[Skip to Content]
[Skip to Content Landing]

Evidence-Based Clinical Practice Guidelines for Laser-Assisted Drug Delivery

To identify the key insights or developments described in this article
1 Credit CME
Key Points

Question  Which best practices are associated with the safe and effective use of laser-assisted drug delivery (LADD)?

Findings  This systematic review of 54 studies of LADD informed a multidisciplinary panel of experts and patient representatives who used a Delphi consensus process to develop and refine a guideline for its safe and effective use. The 15 recommendations address 5 areas: indications and contraindications, parameters to report, optimization of drug delivery, safety considerations, and antimicrobial prophylaxis.

Meaning  This clinical practice guideline provides a current framework to clinicians for the safe and effective use of LADD in various medical and cosmetic settings.


Importance  Laser-assisted drug delivery (LADD) is used for various medical and cosmetic applications. However, there is insufficient evidence-based guidance to assist clinicians performing LADD.

Objective  To develop recommendations for the safe and effective use of LADD.

Evidence Review  A systematic literature review of Cochrane Central Register of Controlled Trials, Embase, and MEDLINE was conducted in December 2019 to identify publications reporting research on LADD. A multidisciplinary panel was convened to draft recommendations informed by the systematic review; they were refined through 2 rounds of Delphi survey, 2 consensus meetings, and iterative review by all panelists until unanimous consensus was achieved.

Findings  Of the 48 published studies of ablative fractional LADD that met inclusion criteria, 4 were cosmetic studies; 21, oncologic; and 23, medical (not cosmetic/oncologic), and 6 publications of nonablative fractional LADD were included at the request of the expert panel, producing a total of 54 studies. Thirty-four studies (63.0%) were deemed to have low risk of bias, 17 studies (31.5%) had moderate risk, and 3 (5.5%) had serious risk. The key findings that informed the guidelines developed by the expert panel were as follows: LADD is safe in adults and adolescents (≥12 years) with all Fitzpatrick skin types and in patients with immunosuppression; it is an effective treatment for actinic keratosis, cutaneous squamous cell carcinoma in situ, actinic cheilitis, hypertrophic scars, and keloids; it is useful for epidermal and dermal analgesia; drug delivery may be increased through the application of heat, pressure, or occlusion, or by using an aqueous drug solution; laser settings should be selected to ensure that channel diameter is greater than the delivered molecule; antibiotic prophylaxis is not recommended, except with impaired wound healing; antiviral prophylaxis is recommended when treating the face and genitalia; and antifungal prophylaxis is not recommended. The guideline’s 15 recommendations address 5 areas of LADD use: (I) indications and contraindications; (II) parameters to report; (III) optimization of drug delivery; (IV) safety considerations; and (V) prophylaxis for bacterial, viral, and fungal infections.

Conclusions and Relevance  This systematic review and Delphi consensus approach culminated in an evidence-based clinical practice guideline for safe and effective use of LADD in a variety of applications. Future research will further improve our understanding of this novel treatment technique.

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 Credit(s)™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

CME Disclosure Statement: Unless noted, all individuals in control of content reported no relevant financial relationships. If applicable, all relevant financial relationships have been mitigated.

Article Information

Accepted for Publication: June 17, 2022.

Published Online: August 17, 2022. doi:10.1001/jamadermatol.2022.3234

Corresponding Author: Murad Alam, MD, MSCI, MBA, Department of Dermatology, Northwestern University Feinberg School of Medicine, 676 N Saint Clair, Ste 1600, Chicago, IL 60611 (m-alam@northwestern.edu).

Author Contributions: Dr Alam had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. Dr Labadie and Ms Ibrahim contributed equally as co−first authors.

Concept and design: Labadie, Ibrahim, Worley, Galadari, Geronemus, Ibrahimi, Kauvar, Ozog, Suozzi, Taylor, Uebelhoer, Waibel, Poon, Alam.

Acquisition, analysis, or interpretation of data: Labadie, Ibrahim, Worley, Kang, Rakita, Rigali, Arndt, Bernstein, Brauer, Chandra, Didwania, DiGiorgio, Donelan, Dover, Goldman, Haedersdal, Hruza, Kauvar, Kelly, Krakowski, Miest, Orringer, Ozog, Ross, Shumaker, Sobanko, Suozzi, Teng, Uebelhoer, Waibel, Wanner, Ratchev, Christensen, Miller, Alam.

Drafting of the manuscript: Labadie, Ibrahim, Kang, Rigali, Arndt, Bernstein, Kauvar, Krakowski, Suozzi, Waibel, Miller, Alam.

Critical revision of the manuscript for important intellectual content: Labadie, Ibrahim, Worley, Kang, Rakita, Bernstein, Brauer, Chandra, Didwania, DiGiorgio, Donelan, Dover, Galadari, Geronemus, Goldman, Haedersdal, Hruza, Ibrahimi, Kauvar, Kelly, Krakowski, Miest, Orringer, Ozog, Ross, Shumaker, Sobanko, Suozzi, Taylor, Teng, Uebelhoer, Waibel, Wanner, Ratchev, Christensen, Poon, Alam.

Statistical analysis: Ibrahim, Worley, Rigali, Alam.

Administrative, technical, or material support: Labadie, Ibrahim, Kang, Rigali, Galadari, Geronemus, Goldman, Krakowski, Ross, Suozzi, Uebelhoer, Waibel, Christensen, Poon, Miller, Alam.

Supervision: Labadie, Chandra, Galadari, Ibrahimi, Sobanko, Suozzi, Uebelhoer, Alam.

Other−provided data: DiGiorgio.

Other−systematic literature search: Miller.

Conflict of Interest Disclosures: Dr Worley reported consulting fees from Castle Biosciences and serving on the editorial board of the Journal of the American Academy of Dermatology outside of the submitted work. Dr Bernstein reported equity holdings in Candela, Joylux, Novoxel, Acclaro, OnSite Waste, and Cynosure; consulting fees from Cynosure and Acclaro; and funding from Candela, Acclaro, Novoxel, Cynosure, and Merz, during the conduct of the study. Dr DiGiorgio reported equity and research conducted for Quthero, outside the submitted work. Dr Dover reported grants from Allergan/AbbVie, Cutera, Cynosure, Follica, Bausch & Lomb, Syneron Candela, Lumenis, Revance, Zeltiq (Allergan); equity in Vyome and Controversies Medical Meeting; consulting and advisory board membership for Allergan/AbbVie, Cynosure, Cutera, Follica, Zeltiq, Bausch & Lomb, Revance, Vyome, Follica, L’Oreal, and Allergan/Soliton; and is an UpToDate contributing editor, all outside of the submitted work. Dr Geronemus reported medical advisory board membership for Cytrellis, Lutronic, and Solta, and being an investigator for Cytrellis, Lutronic, Sciton, and Solta, outside of the submitted work. Dr Haedersdal reported grants from Leo Pharma, Lutronic, Mirai Medical, Studies&Me, and Venus Concept and speaking engagements with Galderma Nordic outside of the submitted work. Dr Ibrahimi reported medical advisory board membership for Lutronic and Cutera; receiving speaking honoraria from Lutronic; and equity holdings in Johnson & Johnson, Regeneron, Editas Medicine, Intellia Therapeutics, Crispr Therapeutics, Revance Therapeutics, AbbVie, Pfizer, Accure Acne, and AVAVA, outside of the submitted work. Dr Kelly reported conducting research with and receiving equipment from Sciton; consulting fees from Sciton, IQVI, and FDZJ; grants from Biophotas, Michaelson Diagnostics, and Orlucent; and board membership for the American Society for Laser Medicine and Surgery, all outside of the submitted work; and provided research devices for the clinic during the conduct of the study. Dr Waibel reported conducting research with AbbVie, ArgenX, AstraZeneca, Avita Medical, Dermira, Eli Lilly, Novartis, Olix Pharmaceuticals, Pfizer, RegenX, and UCB Biopharma; consulting fees from Avita Medical, Biofrontera, Candela, Cytrellis Biosystems, and RegenX; advisory board membership with Candela, Cytrellis Biosystems, Dominion Aesthetics, and Sciton; speaking honoraria from Candela, Eli Lilly, Novartis, and Ortho Dermatologics, outside of the submitted work. Dr Wanner reported a grant and equipment from Bausch Health, outside of the submitted work. Dr Wanner reported grants from Bausch Health; consulting fees from Nu Skin Scientific Advisory Board; and equity in Clarity Cosmetics and Lightwater Biosciences, outside of the submitted work. Dr Brauer reported honoraria and consulting fees from Solta and Cynosure, outside of the submitted work. Dr Ross reported advisory board membership for Accure, Lumemis, Candela, and Cynosure; grants from Lumemis, LuTronic, and Cynosure; consulting fees from Sentient, AMP, Pulsed Biosciences, Candela, Alma, and Cartessa Aesthetics, all outside the submitted work. Dr Shumaker reported travel fees and honoraria from Lumenis outside the submitted work. No other disclosures were reported

Funding/Support: This study was partially supported by unrestricted research funding from the Section of Cutaneous Surgery of the Department of Dermatology at Northwestern University.

Role of the Funder/Sponsor: Northwestern University had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Disclaimer: The views expressed in this article are those of the authors and do not necessarily reflect the official policy or position of the US Department of Veterans Affairs or the US Government.

Hauck  WW .  Bioequivalence studies of topical preparations: statistical considerations.   Int J Dermatol. 1992;31(suppl 1):29-33. doi:10.1111/j.1365-4362.1992.tb04010.xPubMedGoogle ScholarCrossref
Jacques  SL , McAuliffe  DJ , Blank  IH , Parrish  JA .  Controlled removal of human stratum corneum by pulsed laser.   J Invest Dermatol. 1987;88(1):88-93. doi:10.1111/1523-1747.ep12465112PubMedGoogle ScholarCrossref
Manstein  D , Herron  GS , Sink  RK , Tanner  H , Anderson  RR .  Fractional photothermolysis: a new concept for cutaneous remodeling using microscopic patterns of thermal injury.   Lasers Surg Med. 2004;34(5):426-438. doi:10.1002/lsm.20048PubMedGoogle ScholarCrossref
Haedersdal  M , Sakamoto  FH , Farinelli  WA , Doukas  AG , Tam  J , Anderson  RR .  Fractional CO(2) laser-assisted drug delivery.   Lasers Surg Med. 2010;42(2):113-122. doi:10.1002/lsm.20860PubMedGoogle ScholarCrossref
Yu  J , Kalaria  DR , Kalia  YN .  Erbium:YAG fractional laser ablation for the percutaneous delivery of intact functional therapeutic antibodies.   J Control Release. 2011;156(1):53-59. doi:10.1016/j.jconrel.2011.07.024PubMedGoogle ScholarCrossref
Alexiades-Armenakas  MR , Dover  JS , Arndt  KA .  The spectrum of laser skin resurfacing: nonablative, fractional, and ablative laser resurfacing.   J Am Acad Dermatol. 2008;58(5):719-737. doi:10.1016/j.jaad.2008.01.003PubMedGoogle ScholarCrossref
Wenande  E , Anderson  RR , Haedersdal  M .  Fundamentals of fractional laser-assisted drug delivery: an in-depth guide to experimental methodology and data interpretation.   Adv Drug Deliv Rev. 2020;153:169-184. doi:10.1016/j.addr.2019.10.003PubMedGoogle ScholarCrossref
Page  MJ , McKenzie  JE , Bossuyt  PM ,  et al.  The PRISMA 2020 statement: an updated guideline for reporting systematic reviews.   PLoS Med. 2021;18(3):e1003583. doi:10.1371/journal.pmed.1003583PubMedGoogle ScholarCrossref
Sterne  JA , Hernán  MA , Reeves  BC ,  et al.  ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions.   BMJ. 2016;355:i4919. doi:10.1136/bmj.i4919PubMedGoogle ScholarCrossref
Guyatt  GH , Oxman  AD , Schünemann  HJ , Tugwell  P , Knottnerus  A .  GRADE guidelines: a new series of articles in the Journal of Clinical Epidemiology.   J Clin Epidemiol. 2011;64(4):380-382. doi:10.1016/j.jclinepi.2010.09.011PubMedGoogle ScholarCrossref
Dalkey  N .  The Delphi method: an experimental study of group opinion.   Futures. 1969;1:408-426. doi:10.1016/S0016-3287(69)80025-XGoogle ScholarCrossref
Gustafson  DH , Shukla  RK , Delbecq  A , Walster  GW .  A comparative study of differences in subjective likelihood estimates made by individuals, interacting groups, Delphi groups, and nominal groups.   Organ Behav Hum Perform. 1973;9:280-291. doi:10.1016/0030-5073(73)90052-4Google ScholarCrossref
Waibel  JS , Mi  QS , Ozog  D ,  et al.  Laser-assisted delivery of vitamin C, vitamin E, and ferulic acid formula serum decreases fractional laser postoperative recovery by increased beta fibroblast growth factor expression.   Lasers Surg Med. 2016;48(3):238-244. doi:10.1002/lsm.22448PubMedGoogle ScholarCrossref
Alexiades  M .  Randomized, double-blind, split-face study evaluating fractional ablative Erbium:YAG laser-mediated trans-epidermal delivery of cosmetic actives and a novel acoustic pressure wave ultrasound technology for the treatment of skin aging, melasma, and acne scars.   J Drugs Dermatol. 2015;14(11):1191-1198.PubMedGoogle Scholar
Ruiz-Rodriguez  R , López  L , Candelas  D , Zelickson  B .  Enhanced efficacy of photodynamic therapy after fractional resurfacing: fractional photodynamic rejuvenation.   J Drugs Dermatol. 2007;6(8):818-820.PubMedGoogle Scholar
Ibrahim  O , Ionta  S , Depina  J , Petrell  K , Arndt  KA , Dover  JS .  Safety of laser-assisted delivery of topical poly-L-lactic acid in the treatment of upper lip rhytides: a prospective, rater-blinded study.   Dermatol Surg. 2019;45(7):968-974. doi:10.1097/DSS.0000000000001743PubMedGoogle ScholarCrossref
Cho  YR , Seo  JW , Kim  HJ , Song  KH .  A comparison of the efficacy of ablative fractional laser-assisted photodynamic therapy according to the density of the ablative laser channel in the treatment of actinic keratosis: A prospective, randomized, controlled trial.   J Am Acad Dermatol. 2021;85(3):750-752. doi:10.1016/j.jaad.2019.10.037PubMedGoogle ScholarCrossref
Seo  JW , Song  KH .  Topical calcipotriol before ablative fractional laser-assisted photodynamic therapy enhances treatment outcomes for actinic keratosis in Fitzpatrick grades III-V skin: A prospective randomized clinical trial.   J Am Acad Dermatol. 2018;78(4):795-797. doi:10.1016/j.jaad.2017.11.027PubMedGoogle ScholarCrossref
Togsverd-Bo  K , Lei  U , Erlendsson  AM ,  et al.  Combination of ablative fractional laser and daylight-mediated photodynamic therapy for actinic keratosis in organ transplant recipients: a randomized controlled trial.   Br J Dermatol. 2015;172(2):467-474. doi:10.1111/bjd.13222PubMedGoogle ScholarCrossref
Ko  DY , Jeon  SY , Kim  KH , Song  KH .  Fractional erbium: YAG laser-assisted photodynamic therapy for facial actinic keratoses: a randomized, comparative, prospective study.   J Eur Acad Dermatol Venereol. 2014;28(11):1529-1539. doi:10.1111/jdv.12334PubMedGoogle ScholarCrossref
Choi  SH , Kim  KH , Song  KH .  Efficacy of ablative fractional laser-assisted photodynamic therapy with short-incubation time for the treatment of facial and scalp actinic keratosis: 12-month follow-up results of a randomized, prospective, comparative trial.   J Eur Acad Dermatol Venereol. 2015;29(8):1598-1605. doi:10.1111/jdv.12953PubMedGoogle ScholarCrossref
Choi  SH , Kim  TH , Song  KH .  Efficacy of iontophoresis-assisted ablative fractional laser photodynamic therapy with short incubation time for the treatment of actinic keratosis: 12-month follow-up results of a prospective, randomised, comparative trial.   Photodiagnosis Photodyn Ther. 2017;18:105-110. doi:10.1016/j.pdpdt.2017.01.184PubMedGoogle ScholarCrossref
Vrani  F , Sotiriou  E , Lazaridou  E ,  et al.  Short incubation fractional CO2 laser-assisted photodynamic therapy vs. conventional photodynamic therapy in field-cancerized skin: 12-month follow-up results of a randomized intraindividual comparison study.   J Eur Acad Dermatol Venereol. 2019;33(1):79-83. doi:10.1111/jdv.15109PubMedGoogle ScholarCrossref
Song  HS , Jung  SE , Jang  YH , Kang  HY , Lee  ES , Kim  YC .  Fractional carbon dioxide laser-assisted photodynamic therapy for patients with actinic keratosis.   Photodermatol Photoimmunol Photomed. 2015;31(6):296-301. doi:10.1111/phpp.12184PubMedGoogle ScholarCrossref
Alexiades  M .  Randomized, controlled trial of fractional carbon dioxide laser resurfacing followed by ultrashort incubation aminolevulinic acid blue light photodynamic therapy for actinic keratosis.   Dermatol Surg. 2017;43(8):1053-1064. doi:10.1097/DSS.0000000000001117PubMedGoogle ScholarCrossref
Helsing  P , Togsverd-Bo  K , Veierød  MB , Mørk  G , Haedersdal  M .  Intensified fractional CO2 laser-assisted photodynamic therapy vs. laser alone for organ transplant recipients with multiple actinic keratoses and wart-like lesions: a randomized half-side comparative trial on dorsal hands.   Br J Dermatol. 2013;169(5):1087-1092. doi:10.1111/bjd.12507PubMedGoogle ScholarCrossref
Hsu  SH , Gan  SD , Nguyen  BT , Konnikov  N , Liang  CA .  Ablative fractional laser-assisted topical fluorouracil for the treatment of superficial basal cell carcinoma and squamous cell carcinoma in situ: a follow-up study.   Dermatol Surg. 2016;42(9):1050-1053. doi:10.1097/DSS.0000000000000814PubMedGoogle ScholarCrossref
Ko  DY , Kim  KH , Song  KH .  A randomized trial comparing methyl aminolaevulinate photodynamic therapy with and without Er:YAG ablative fractional laser treatment in Asian patients with lower extremity Bowen disease: results from a 12-month follow-up.   Br J Dermatol. 2014;170(1):165-172. doi:10.1111/bjd.12627PubMedGoogle ScholarCrossref
Kim  HJ , Song  KH .  Ablative fractional laser-assisted photodynamic therapy provides superior long-term efficacy compared with standard methyl aminolevulinate photodynamic therapy for lower extremity Bowen disease.   J Am Acad Dermatol. 2018;79(5):860-868. doi:10.1016/j.jaad.2018.05.034PubMedGoogle ScholarCrossref
Smucler  R , Vlk  M .  Combination of Er:YAG laser and photodynamic therapy in the treatment of nodular basal cell carcinoma.   Lasers Surg Med. 2008;40(2):153-158. doi:10.1002/lsm.20606PubMedGoogle ScholarCrossref
Sung  JM , Kim  YC .  Photodynamic therapy with epidermal ablation using fractional CO2 laser for treating superficial basal cell carcinoma: a case series.   Photodiagnosis Photodyn Ther. 2017;19:202-204. doi:10.1016/j.pdpdt.2017.06.009PubMedGoogle ScholarCrossref
Lippert  J , Smucler  R , Vlk  M .  Fractional carbon dioxide laser improves nodular basal cell carcinoma treatment with photodynamic therapy with methyl 5-aminolevulinate.   Dermatol Surg. 2013;39(8):1202-1208. doi:10.1111/dsu.12242PubMedGoogle ScholarCrossref
Choi  SH , Kim  KH , Song  KH .  Efficacy of ablative fractional laser-assisted photodynamic therapy for the treatment of actinic cheilitis: 12-month follow-up results of a prospective, randomized, comparative trial.   Br J Dermatol. 2015;173(1):184-191. doi:10.1111/bjd.13542PubMedGoogle ScholarCrossref
Haak  CS , Togsverd-Bo  K , Thaysen-Petersen  D ,  et al.  Fractional laser-mediated photodynamic therapy of high-risk basal cell carcinomas--a randomized clinical trial.   Br J Dermatol. 2015;172(1):215-222. doi:10.1111/bjd.13166PubMedGoogle ScholarCrossref
Choi  SH , Kim  KH , Song  KH .  Er:YAG ablative fractional laser-primed photodynamic therapy with methyl aminolevulinate as an alternative treatment option for patients with thin nodular basal cell carcinoma: 12-month follow-up results of a randomized, prospective, comparative trial.   J Eur Acad Dermatol Venereol. 2016;30(5):783-788. doi:10.1111/jdv.13453PubMedGoogle ScholarCrossref
Genouw  E , Verheire  B , Ongenae  K ,  et al.  Laser-assisted photodynamic therapy for superficial basal cell carcinoma and Bowen’s disease: a randomized intrapatient comparison between a continuous and a fractional ablative CO2 laser mode.   J Eur Acad Dermatol Venereol. 2018;32(11):1897-1905. doi:10.1111/jdv.14989PubMedGoogle ScholarCrossref
Seo  JW , Kim  HJ , Song  KH .  A comparison of the efficacy of ablative fractional laser-assisted photodynamic therapy according to ablative depth for actinic keratosis: a single-blinded, randomized, comparative, prospective study.   J Am Acad Dermatol. 2019;81(2):636-638. doi:10.1016/j.jaad.2019.01.033PubMedGoogle ScholarCrossref
Singer  AJ , Weeks  R , Regev  R .  Laser-assisted anesthesia reduces the pain of venous cannulation in children and adults: a randomized controlled trial.   Acad Emerg Med. 2006;13(6):623-628. doi:10.1197/j.aem.2006.01.016PubMedGoogle ScholarCrossref
Koh  JL , Harrison  D , Swanson  V , Norvell  DC , Coomber  DC .  A comparison of laser-assisted drug delivery at two output energies for enhancing the delivery of topically applied LMX-4 cream prior to venipuncture.   Anesth Analg. 2007;104(4):847-849. doi:10.1213/01.ane.0000257925.36641.9ePubMedGoogle ScholarCrossref
Meesters  AA , Bakker  MM , de Rie  MA , Wolkerstorfer  A .  Fractional CO2 laser assisted delivery of topical anesthetics: A randomized controlled pilot study.   Lasers Surg Med. 2016;48(2):208-211. doi:10.1002/lsm.22376PubMedGoogle ScholarCrossref
Meesters  AA , Nieboer  MJ , Kezic  S , de Rie  MA , Wolkerstorfer  A .  Parameters in fractional laser assisted delivery of topical anesthetics: role of laser type and laser settings.   Lasers Surg Med. 2018;50(8):813-818. doi:10.1002/lsm.22936PubMedGoogle ScholarCrossref
Shapiro  H , Harris  L , Hetzel  FW , Bar-Or  D .  Laser assisted delivery of topical anesthesia for intramuscular needle insertion in adults.   Lasers Surg Med. 2002;31(4):252-256. doi:10.1002/lsm.10101PubMedGoogle ScholarCrossref
Baron  ED , Harris  L , Redpath  WS ,  et al.  Laser-assisted penetration of topical anesthetic in adults.   Arch Dermatol. 2003;139(10):1288-1290. doi:10.1001/archderm.139.10.1288PubMedGoogle ScholarCrossref
Yun  PL , Tachihara  R , Anderson  RR .  Efficacy of erbium:yttrium-aluminum-garnet laser-assisted delivery of topical anesthetic.   J Am Acad Dermatol. 2002;47(4):542-547. doi:10.1067/mjd.2002.124819PubMedGoogle ScholarCrossref
Tian  T , Luo  Y , Jiang  T ,  et al.  Clinical effect of ablative fractional laser-assisted topical anesthesia on human skin: A randomized pilot study.   J Cosmet Laser Ther. 2016;18(7):409-412. doi:10.1080/14764172.2016.1197404PubMedGoogle ScholarCrossref
Sabry  HH , Abdel Rahman  SH , Hussein  MS , Sanad  RR , Abd El Azez  TA .  The efficacy of combining fractional carbon dioxide laser with verapamil hydrochloride or 5-fluorouracil in the treatment of hypertrophic scars and keloids: a clinical and immunohistochemical study.   Dermatol Surg. 2019;45(4):536-546. doi:10.1097/DSS.0000000000001726PubMedGoogle ScholarCrossref
Tawfik  AA , Fathy  M , Badawi  A , Abdallah  N , Shokeir  H .  Topical 5 fluorouracil cream vs combined 5 fluorouracil and fractional erbium YAG laser for treatment of severe hypertrophic scars.   Clin Cosmet Investig Dermatol. 2019;12:173-180. doi:10.2147/CCID.S191137PubMedGoogle ScholarCrossref
Waibel  JS , Rudnick  A , Arheart  KL , Nagrani  N , Gonzalez  A , Gianatasio  C .  Re-pigmentation of hypopigmentation: fractional lasers vs laser-assisted delivery of bimatoprost vs epidermal melanocyte harvesting system.   J Drugs Dermatol. 2019;18(11):1090-1096.PubMedGoogle Scholar
Park  JH , Chun  JY , Lee  JH .  Laser-assisted topical corticosteroid delivery for the treatment of keloids.   Lasers Med Sci. 2017;32(3):601-608. doi:10.1007/s10103-017-2154-5PubMedGoogle ScholarCrossref
Siadat  AH , Rezaei  R , Asilian  A ,  et al.  Repigmentation of hypopigmented scars using combination of fractionated carbon dioxide laser with topical latanoprost vs. fractionated carbon dioxide laser alone.   Indian J Dermatol. 2015;60(4):364-368. doi:10.4103/0019-5154.160481PubMedGoogle ScholarCrossref
Waibel  JS , Wulkan  AJ , Shumaker  PR .  Treatment of hypertrophic scars using laser and laser assisted corticosteroid delivery.   Lasers Surg Med. 2013;45(3):135-140.Google ScholarCrossref
Abd El-Aal  EB , Abdo  HM , Ibrahim  SM , Eldestawy  MT .  Fractional carbon dioxide laser assisted delivery of topical tazarotene versus topical tioconazole in the treatment of onychomycosis.   J Dermatolog Treat. 2019;30(3):277-282. doi:10.1080/09546634.2018.1509046PubMedGoogle ScholarCrossref
de Oliveira  GB , Antonio  JR , Antonio  CR , Tomé  FA .  The association of fractional CO2 laser 10.600nm and photodynamic therapy in the treatment of onychomycosis.   An Bras Dermatol. 2015;90(4):468-471. doi:10.1590/abd1806-4841.20153588PubMedGoogle ScholarCrossref
Koren  A , Salameh  F , Sprecher  E , Artzi  O .  Laser-assisted photodynamic therapy or laser-assisted amorolfine lacquer delivery for treatment of toenail onychomycosis: an open-label comparative study.   Acta Derm Venereol. 2018;98(4):467-468. doi:10.2340/00015555-2874PubMedGoogle ScholarCrossref
Badawi  AM , Osman  MA .  Fractional erbium-doped yttrium aluminum garnet laser-assisted drug delivery of hydroquinone in the treatment of melasma.   Clin Cosmet Investig Dermatol. 2018;11:13-20. doi:10.2147/CCID.S147413PubMedGoogle ScholarCrossref
Sobhi  RM , Sharaoui  I , El Nabarawy  EA , El Nemr Esmail  RS , Hegazy  RA , Aref  DHF .  Comparative study of fractional CO2 laser and fractional CO2 laser-assisted drug delivery of topical steroid and topical vitamin C in macular amyloidosis.   Lasers Med Sci. 2018;33(4):909-916. doi:10.1007/s10103-018-2457-1PubMedGoogle ScholarCrossref
Liu  L , Wu  Y , Zhang  J ,  et al.  Ablative fractional Co2 laser aided delivery of long-acting glucocorticoid in the treatment of acral vitiligo: a multicenter, prospective, self-bilateral controlled study.   J Dermatolog Treat. 2019;30(4):320-327. doi:10.1080/09546634.2018.1509048PubMedGoogle ScholarCrossref
Szeimies  R-M , Schleyer  V , Moll  I , Stocker  M , Landthaler  M , Karrer  S .  Adjuvant photodynamic therapy does not prevent recurrence of condylomata acuminata after carbon dioxide laser ablation-A phase III, prospective, randomized, bicentric, double-blind study.   Dermatol Surg. 2009;35(5):757-764. doi:10.1111/j.1524-4725.2009.01125.xPubMedGoogle ScholarCrossref
Issa  MC , Torreão  PS , Boechat  M , Luiz  R .  Early investigations in drug delivery of onabotulinum toxin A using combined fractional ablative laser with impact ultrasound vs. injections of onabotulinum toxin A for palmar hyperhidrosis: a right-left comparison trial.   Br J Dermatol. 2018;179(5):1168-1169. doi:10.1111/bjd.16781PubMedGoogle ScholarCrossref
Li  R , Zhou  J , Su  H ,  et al.  2940-nm Er:YAG fractional laser enhanced the effect of topical drug for psoriasis.   Lasers Med Sci. 2017;32(6):1393-1397. doi:10.1007/s10103-017-2259-xPubMedGoogle ScholarCrossref
Croix  J , Burge  S , Chwalek  J , Gmyrek  R , Chapas  A .  Split-sided chest study of skin rejuvenation comparing low-energy, 1,927-nm thulium fractional laser treatment prior to photodynamic therapy versus photodynamic therapy alone.   Lasers Surg Med. 2020;52(1):53-60. doi:10.1002/lsm.23178PubMedGoogle ScholarCrossref
Hendel  K , Mogensen  M , Wenande  E , Dierickx  C , Haedersdal  M , Togsverd-Bo  K .  Fractional 1,927 nm thulium laser plus photodynamic therapy compared and combined for photodamaged décolleté skin: a side-by-side randomized controlled trial.   Lasers Surg Med. 2020;52(1):44-52. doi:10.1002/lsm.23194PubMedGoogle ScholarCrossref
Kim  TI , Ahn  HJ , Kang  IH , Jeong  KH , Kim  NI , Shin  MK .  Nonablative fractional laser-assisted daylight photodynamic therapy with topical methyl aminolevulinate for moderate to severe facial acne vulgaris: results of a randomized and comparative study.   Photodermatol Photoimmunol Photomed. 2017;33(5):253-259. doi:10.1111/phpp.12312PubMedGoogle ScholarCrossref
Wanitphakdeedecha  R , Sy-Alvarado  F , Patthamalai  P , Techapichetvanich  T , Eimpunth  S , Manuskiatti  W .  The efficacy in treatment of facial melasma with thulium 1927-nm fractional laser-assisted topical tranexamic acid delivery: a split-face, double-blind, randomized controlled pilot study.   Lasers Med Sci. 2020;35(9):2015-2021. doi:10.1007/s10103-020-03045-8PubMedGoogle ScholarCrossref
Massaki  AB , Fabi  SG , Fitzpatrick  R .  Repigmentation of hypopigmented scars using an erbium-doped 1,550-nm fractionated laser and topical bimatoprost.   Dermatol Surg. 2012;38(7 Pt 1):995-1001. doi:10.1111/j.1524-4725.2012.02389.xPubMedGoogle ScholarCrossref
Mercuri  SR , Brianti  P , Foti  A , Bartolucci  M , Dattola  A , Nisticò  SP .  Penile lichen sclerosus treated with 1927 nm thulium fiber laser and photodynamic therapy: a new possible therapeutic approach.   Photomed Laser Surg. 2018;36(6):333-336. doi:10.1089/pho.2017.4386PubMedGoogle ScholarCrossref
US Institute of Medicine Committee on Standards for Developing Trustworthy Clinical Practice Guidelines. Graham  R , Mancher  M , Miller Wolman  D , Greenfield  S , Steinberg  E , eds.  Clinical Practice Guidelines We Can Trust. National Academies Press; 2011.
Labadie  JG , Kosche  C , Kyllo  R ,  et al.  Fractional CO2 laser for the treatment of sclerodermatous cGVHD.   J Cosmet Laser Ther. 2020;22(1):49-51. doi:10.1080/14764172.2019.1710537PubMedGoogle ScholarCrossref
Rkein  A , Ozog  D , Waibel  JS .  Treatment of atrophic scars with fractionated CO2 laser facilitating delivery of topically applied poly-L-lactic acid.   Dermatol Surg. 2014;40(6):624-631.PubMedGoogle Scholar
Ibrahim  O , Wenande  E , Hogan  S , Arndt  KA , Haedersdal  M , Dover  JS .  Challenges to laser-assisted drug delivery: applying theory to clinical practice.   Lasers Surg Med. 2018;50(1):20-27. doi:10.1002/lsm.22769PubMedGoogle ScholarCrossref
Haak  CS , Bhayana  B , Farinelli  WA , Anderson  RR , Haedersdal  M .  The impact of treatment density and molecular weight for fractional laser-assisted drug delivery.   J Control Release. 2012;163(3):335-341. doi:10.1016/j.jconrel.2012.09.008PubMedGoogle ScholarCrossref
Haedersdal  M , Sakamoto  FH , Farinelli  WA , Doukas  AG , Tam  J , Anderson  RR .  Pretreatment with ablative fractional laser changes kinetics and biodistribution of topical 5-aminolevulinic acid (ALA) and methyl aminolevulinate (MAL).   Lasers Surg Med. 2014;46(6):462-469. doi:10.1002/lsm.22259PubMedGoogle ScholarCrossref
Haak  CS , Christiansen  K , Erlendsson  AM ,  et al.  Ablative fractional laser enhances MAL-induced PpIX accumulation: Impact of laser channel density, incubation time and drug concentration.   J Photochem Photobiol B. 2016;159:42-48. doi:10.1016/j.jphotobiol.2016.03.021PubMedGoogle ScholarCrossref
Haak  CS , Farinelli  WA , Tam  J , Doukas  AG , Anderson  RR , Haedersdal  M .  Fractional laser-assisted delivery of methyl aminolevulinate: impact of laser channel depth and incubation time.   Lasers Surg Med. 2012;44(10):787-795. doi:10.1002/lsm.22102PubMedGoogle ScholarCrossref
Wenande  E , Olesen  UH , Nielsen  MM ,  et al.  Fractional laser-assisted topical delivery leads to enhanced, accelerated and deeper cutaneous 5-fluorouracil uptake.   Expert Opin Drug Deliv. 2017;14(3):307-317. doi:10.1080/17425247.2017.1260119PubMedGoogle ScholarCrossref
Bay  C , Lerche  CM , Ferrick  B , Philipsen  PA , Togsverd-Bo  K , Haedersdal  M .  Comparison of physical pretreatment regimens to enhance protoporphyrin IX uptake in photodynamic therapy: a randomized clinical trial.   JAMA Dermatol. 2017;153(4):270-278. doi:10.1001/jamadermatol.2016.5268PubMedGoogle ScholarCrossref
Zaleski-Larsen  LA , Fabi  SG .  Laser-assisted drug delivery.   Dermatol Surg. 2016;42(8):919-931. doi:10.1097/DSS.0000000000000556PubMedGoogle ScholarCrossref
Braun  SA , Schrumpf  H , Buhren  BA , Homey  B , Gerber  PA .  Laser-assisted drug delivery: mode of action and use in daily clinical practice.   J Dtsch Dermatol Ges. 2016;14(5):480-488. doi:10.1111/ddg.12963PubMedGoogle ScholarCrossref
Ali  FR , Al-Niaimi  F .  Laser-assisted drug delivery in dermatology: from animal models to clinical practice.   Lasers Med Sci. 2016;31(2):373-381. doi:10.1007/s10103-015-1853-zPubMedGoogle ScholarCrossref
Nguyen  BT , Gan  SD , Konnikov  N , Liang  CA .  Treatment of superficial basal cell carcinoma and squamous cell carcinoma in situ on the trunk and extremities with ablative fractional laser-assisted delivery of topical fluorouracil.   J Am Acad Dermatol. 2015;72(3):558-560. doi:10.1016/j.jaad.2014.11.033PubMedGoogle ScholarCrossref
Cavalié  M , Sillard  L , Montaudié  H , Bahadoran  P , Lacour  JP , Passeron  T .  Treatment of keloids with laser-assisted topical steroid delivery: a retrospective study of 23 cases.   Dermatol Ther. 2015;28(2):74-78. doi:10.1111/dth.12187PubMedGoogle ScholarCrossref
Bachhav  YG , Heinrich  A , Kalia  YN .  Controlled intra- and transdermal protein delivery using a minimally invasive Erbium:YAG fractional laser ablation technology.   Eur J Pharm Biopharm. 2013;84(2):355-364. doi:10.1016/j.ejpb.2012.11.018PubMedGoogle ScholarCrossref
Chung  HJ , Cheng  J , Gonzalez  M , Al-Janahi  S .  Factors affecting depth of penetration in microneedling- and laser-assisted drug delivery: the importance of timing of topical application.   Dermatol Surg. 2020;46(12):e146-e153. doi:10.1097/DSS.0000000000002381PubMedGoogle ScholarCrossref
Wang  JV , Mehrabi  JN , Zachary  CB , Geronemus  RG .  Evaluation of device-based cutaneous channels using optical coherence tomography: impact for topical drug delivery.   Dermatol Surg. 2022;48(1):120-125. doi:10.1097/DSS.0000000000003275PubMedGoogle ScholarCrossref
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right

Name Your Search

Save Search
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience

Lookup An Activity


My Saved Searches

You currently have no searches saved.


My Saved Courses

You currently have no courses saved.