Accepted for Publication: June 17, 2022.
Published Online: August 17, 2022. doi:10.1001/jamadermatol.2022.3234
Corresponding Author: Murad Alam, MD, MSCI, MBA, Department of Dermatology, Northwestern University Feinberg School of Medicine, 676 N Saint Clair, Ste 1600, Chicago, IL 60611 (m-alam@northwestern.edu).
Author Contributions: Dr Alam had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. Dr Labadie and Ms Ibrahim contributed equally as co−first authors.
Concept and design: Labadie, Ibrahim, Worley, Galadari, Geronemus, Ibrahimi, Kauvar, Ozog, Suozzi, Taylor, Uebelhoer, Waibel, Poon, Alam.
Acquisition, analysis, or interpretation of data: Labadie, Ibrahim, Worley, Kang, Rakita, Rigali, Arndt, Bernstein, Brauer, Chandra, Didwania, DiGiorgio, Donelan, Dover, Goldman, Haedersdal, Hruza, Kauvar, Kelly, Krakowski, Miest, Orringer, Ozog, Ross, Shumaker, Sobanko, Suozzi, Teng, Uebelhoer, Waibel, Wanner, Ratchev, Christensen, Miller, Alam.
Drafting of the manuscript: Labadie, Ibrahim, Kang, Rigali, Arndt, Bernstein, Kauvar, Krakowski, Suozzi, Waibel, Miller, Alam.
Critical revision of the manuscript for important intellectual content: Labadie, Ibrahim, Worley, Kang, Rakita, Bernstein, Brauer, Chandra, Didwania, DiGiorgio, Donelan, Dover, Galadari, Geronemus, Goldman, Haedersdal, Hruza, Ibrahimi, Kauvar, Kelly, Krakowski, Miest, Orringer, Ozog, Ross, Shumaker, Sobanko, Suozzi, Taylor, Teng, Uebelhoer, Waibel, Wanner, Ratchev, Christensen, Poon, Alam.
Statistical analysis: Ibrahim, Worley, Rigali, Alam.
Administrative, technical, or material support: Labadie, Ibrahim, Kang, Rigali, Galadari, Geronemus, Goldman, Krakowski, Ross, Suozzi, Uebelhoer, Waibel, Christensen, Poon, Miller, Alam.
Supervision: Labadie, Chandra, Galadari, Ibrahimi, Sobanko, Suozzi, Uebelhoer, Alam.
Other−provided data: DiGiorgio.
Other−systematic literature search: Miller.
Conflict of Interest Disclosures: Dr Worley reported consulting fees from Castle Biosciences and serving on the editorial board of the Journal of the American Academy of Dermatology outside of the submitted work. Dr Bernstein reported equity holdings in Candela, Joylux, Novoxel, Acclaro, OnSite Waste, and Cynosure; consulting fees from Cynosure and Acclaro; and funding from Candela, Acclaro, Novoxel, Cynosure, and Merz, during the conduct of the study. Dr DiGiorgio reported equity and research conducted for Quthero, outside the submitted work. Dr Dover reported grants from Allergan/AbbVie, Cutera, Cynosure, Follica, Bausch & Lomb, Syneron Candela, Lumenis, Revance, Zeltiq (Allergan); equity in Vyome and Controversies Medical Meeting; consulting and advisory board membership for Allergan/AbbVie, Cynosure, Cutera, Follica, Zeltiq, Bausch & Lomb, Revance, Vyome, Follica, L’Oreal, and Allergan/Soliton; and is an UpToDate contributing editor, all outside of the submitted work. Dr Geronemus reported medical advisory board membership for Cytrellis, Lutronic, and Solta, and being an investigator for Cytrellis, Lutronic, Sciton, and Solta, outside of the submitted work. Dr Haedersdal reported grants from Leo Pharma, Lutronic, Mirai Medical, Studies&Me, and Venus Concept and speaking engagements with Galderma Nordic outside of the submitted work. Dr Ibrahimi reported medical advisory board membership for Lutronic and Cutera; receiving speaking honoraria from Lutronic; and equity holdings in Johnson & Johnson, Regeneron, Editas Medicine, Intellia Therapeutics, Crispr Therapeutics, Revance Therapeutics, AbbVie, Pfizer, Accure Acne, and AVAVA, outside of the submitted work. Dr Kelly reported conducting research with and receiving equipment from Sciton; consulting fees from Sciton, IQVI, and FDZJ; grants from Biophotas, Michaelson Diagnostics, and Orlucent; and board membership for the American Society for Laser Medicine and Surgery, all outside of the submitted work; and provided research devices for the clinic during the conduct of the study. Dr Waibel reported conducting research with AbbVie, ArgenX, AstraZeneca, Avita Medical, Dermira, Eli Lilly, Novartis, Olix Pharmaceuticals, Pfizer, RegenX, and UCB Biopharma; consulting fees from Avita Medical, Biofrontera, Candela, Cytrellis Biosystems, and RegenX; advisory board membership with Candela, Cytrellis Biosystems, Dominion Aesthetics, and Sciton; speaking honoraria from Candela, Eli Lilly, Novartis, and Ortho Dermatologics, outside of the submitted work. Dr Wanner reported a grant and equipment from Bausch Health, outside of the submitted work. Dr Wanner reported grants from Bausch Health; consulting fees from Nu Skin Scientific Advisory Board; and equity in Clarity Cosmetics and Lightwater Biosciences, outside of the submitted work. Dr Brauer reported honoraria and consulting fees from Solta and Cynosure, outside of the submitted work. Dr Ross reported advisory board membership for Accure, Lumemis, Candela, and Cynosure; grants from Lumemis, LuTronic, and Cynosure; consulting fees from Sentient, AMP, Pulsed Biosciences, Candela, Alma, and Cartessa Aesthetics, all outside the submitted work. Dr Shumaker reported travel fees and honoraria from Lumenis outside the submitted work. No other disclosures were reported
Funding/Support: This study was partially supported by unrestricted research funding from the Section of Cutaneous Surgery of the Department of Dermatology at Northwestern University.
Role of the Funder/Sponsor: Northwestern University had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.
Disclaimer: The views expressed in this article are those of the authors and do not necessarily reflect the official policy or position of the US Department of Veterans Affairs or the US Government.
3.Manstein
D , Herron
GS , Sink
RK , Tanner
H , Anderson
RR . Fractional photothermolysis: a new concept for cutaneous remodeling using microscopic patterns of thermal injury.
Lasers Surg Med. 2004;34(5):426-438. doi:
10.1002/lsm.20048PubMedGoogle ScholarCrossref 12.Gustafson
DH , Shukla
RK , Delbecq
A , Walster
GW . A comparative study of differences in subjective likelihood estimates made by individuals, interacting groups, Delphi groups, and nominal groups.
Organ Behav Hum Perform. 1973;9:280-291. doi:
10.1016/0030-5073(73)90052-4Google ScholarCrossref 13.Waibel
JS , Mi
QS , Ozog
D ,
et al. Laser-assisted delivery of vitamin C, vitamin E, and ferulic acid formula serum decreases fractional laser postoperative recovery by increased beta fibroblast growth factor expression.
Lasers Surg Med. 2016;48(3):238-244. doi:
10.1002/lsm.22448PubMedGoogle ScholarCrossref 14.Alexiades
M . Randomized, double-blind, split-face study evaluating fractional ablative Erbium:YAG laser-mediated trans-epidermal delivery of cosmetic actives and a novel acoustic pressure wave ultrasound technology for the treatment of skin aging, melasma, and acne scars.
J Drugs Dermatol. 2015;14(11):1191-1198.
PubMedGoogle Scholar 15.Ruiz-Rodriguez
R , López
L , Candelas
D , Zelickson
B . Enhanced efficacy of photodynamic therapy after fractional resurfacing: fractional photodynamic rejuvenation.
J Drugs Dermatol. 2007;6(8):818-820.
PubMedGoogle Scholar 16.Ibrahim
O , Ionta
S , Depina
J , Petrell
K , Arndt
KA , Dover
JS . Safety of laser-assisted delivery of topical poly-L-lactic acid in the treatment of upper lip rhytides: a prospective, rater-blinded study.
Dermatol Surg. 2019;45(7):968-974. doi:
10.1097/DSS.0000000000001743PubMedGoogle ScholarCrossref 17.Cho
YR , Seo
JW , Kim
HJ , Song
KH . A comparison of the efficacy of ablative fractional laser-assisted photodynamic therapy according to the density of the ablative laser channel in the treatment of actinic keratosis: A prospective, randomized, controlled trial.
J Am Acad Dermatol. 2021;85(3):750-752. doi:
10.1016/j.jaad.2019.10.037PubMedGoogle ScholarCrossref 18.Seo
JW , Song
KH . Topical calcipotriol before ablative fractional laser-assisted photodynamic therapy enhances treatment outcomes for actinic keratosis in Fitzpatrick grades III-V skin: A prospective randomized clinical trial.
J Am Acad Dermatol. 2018;78(4):795-797. doi:
10.1016/j.jaad.2017.11.027PubMedGoogle ScholarCrossref 19.Togsverd-Bo
K , Lei
U , Erlendsson
AM ,
et al. Combination of ablative fractional laser and daylight-mediated photodynamic therapy for actinic keratosis in organ transplant recipients: a randomized controlled trial.
Br J Dermatol. 2015;172(2):467-474. doi:
10.1111/bjd.13222PubMedGoogle ScholarCrossref 20.Ko
DY , Jeon
SY , Kim
KH , Song
KH . Fractional erbium: YAG laser-assisted photodynamic therapy for facial actinic keratoses: a randomized, comparative, prospective study.
J Eur Acad Dermatol Venereol. 2014;28(11):1529-1539. doi:
10.1111/jdv.12334PubMedGoogle ScholarCrossref 21.Choi
SH , Kim
KH , Song
KH . Efficacy of ablative fractional laser-assisted photodynamic therapy with short-incubation time for the treatment of facial and scalp actinic keratosis: 12-month follow-up results of a randomized, prospective, comparative trial.
J Eur Acad Dermatol Venereol. 2015;29(8):1598-1605. doi:
10.1111/jdv.12953PubMedGoogle ScholarCrossref 22.Choi
SH , Kim
TH , Song
KH . Efficacy of iontophoresis-assisted ablative fractional laser photodynamic therapy with short incubation time for the treatment of actinic keratosis: 12-month follow-up results of a prospective, randomised, comparative trial.
Photodiagnosis Photodyn Ther. 2017;18:105-110. doi:
10.1016/j.pdpdt.2017.01.184PubMedGoogle ScholarCrossref 23.Vrani
F , Sotiriou
E , Lazaridou
E ,
et al. Short incubation fractional CO
2 laser-assisted photodynamic therapy vs. conventional photodynamic therapy in field-cancerized skin: 12-month follow-up results of a randomized intraindividual comparison study.
J Eur Acad Dermatol Venereol. 2019;33(1):79-83. doi:
10.1111/jdv.15109PubMedGoogle ScholarCrossref 24.Song
HS , Jung
SE , Jang
YH , Kang
HY , Lee
ES , Kim
YC . Fractional carbon dioxide laser-assisted photodynamic therapy for patients with actinic keratosis.
Photodermatol Photoimmunol Photomed. 2015;31(6):296-301. doi:
10.1111/phpp.12184PubMedGoogle ScholarCrossref 25.Alexiades
M . Randomized, controlled trial of fractional carbon dioxide laser resurfacing followed by ultrashort incubation aminolevulinic acid blue light photodynamic therapy for actinic keratosis.
Dermatol Surg. 2017;43(8):1053-1064. doi:
10.1097/DSS.0000000000001117PubMedGoogle ScholarCrossref 26.Helsing
P , Togsverd-Bo
K , Veierød
MB , Mørk
G , Haedersdal
M . Intensified fractional CO2 laser-assisted photodynamic therapy vs. laser alone for organ transplant recipients with multiple actinic keratoses and wart-like lesions: a randomized half-side comparative trial on dorsal hands.
Br J Dermatol. 2013;169(5):1087-1092. doi:
10.1111/bjd.12507PubMedGoogle ScholarCrossref 27.Hsu
SH , Gan
SD , Nguyen
BT , Konnikov
N , Liang
CA . Ablative fractional laser-assisted topical fluorouracil for the treatment of superficial basal cell carcinoma and squamous cell carcinoma in situ: a follow-up study.
Dermatol Surg. 2016;42(9):1050-1053. doi:
10.1097/DSS.0000000000000814PubMedGoogle ScholarCrossref 28.Ko
DY , Kim
KH , Song
KH . A randomized trial comparing methyl aminolaevulinate photodynamic therapy with and without Er:YAG ablative fractional laser treatment in Asian patients with lower extremity Bowen disease: results from a 12-month follow-up.
Br J Dermatol. 2014;170(1):165-172. doi:
10.1111/bjd.12627PubMedGoogle ScholarCrossref 29.Kim
HJ , Song
KH . Ablative fractional laser-assisted photodynamic therapy provides superior long-term efficacy compared with standard methyl aminolevulinate photodynamic therapy for lower extremity Bowen disease.
J Am Acad Dermatol. 2018;79(5):860-868. doi:
10.1016/j.jaad.2018.05.034PubMedGoogle ScholarCrossref 32.Lippert
J , Smucler
R , Vlk
M . Fractional carbon dioxide laser improves nodular basal cell carcinoma treatment with photodynamic therapy with methyl 5-aminolevulinate.
Dermatol Surg. 2013;39(8):1202-1208. doi:
10.1111/dsu.12242PubMedGoogle ScholarCrossref 33.Choi
SH , Kim
KH , Song
KH . Efficacy of ablative fractional laser-assisted photodynamic therapy for the treatment of actinic cheilitis: 12-month follow-up results of a prospective, randomized, comparative trial.
Br J Dermatol. 2015;173(1):184-191. doi:
10.1111/bjd.13542PubMedGoogle ScholarCrossref 34.Haak
CS , Togsverd-Bo
K , Thaysen-Petersen
D ,
et al. Fractional laser-mediated photodynamic therapy of high-risk basal cell carcinomas--a randomized clinical trial.
Br J Dermatol. 2015;172(1):215-222. doi:
10.1111/bjd.13166PubMedGoogle ScholarCrossref 35.Choi
SH , Kim
KH , Song
KH . Er:YAG ablative fractional laser-primed photodynamic therapy with methyl aminolevulinate as an alternative treatment option for patients with thin nodular basal cell carcinoma: 12-month follow-up results of a randomized, prospective, comparative trial.
J Eur Acad Dermatol Venereol. 2016;30(5):783-788. doi:
10.1111/jdv.13453PubMedGoogle ScholarCrossref 36.Genouw
E , Verheire
B , Ongenae
K ,
et al. Laser-assisted photodynamic therapy for superficial basal cell carcinoma and Bowen’s disease: a randomized intrapatient comparison between a continuous and a fractional ablative CO
2 laser mode.
J Eur Acad Dermatol Venereol. 2018;32(11):1897-1905. doi:
10.1111/jdv.14989PubMedGoogle ScholarCrossref 37.Seo
JW , Kim
HJ , Song
KH . A comparison of the efficacy of ablative fractional laser-assisted photodynamic therapy according to ablative depth for actinic keratosis: a single-blinded, randomized, comparative, prospective study.
J Am Acad Dermatol. 2019;81(2):636-638. doi:
10.1016/j.jaad.2019.01.033PubMedGoogle ScholarCrossref 40.Meesters
AA , Bakker
MM , de Rie
MA , Wolkerstorfer
A . Fractional CO2 laser assisted delivery of topical anesthetics: A randomized controlled pilot study.
Lasers Surg Med. 2016;48(2):208-211. doi:
10.1002/lsm.22376PubMedGoogle ScholarCrossref 41.Meesters
AA , Nieboer
MJ , Kezic
S , de Rie
MA , Wolkerstorfer
A . Parameters in fractional laser assisted delivery of topical anesthetics: role of laser type and laser settings.
Lasers Surg Med. 2018;50(8):813-818. doi:
10.1002/lsm.22936PubMedGoogle ScholarCrossref 46.Sabry
HH , Abdel Rahman
SH , Hussein
MS , Sanad
RR , Abd El Azez
TA . The efficacy of combining fractional carbon dioxide laser with verapamil hydrochloride or 5-fluorouracil in the treatment of hypertrophic scars and keloids: a clinical and immunohistochemical study.
Dermatol Surg. 2019;45(4):536-546. doi:
10.1097/DSS.0000000000001726PubMedGoogle ScholarCrossref 47.Tawfik
AA , Fathy
M , Badawi
A , Abdallah
N , Shokeir
H . Topical 5 fluorouracil cream vs combined 5 fluorouracil and fractional erbium YAG laser for treatment of severe hypertrophic scars.
Clin Cosmet Investig Dermatol. 2019;12:173-180. doi:
10.2147/CCID.S191137PubMedGoogle ScholarCrossref 48.Waibel
JS , Rudnick
A , Arheart
KL , Nagrani
N , Gonzalez
A , Gianatasio
C . Re-pigmentation of hypopigmentation: fractional lasers vs laser-assisted delivery of bimatoprost vs epidermal melanocyte harvesting system.
J Drugs Dermatol. 2019;18(11):1090-1096.
PubMedGoogle Scholar 50.Siadat
AH , Rezaei
R , Asilian
A ,
et al. Repigmentation of hypopigmented scars using combination of fractionated carbon dioxide laser with topical latanoprost vs. fractionated carbon dioxide laser alone.
Indian J Dermatol. 2015;60(4):364-368. doi:
10.4103/0019-5154.160481PubMedGoogle ScholarCrossref 51.Waibel
JS , Wulkan
AJ , Shumaker
PR . Treatment of hypertrophic scars using laser and laser assisted corticosteroid delivery.
Lasers Surg Med. 2013;45(3):135-140.
Google ScholarCrossref 54.Koren
A , Salameh
F , Sprecher
E , Artzi
O . Laser-assisted photodynamic therapy or laser-assisted amorolfine lacquer delivery for treatment of toenail onychomycosis: an open-label comparative study.
Acta Derm Venereol. 2018;98(4):467-468. doi:
10.2340/00015555-2874PubMedGoogle ScholarCrossref 56.Sobhi
RM , Sharaoui
I , El Nabarawy
EA , El Nemr Esmail
RS , Hegazy
RA , Aref
DHF . Comparative study of fractional CO
2 laser and fractional CO
2 laser-assisted drug delivery of topical steroid and topical vitamin C in macular amyloidosis.
Lasers Med Sci. 2018;33(4):909-916. doi:
10.1007/s10103-018-2457-1PubMedGoogle ScholarCrossref 57.Liu
L , Wu
Y , Zhang
J ,
et al. Ablative fractional Co
2 laser aided delivery of long-acting glucocorticoid in the treatment of acral vitiligo: a multicenter, prospective, self-bilateral controlled study.
J Dermatolog Treat. 2019;30(4):320-327. doi:
10.1080/09546634.2018.1509048PubMedGoogle ScholarCrossref 58.Szeimies
R-M , Schleyer
V , Moll
I , Stocker
M , Landthaler
M , Karrer
S . Adjuvant photodynamic therapy does not prevent recurrence of condylomata acuminata after carbon dioxide laser ablation-A phase III, prospective, randomized, bicentric, double-blind study.
Dermatol Surg. 2009;35(5):757-764. doi:
10.1111/j.1524-4725.2009.01125.xPubMedGoogle ScholarCrossref 59.Issa
MC , Torreão
PS , Boechat
M , Luiz
R . Early investigations in drug delivery of onabotulinum toxin A using combined fractional ablative laser with impact ultrasound vs. injections of onabotulinum toxin A for palmar hyperhidrosis: a right-left comparison trial.
Br J Dermatol. 2018;179(5):1168-1169. doi:
10.1111/bjd.16781PubMedGoogle ScholarCrossref 61.Croix
J , Burge
S , Chwalek
J , Gmyrek
R , Chapas
A . Split-sided chest study of skin rejuvenation comparing low-energy, 1,927-nm thulium fractional laser treatment prior to photodynamic therapy versus photodynamic therapy alone.
Lasers Surg Med. 2020;52(1):53-60. doi:
10.1002/lsm.23178PubMedGoogle ScholarCrossref 62.Hendel
K , Mogensen
M , Wenande
E , Dierickx
C , Haedersdal
M , Togsverd-Bo
K . Fractional 1,927 nm thulium laser plus photodynamic therapy compared and combined for photodamaged décolleté skin: a side-by-side randomized controlled trial.
Lasers Surg Med. 2020;52(1):44-52. doi:
10.1002/lsm.23194PubMedGoogle ScholarCrossref 63.Kim
TI , Ahn
HJ , Kang
IH , Jeong
KH , Kim
NI , Shin
MK . Nonablative fractional laser-assisted daylight photodynamic therapy with topical methyl aminolevulinate for moderate to severe facial acne vulgaris: results of a randomized and comparative study.
Photodermatol Photoimmunol Photomed. 2017;33(5):253-259. doi:
10.1111/phpp.12312PubMedGoogle ScholarCrossref 64.Wanitphakdeedecha
R , Sy-Alvarado
F , Patthamalai
P , Techapichetvanich
T , Eimpunth
S , Manuskiatti
W . The efficacy in treatment of facial melasma with thulium 1927-nm fractional laser-assisted topical tranexamic acid delivery: a split-face, double-blind, randomized controlled pilot study.
Lasers Med Sci. 2020;35(9):2015-2021. doi:
10.1007/s10103-020-03045-8PubMedGoogle ScholarCrossref 66.Mercuri
SR , Brianti
P , Foti
A , Bartolucci
M , Dattola
A , Nisticò
SP . Penile lichen sclerosus treated with 1927 nm thulium fiber laser and photodynamic therapy: a new possible therapeutic approach.
Photomed Laser Surg. 2018;36(6):333-336. doi:
10.1089/pho.2017.4386PubMedGoogle ScholarCrossref 67.US Institute of Medicine Committee on Standards for Developing Trustworthy Clinical Practice Guidelines. Graham
R , Mancher
M , Miller Wolman
D , Greenfield
S , Steinberg
E , eds. Clinical Practice Guidelines We Can Trust. National Academies Press; 2011.
69.Rkein
A , Ozog
D , Waibel
JS . Treatment of atrophic scars with fractionated CO2 laser facilitating delivery of topically applied poly-L-lactic acid.
Dermatol Surg. 2014;40(6):624-631.
PubMedGoogle Scholar 70.Ibrahim
O , Wenande
E , Hogan
S , Arndt
KA , Haedersdal
M , Dover
JS . Challenges to laser-assisted drug delivery: applying theory to clinical practice.
Lasers Surg Med. 2018;50(1):20-27. doi:
10.1002/lsm.22769PubMedGoogle ScholarCrossref 72.Haedersdal
M , Sakamoto
FH , Farinelli
WA , Doukas
AG , Tam
J , Anderson
RR . Pretreatment with ablative fractional laser changes kinetics and biodistribution of topical 5-aminolevulinic acid (ALA) and methyl aminolevulinate (MAL).
Lasers Surg Med. 2014;46(6):462-469. doi:
10.1002/lsm.22259PubMedGoogle ScholarCrossref 74.Haak
CS , Farinelli
WA , Tam
J , Doukas
AG , Anderson
RR , Haedersdal
M . Fractional laser-assisted delivery of methyl aminolevulinate: impact of laser channel depth and incubation time.
Lasers Surg Med. 2012;44(10):787-795. doi:
10.1002/lsm.22102PubMedGoogle ScholarCrossref 76.Bay
C , Lerche
CM , Ferrick
B , Philipsen
PA , Togsverd-Bo
K , Haedersdal
M . Comparison of physical pretreatment regimens to enhance protoporphyrin IX uptake in photodynamic therapy: a randomized clinical trial.
JAMA Dermatol. 2017;153(4):270-278. doi:
10.1001/jamadermatol.2016.5268PubMedGoogle ScholarCrossref 78.Braun
SA , Schrumpf
H , Buhren
BA , Homey
B , Gerber
PA . Laser-assisted drug delivery: mode of action and use in daily clinical practice.
J Dtsch Dermatol Ges. 2016;14(5):480-488. doi:
10.1111/ddg.12963PubMedGoogle ScholarCrossref 80.Nguyen
BT , Gan
SD , Konnikov
N , Liang
CA . Treatment of superficial basal cell carcinoma and squamous cell carcinoma in situ on the trunk and extremities with ablative fractional laser-assisted delivery of topical fluorouracil.
J Am Acad Dermatol. 2015;72(3):558-560. doi:
10.1016/j.jaad.2014.11.033PubMedGoogle ScholarCrossref 81.Cavalié
M , Sillard
L , Montaudié
H , Bahadoran
P , Lacour
JP , Passeron
T . Treatment of keloids with laser-assisted topical steroid delivery: a retrospective study of 23 cases.
Dermatol Ther. 2015;28(2):74-78. doi:
10.1111/dth.12187PubMedGoogle ScholarCrossref 83.Chung
HJ , Cheng
J , Gonzalez
M , Al-Janahi
S . Factors affecting depth of penetration in microneedling- and laser-assisted drug delivery: the importance of timing of topical application.
Dermatol Surg. 2020;46(12):e146-e153. doi:
10.1097/DSS.0000000000002381PubMedGoogle ScholarCrossref