome of adult patients with Philadelphia chromosome-positive acute lymphoblastic leukemia: Northern Italy Leukemia Group protocol 09/00.   J Clin Oncol. 2010;28(22):3644-3652. doi:10.1200/JCO.2010.28.1287 PubMedGoogle ScholarCrossref
15.
Fielding  AK , Rowe  JM , Buck  G ,  et al.  UKALLXII/ECOG2993: addition of imatinib to a standard treatment regimen enhances long-term outcomes in Philadelphia positive acute lymphoblastic leukemia.   Blood. 2014;123(6):843-850. doi:10.1182/blood-2013-09-529008 PubMedGoogle ScholarCrossref
16.
de Labarthe  A , Rousselot  P , Huguet-Rigal  F ,  et al; Group for Research on Adult Acute Lymphoblastic Leukemia (GRAALL).  Imatinib combined with induction or consolidation chemotherapy in patients with de novo Philadelphia chromosome-positive acute lymphoblastic leukemia: results of the GRAAPH-2003 study.   Blood. 2007;109(4):1408-1413. doi:10.1182/blood-2006-03-011908 PubMedGoogle ScholarCrossref
17.
Tanguy-Schmidt  A , Rousselot  P , Chalandon  Y ,  et al.  Long-term follow-up of the imatinib GRAAPH-2003 study in newly diagnosed patients with de novo Philadelphia chromosome-positive acute lymphoblastic leukemia: a GRAALL study.   Biol Blood Marrow Transplant. 2013;19(1):150-155. doi:10.1016/j.bbmt.2012.08.021 PubMedGoogle ScholarCrossref
18.
Lim  S-N , Joo  Y-D , Lee  K-H ,  et al.  Long-term follow-up of imatinib plus combination chemotherapy in patients with newly diagnosed Philadelphia chromosome-positive acute lymphoblastic leukemia.   Am J Hematol. 2015;90(11):1013-1020. doi:10.1002/ajh.24137 PubMedGoogle ScholarCrossref
19.
Chalandon  Y , Thomas  X , Hayette  S ,  et al; Group for Research on Adult Acute Lymphoblastic Leukemia (GRAALL).  Randomized study of reduced-intensity chemotherapy combined with imatinib in adults with Ph-positive acute lymphoblastic leukemia.   Blood. 2015;125(24):3711-3719. doi:10.1182/blood-2015-02-627935 PubMedGoogle ScholarCrossref
20.
Vignetti  M , Fazi  P , Cimino  G ,  et al.  Imatinib plus steroids induces complete remissions and prolonged survival in elderly Philadelphia chromosome-positive patients with acute lymphoblastic leukemia without additional chemotherapy: results of the Gruppo Italiano Malattie Ematologiche dell’Adulto (GIMEMA) LAL0201-B protocol.   Blood. 2007;109(9):3676-3678. doi:10.1182/blood-2006-10-052746 PubMedGoogle ScholarCrossref
21.
Ravandi  F , O’Brien  SM , Cortes  JE ,  et al.  Long-term follow-up of a phase 2 study of chemotherapy plus dasatinib for the initial treatment of patients with Philadelphia chromosome-positive acute lymphoblastic leukemia.   Cancer. 2015;121(23):4158-4164. doi:10.1002/cncr.29646 PubMedGoogle ScholarCrossref
22.
Ravandi  F , Othus  M , O’Brien  SM ,  et al.  US intergroup study of chemotherapy plus dasatinib and allogeneic stem cell transplant in Philadelphia chromosome positive ALL.   Blood Adv. 2016;1(3):250-259. doi:10.1182/bloodadvances.2016001495 PubMedGoogle ScholarCrossref
23.
Foà  R , Vitale  A , Vignetti  M ,  et al; GIMEMA Acute Leukemia Working Party.  Dasatinib as first-line treatment for adult patients with Philadelphia chromosome-positive acute lymphoblastic leukemia.   Blood. 2011;118(25):6521-6528. doi:10.1182/blood-2011-05-351403 PubMedGoogle ScholarCrossref
24.
Rousselot  P , Coudé  MM , Gokbuget  N ,  et al; European Working Group on Adult ALL (EWALL) group.  Dasatinib and low-intensity chemotherapy in elderly patients with Philadelphia chromosome-positive ALL.   Blood. 2016;128(6):774-782. doi:10.1182/blood-2016-02-700153 PubMedGoogle ScholarCrossref
25.
Chiaretti  S , Vitale  A , Elia  L ,  et al.  Multicenter total therapy Gimema LAL 1509 protocol for de novo adult Ph+ acute lymphoblastic leukemia (ALL) patients: updated results and refined genetic-based prognostic stratification.   Blood. 2015;126(23):81. doi:10.1182/blood.V126.23.81.81Google ScholarCrossref
26.
Kim  D-Y , Joo  Y-D , Lim  S-N ,  et al; Adult Acute Lymphoblastic Leukemia Working Party of the Korean Society of Hematology.  Nilotinib combined with multiagent chemotherapy for newly diagnosed Philadelphia-positive acute lymphoblastic leukemia.   Blood. 2015;126(6):746-756. doi:10.1182/blood-2015-03-636548 PubMedGoogle ScholarCrossref
27.
Liu  B , Wang  Y , Zhou  C ,  et al.  Nilotinib combined with multi-agent chemotherapy in newly diagnosed Philadelphia chromosome-positive acute lymphoblastic leukemia: a single-center prospective study with long-term follow-up.   Ann Hematol. 2019;98(3):633-645. doi:10.1007/s00277-019-03594-1 PubMedGoogle ScholarCrossref
28.
Ottmann  OG , Pfeifer  H , Cayuela  J-M ,  et al.  Nilotinib (Tasigna®) and low intensity chemotherapy for first-line treatment of elderly patients with BCR-ABL1-positive acute lymphoblastic leukemia: final results of a prospective multicenter trial (EWALL-PH02).   Blood. 2018;132(suppl 1):31. doi:10.1182/blood-2018-99-114552Google ScholarCrossref
29.
Chalandon  Y , Rousselot  P , Cayuela  JM ,  et al. Nilotinib combined with lower-intensity chemotherapy for front-line treatment of younger adults with Ph-positive acute lymphoblastic leukemia (ALL): interim analysis of the GRAAPH-2014 trial. Poster presented at: 23rd Congress of the European Hematology Association; June 16, 2018; Stockholm, Sweden.
30.
Rousselot  P , Chalandon  Y , Chevret  S ,  et al.  The omission of high-dose cytarabine during consolidation therapy of Ph-positive ALL patients treated with nilotinib and low-intensity chemotherapy results in an increased risk of relapses despite non-inferior levels of late BCR-ABL1 mrd response: first results of the randomized Graaph-2014 study.   Blood. 2021;138(suppl 1):512. doi:10.1182/blood-2021-148843Google ScholarCrossref
31.
Short  NJ , Kantarjian  H , Ravandi  F ,  et al.  Long-term safety and efficacy of hyper-CVAD plus ponatinib as frontline therapy for adults with Philadelphia chromosome-positive acute lymphoblastic leukemia.   Blood. 2019;134(suppl 1):283. doi:10.1182/blood-2019-125146Google ScholarCrossref
32.
Ribera  J-M , Garcia  O , Ribera  J ,  et al.  Ponatinib and chemotherapy in adults with de novo Philadelphia chromosome-positive acute lymphoblastic leukemia: final results of PONALFIL clinical trial.   Blood. 2021;138(suppl 1):1230. doi:10.1182/blood-2021-148310Google ScholarCrossref
33.
Martinelli  G , Papayannidis  C , Piciocchi  A ,  et al.  INCB84344-201: Ponatinib and steroids in frontline therapy of unfit patients with Ph+ acute lymphoblastic leukemia.   Blood Adv. 2022;6(6):1742-1753. doi:10.1182/bloodadvances.2021004821 PubMedGoogle ScholarCrossref
34.
Ottmann  O , Dombret  H , Martinelli  G ,  et al.  Dasatinib induces rapid hematologic and cytogenetic responses in adult patients with Philadelphia chromosome positive acute lymphoblastic leukemia with resistance or intolerance to imatinib: interim results of a phase 2 study.   Blood. 2007;110(7):2309-2315. doi:10.1182/blood-2007-02-073528 PubMedGoogle ScholarCrossref
35.
Short  NJ , Kantarjian  H , Jabbour  E , Ravandi  F .  Which tyrosine kinase inhibitor should we use to treat Philadelphia chromosome-positive acute lymphoblastic leukemia?   Best Pract Res Clin Haematol. 2017;30(3):193-200. doi:10.1016/j.beha.2017.05.001 PubMedGoogle ScholarCrossref
36.
Kantarjian  HM , Hughes  TP , Larson  RA ,  et al.  Long-term outcomes with frontline nilotinib versus imatinib in newly diagnosed chronic myeloid leukemia in chronic phase: ENESTnd 10-year analysis.   Leukemia. 2021;35(2):440-453. doi:10.1038/s41375-020-01111-2 PubMedGoogle ScholarCrossref
37.
Jabbour  E , Kantarjian  HM , Saglio  G ,  et al.  Early response with dasatinib or imatinib in chronic myeloid leukemia: 3-year follow-up from a randomized phase 3 trial (DASISION).   Blood. 2014;123(4):494-500. doi:10.1182/blood-2013-06-511592 PubMedGoogle ScholarCrossref
38.
Ravandi  F , O’Brien  S , Thomas  D ,  et al.  First report of phase 2 study of dasatinib with hyper-CVAD for the frontline treatment of patients with Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia.   Blood. 2010;116(12):2070-2077. doi:10.1182/blood-2009-12-261586 PubMedGoogle ScholarCrossref
39.
Chiaretti  S , Ansuinelli  M , Vitale  A ,  et al.  A multicenter total therapy strategy for de novo adult Philadelphia chromosome positive acute lymphoblastic leukemia patients: final results of the GIMEMA LAL1509 protocol.   Haematologica. 2021;106(7):1828-1838. doi:10.3324/haematol.2020.260935 PubMedGoogle ScholarCrossref
40.
Shen  S , Chen  X , Cai  J ,  et al.  Effect of dasatinib vs imatinib in the treatment of pediatric Philadelphia chromosome-positive acute lymphoblastic leukemia: a randomized clinical trial.   JAMA Oncol. 2020;6(3):358-366. doi:10.1001/jamaoncol.2019.5868 PubMedGoogle ScholarCrossref
41.
Gong  X , Li  L , Wei  H ,  et al.  A higher dose of dasatinib may increase the possibility of crossing the blood-brain barrier in the treatment of patients with Philadelphia chromosome-positive acute lymphoblastic leukemia.   Clin Ther. 2021;43(7):1265-1271. doi:10.1016/j.clinthera.2021.05.009 PubMedGoogle ScholarCrossref
42.
O’Hare  T , Shakespeare  WC , Zhu  X ,  et al.  AP24534, a pan-BCR-ABL inhibitor for chronic myeloid leukemia, potently inhibits the T315I mutant and overcomes mutation-based resistance.   Cancer Cell. 2009;16(5):401-412. doi:10.1016/j.ccr.2009.09.028 PubMedGoogle ScholarCrossref
43.
Jabbour  E , Short  NJ , Ravandi  F ,  et al.  Combination of hyper-CVAD with ponatinib as first-line therapy for patients with Philadelphia chromosome-positive acute lymphoblastic leukaemia: long-term follow-up of a single-centre, phase 2 study.   Lancet Haematol. 2018;5(12):e618-e627. doi:10.1016/S2352-3026(18)30176-5 PubMedGoogle ScholarCrossref
44.
Patel  B , Kirkwood  AA , Dey  A ,  et al.  Pegylated-asparaginase during induction therapy for adult acute lymphoblastic leukaemia: toxicity data from the UKALL14 trial.   Leukemia. 2017;31(1):58-64. doi:10.1038/leu.2016.219 PubMedGoogle ScholarCrossref
45.
Cortes  JE , Kim  DW , Pinilla-Ibarz  J ,  et al.  Ponatinib efficacy and safety in Philadelphia chromosome-positive leukemia: final 5-year results of the phase 2 PACE trial.   Blood. 2018;132(4):393-404. doi:10.1182/blood-2016-09-739086 PubMedGoogle ScholarCrossref
46.
Cortes  J , Apperley  J , Lomaia  E ,  et al.  Ponatinib dose-ranging study in chronic-phase chronic myeloid leukemia: a randomized, open-label phase 2 clinical trial.   Blood. 2021;138(21):2042-2050. doi:10.1182/blood.2021012082 PubMedGoogle ScholarCrossref
47.
Jabbour  E , Kantarjian  H , Ravandi  F ,  et al.  Combination of hyper-CVAD with ponatinib as first-line therapy for patients with Philadelphia chromosome-positive acute lymphoblastic leukaemia: a single-centre, phase 2 study.   Lancet Oncol. 2015;16(15):1547-1555. doi:10.1016/S1470-2045(15)00207-7 PubMedGoogle ScholarCrossref
48.
Sasaki  K , Jabbour  EJ , Ravandi  F ,  et al.  Hyper-CVAD plus ponatinib versus hyper-CVAD plus dasatinib as frontline therapy for patients with Philadelphia chromosome-positive acute lymphoblastic leukemia: a propensity score analysis.   Cancer. 2016;122(23):3650-3656. doi:10.1002/cncr.30231 PubMedGoogle ScholarCrossref
49.
Jabbour  E , DerSarkissian  M , Duh  MS ,  et al.  Efficacy of ponatinib versus earlier generation tyrosine kinase inhibitors for front-line treatment of newly diagnosed Philadelphia-positive acute lymphoblastic leukemia.   Clin Lymphoma Myeloma Leuk. 2018;18(4):257-265. doi:10.1016/j.clml.2018.02.010 PubMedGoogle ScholarCrossref
50.
Jabbour  E , Martinelli  G , Vignetti  M ,  et al.  ALL-132: ponatinib versus imatinib with reduced-intensity chemotherapy in patients with newly diagnosed Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia (ALL): PhALLCON study.   Clin Lymphoma Myeloma Leuk. 2021;21(suppl 1):S269. doi:10.1016/S2152-2650(21)01653-0 Google ScholarCrossref
51.
Assi  R , Kantarjian  H , Short  NJ ,  et al.  Safety and efficacy of blinatumomab in combination with a tyrosine kinase inhibitor for the treatment of relapsed Philadelphia chromosome-positive leukemia.   Clin Lymphoma Myeloma Leuk. 2017;17(12):897-901. doi:10.1016/j.clml.2017.08.101 PubMedGoogle ScholarCrossref
52.
McCloskey  JK , Gagnon  J , McCabe  T ,  et al.  Blinatumomab in combination with tyrosine kinase inhibitors safely and effectively induces rapid, deep, and durable molecular responses in relapsed and refractory Philadelphia positive acute leukemias.   Blood. 2019;134(suppl 1):3812. doi:10.1182/blood-2019-131838Google ScholarCrossref
53.
Couturier  MA , Thomas  X , Raffoux  E ,  et al.  Blinatumomab + ponatinib for relapsed/refractory Philadelphia chromosome-positive acute lymphoblastic leukemia in adults.   Leuk Lymphoma. 2021;62(3):620-629. doi:10.1080/10428194.2020.1844198 PubMedGoogle ScholarCrossref
54.
Foà  R , Bassan  R , Vitale  A ,  et al; GIMEMA Investigators.  Dasatinib-blinatumomab for Ph-positive acute lymphoblastic leukemia in adults.   N Engl J Med. 2020;383(17):1613-1623. doi:10.1056/NEJMoa2016272 PubMedGoogle ScholarCrossref
55.
Chiaretti  S , Bassan  R , Vitale  A ,  et al.  Updated results of the GIMEMA LAL2116 D-ALBA trial for newly diagnosed adults with Ph+ ALL.   HemaSphere. 2021;5(suppl 1):e566.Google Scholar
56.
Short  NJ , Kantarjian  H , Konopleva  M ,  et al.  Updated results of a phase II study of ponatinib and blinatumomab for patients with Philadelphia chromosome-positive acute lymphoblastic leukemia.   Blood. 2021;138(suppl 1):2298. doi:10.1182/blood-2021-153795Google ScholarCrossref
57.
Leonard  JT , Kosaka  Y , Malla  P ,  et al.  Concomitant use of a dual Src/ABL kinase inhibitor eliminates the in vitro efficacy of blinatumomab against Ph+ ALL.   Blood. 2021;137(7):939-944. doi:10.1182/blood.2020005655 PubMedGoogle ScholarCrossref
58.
Puzzolo  MC , Radice  G , Peragine  N ,  et al.  Host immune system modulation in Ph+ acute lymphoblastic leukemia patients treated with dasatinib and blinatumomab.   Blood. 2021;138(22):2290-2293. doi:10.1182/blood.2021011822 PubMedGoogle ScholarCrossref
59.
Iacobucci  I , Ferrari  A , Lonetti  A ,  et al.  CDKN2A/B alterations impair prognosis in adult BCR-ABL1-positive acute lymphoblastic leukemia patients.   Clin Cancer Res. 2011;17(23):7413-7423. doi:10.1158/1078-0432.CCR-11-1227 PubMedGoogle ScholarCrossref
60.
DeBoer  R , Koval  G , Mulkey  F ,  et al.  Clinical impact of ABL1 kinase domain mutations and IKZF1 deletion in adults under age 60 with Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia (ALL): molecular analysis of CALGB (Alliance) 10001 and 9665.   Leuk Lymphoma. 2016;57(10):2298-2306. doi:10.3109/10428194.2016.1144881 PubMedGoogle ScholarCrossref
61.
Li  H , Zhang  W , Kuang  P ,  et al.  Combination of IKZF1 deletion and early molecular response show significant roles on prognostic stratification in Philadelphia chromosome-positive acute lymphoblastic leukemia patients.   Leuk Lymphoma. 2018;59(8):1890-1898. doi:10.1080/10428194.2017.1406933 PubMedGoogle ScholarCrossref
62.
Sasaki  Y , Kantarjian  HM , Short  NJ ,  et al.  Genetic correlates in patients with Philadelphia chromosome-positive acute lymphoblastic leukemia treated with Hyper-CVAD plus dasatinib or ponatinib.   Leukemia. 2022;36(5):1253-1260. doi:10.1038/s41375-021-01496-8 PubMedGoogle ScholarCrossref
63.
Slayton  WB , Schultz  KR , Kairalla  JA ,  et al.  Dasatinib plus intensive chemotherapy in children, adolescents, and young adults with Philadelphia chromosome-positive acute lymphoblastic leukemia: results of Children’s Oncology Group Trial AALL0622.   J Clin Oncol. 2018;36(22):2306-2314. doi:10.1200/JCO.2017.76.7228 PubMedGoogle ScholarCrossref
64.
Paul  S , Kantarjian  H , Sasaki  K ,  et al.  Intrathecal prophylaxis with 12 versus 8 administrations reduces the incidence of central nervous system relapse in patients with newly diagnosed Philadelphia chromosome positive acute lymphoblastic leukemia.   Am J Hematol. Published online May 28, 2022. doi:10.1002/ajh.26622PubMedGoogle ScholarCrossref
65.
Short  NJ , Jabbour  E , Sasaki  K ,  et al.  Impact of complete molecular response on survival in patients with Philadelphia chromosome-positive acute lymphoblastic leukemia.   Blood. 2016;128(4):504-507. doi:10.1182/blood-2016-03-707562 PubMedGoogle ScholarCrossref
66.
Sasaki  K , Kantarjian  HM , Short  NJ ,  et al.  Prognostic factors for progression in patients with Philadelphia chromosome-positive acute lymphoblastic leukemia in complete molecular response within 3 months of therapy with tyrosine kinase inhibitors.   Cancer. 2021;127(15):2648-2656. doi:10.1002/cncr.33529 PubMedGoogle ScholarCrossref
67.
Cazzaniga  G , De Lorenzo  P , Alten  J ,  et al.  Predictive value of minimal residual disease in Philadelphia-chromosome-positive acute lymphoblastic leukemia treated with imatinib in the European intergroup study of post-induction treatment of Philadelphia-chromosome-positive acute lymphoblastic leukemia, based on immunoglobulin/T-cell receptor and BCR/ABL1 methodologies.   Haematologica. 2018;103(1):107-115. doi:10.3324/haematol.2017.176917 PubMedGoogle ScholarCrossref
68.
Hovorkova  L , Zaliova  M , Venn  NC ,  et al.  Monitoring of childhood ALL using BCR-ABL1 genomic breakpoints identifies a subgroup with CML-like biology.   Blood. 2017;129(20):2771-2781. doi:10.1182/blood-2016-11-749978 PubMedGoogle ScholarCrossref
69.
Zaliova  M , Fronkova  E , Krejcikova  K ,  et al.  Quantification of fusion transcript reveals a subgroup with distinct biological properties and predicts relapse in BCR/ABL-positive ALL: implications for residual disease monitoring.   Leukemia. 2009;23(5):944-951. doi:10.1038/leu.2008.386 PubMedGoogle ScholarCrossref
70.
Haddad  FG , Sasaki  K , Issa  GC ,  et al.  Treatment-free remission in patients with chronic myeloid leukemia following the discontinuation of tyrosine kinase inhibitors.   Am J Hematol. Published online March 31, 2022. doi:10.1002/ajh.26550 PubMedGoogle ScholarCrossref
AMA CME Accreditation Information

Credit Designation Statement: The American Medical Association designates this Journal-based CME activity activity for a maximum of 1.00  AMA PRA Category 1 Credit(s)™. Physicians should claim only the credit commensurate with the extent of their participation in the activity.

Successful completion of this CME activity, which includes participation in the evaluation component, enables the participant to earn up to:

  • 1.00 Medical Knowledge MOC points in the American Board of Internal Medicine's (ABIM) Maintenance of Certification (MOC) program;;
  • 1.00 Self-Assessment points in the American Board of Otolaryngology – Head and Neck Surgery’s (ABOHNS) Continuing Certification program;
  • 1.00 MOC points in the American Board of Pediatrics’ (ABP) Maintenance of Certification (MOC) program;
  • 1.00 Lifelong Learning points in the American Board of Pathology’s (ABPath) Continuing Certification program; and
  • 1.00 CME points in the American Board of Surgery’s (ABS) Continuing Certification program

It is the CME activity provider's responsibility to submit participant completion information to ACCME for the purpose of granting MOC credit.

Close
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
Close
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close

Name Your Search

Save Search
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Close
Close

Lookup An Activity

or

My Saved Searches

You currently have no searches saved.

Close

My Saved Courses

You currently have no courses saved.

Close