[Skip to Content]
[Skip to Content Landing]

Diagnosis and Treatment of Myelodysplastic SyndromesA Review

To identify the key insights or developments described in this article
1 Credit CME
Abstract

Importance  Myelodysplastic neoplasms (MDS), formerly known as myelodysplastic syndromes, are clonal hematopoietic malignancies that cause morphologic bone marrow dysplasia along with anemia, neutropenia, or thrombocytopenia. MDS are associated with an increased risk of acute myeloid leukemia (AML). The yearly incidence of MDS is approximately 4 per 100 000 people in the United States and is higher among patients with advanced age.

Observations  MDS are characterized by reduced numbers of peripheral blood cells, an increased risk of acute myeloid leukemia transformation, and reduced survival. The median age at diagnosis is approximately 70 years, and the yearly incidence rate increases to 25 per 100 000 in people aged 65 years and older. Risk factors associated with MDS include older age and prior exposures to toxins such as chemotherapy or radiation therapy. MDS are more common in men compared with women (with yearly incidence rates of approximately 5.4 vs 2.9 per 100 000). MDS typically has an insidious presentation, consisting of signs and symptoms associated with anemia, thrombocytopenia, and neutropenia. MDS can be categorized into subtypes that are associated with lower or higher risk for acute myeloid leukemia transformation and that help with therapy selection. Patients with lower-risk MDS have a median survival of approximately 3 to 10 years, whereas patients with higher-risk disease have a median survival of less than 3 years. Therapy for lower-risk MDS is selected based on whether the primary clinical characteristic is anemia, thrombocytopenia, or neutropenia. Management focuses on treating symptoms and reducing the number of required transfusions in patients with low-risk disease. For patients with lower-risk MDS, erythropoiesis stimulating agents, such as recombinant humanized erythropoietin or the longer-acting erythropoietin, darbepoetin alfa, can improve anemia in 15% to 40% of patients for a median of 8 to 23 months. For those with higher-risk MDS, hypomethylating agents such as azacitidine, decitabine, or decitabine/cedazuridine are first-line therapy. Hematopoietic cell transplantation is considered for higher-risk patients and represents the only potential cure.

Conclusions and Relevance  MDS are diagnosed in approximately 4 per 100 000 people in the United States and are associated with a 5-year survival rate of approximately 37%. Treatments are tailored to the patient’s disease characteristics and comorbidities and range from supportive care with or without erythropoiesis-stimulating agents for patients with low-risk MDS to hypomethylating agents, such as azacitidine or decitabine, for patients with higher-risk MDS. Hematopoietic cell transplantation is potentially curative and should be considered for patients with higher-risk MDS at the time of diagnosis.

Sign in to take quiz and track your certificates

Buy This Activity
Our websites may be periodically unavailable between 12:00am CT March 25, 2023 and 4:00pm CT March 26, 2023 for regularly scheduled maintenance.

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 Credit(s)™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

CME Disclosure Statement: Unless noted, all individuals in control of content reported no relevant financial relationships. If applicable, all relevant financial relationships have been mitigated.

Article Information

Accepted for Publication: August 3, 2022.

Corresponding Author: Mikkael A. Sekeres, MD, MS, Division of Hematology, Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami, 1120 NW 14th St, Ste 610M, Miami, FL 33156 (msekeres@med.miami.edu).

Author Contributions: Dr Sekeres had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: All authors.

Acquisition, analysis, or interpretation of data: Sekeres.

Drafting of the manuscript: All authors.

Critical revision of the manuscript for important intellectual content: Sekeres.

Administrative, technical, or material support: Sekeres.

Supervision: Sekeres.

Conflict of Interest Disclosures: Dr Sekeres reported personal fees from BMS, Novartis, and Pfizer (serving on advisory boards) outside the submitted work. Dr Taylor reported honorarium from Karyopharm Therapeutics; and grants from the National Cancer Institute/National Institutes of Health, the Doris Duke Charitable Foundation, and the Edward P. Evans Foundation outside the submitted work.

Additional Contributions: The authors would like to thank John Reynolds, MLIS, AHIP, from the University of Miami Miller School of Medicine Calder Library, Miami, Florida, for his assistance with the literature review. Mr Reynolds did not receive any compensation.

References
1.
Arber  DA , Orazi  A , Hasserjian  R ,  et al.  The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia.   Blood. 2016;127(20):2391-2405. doi:10.1182/blood-2016-03-643544PubMedGoogle ScholarCrossref
2.
Greenberg  PL , Tuechler  H , Schanz  J ,  et al.  Revised international prognostic scoring system for myelodysplastic syndromes.   Blood. 2012;120(12):2454-2465. doi:10.1182/blood-2012-03-420489PubMedGoogle ScholarCrossref
3.
Surveillance Research Program, National Cancer Institute.  All cancer sites combined: recent trends in SEER age-adjusted incidence rates, 2000-2019 by sex, delay-adjusted SEER incidence rate, all races, all ages. Accessed June 22, 2022. https://seer.cancer.gov/statistics-network/explorer/.
4.
Steensma  DP , Bejar  R , Jaiswal  S ,  et al.  Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes.   Blood. 2015;126(1):9-16. doi:10.1182/blood-2015-03-631747PubMedGoogle ScholarCrossref
5.
Bhatia  S .  Therapy-related myelodysplasia and acute myeloid leukemia.   Semin Oncol. 2013;40(6):666-675. doi:10.1053/j.seminoncol.2013.09.013PubMedGoogle ScholarCrossref
6.
Negoro  E , Nagata  Y , Clemente  MJ ,  et al.  Origins of myelodysplastic syndromes after aplastic anemia.   Blood. 2017;130(17):1953-1957. doi:10.1182/blood-2017-02-767731PubMedGoogle ScholarCrossref
7.
Komrokji  RS , Kulasekararaj  A , Al Ali  NH ,  et al.  Autoimmune diseases and myelodysplastic syndromes.   Am J Hematol. 2016;91(5):E280-E283. doi:10.1002/ajh.24333PubMedGoogle ScholarCrossref
8.
Iwanaga  M , Hsu  W-L , Soda  M ,  et al.  Risk of myelodysplastic syndromes in people exposed to ionizing radiation: a retrospective cohort study of Nagasaki atomic bomb survivors.   J Clin Oncol. 2011;29(4):428-434. doi:10.1200/JCO.2010.31.3080PubMedGoogle ScholarCrossref
9.
Polprasert  C , Schulze  I , Sekeres  MA ,  et al.  Inherited and somatic defects in ddx41 in myeloid neoplasms.   Cancer Cell. 2015;27(5):658-670. doi:10.1016/j.ccell.2015.03.017PubMedGoogle ScholarCrossref
10.
Allampallam  K , Shetty  V , Mundle  S ,  et al.  Biological significance of proliferation, apoptosis, cytokines, and monocyte/macrophage cells in bone marrow biopsies of 145 patients with myelodysplastic syndrome.   Int J Hematol. 2002;75(3):289-297. doi:10.1007/BF02982044PubMedGoogle ScholarCrossref
11.
Pang  WW , Pluvinage  JV , Price  EA ,  et al.  Hematopoietic stem cell and progenitor cell mechanisms in myelodysplastic syndromes.   Proc Natl Acad Sci U S A. 2013;110(8):3011-3016. doi:10.1073/pnas.1222861110PubMedGoogle ScholarCrossref
12.
Woll  PS , Kjällquist  U , Chowdhury  O ,  et al.  Myelodysplastic syndromes are propagated by rare and distinct human cancer stem cells in vivo.   Cancer Cell. 2014;25(6):794-808. doi:10.1016/j.ccr.2014.03.036PubMedGoogle ScholarCrossref
13.
Nilsson  L , Edén  P , Olsson  E ,  et al.  The molecular signature of MDS stem cells supports a stem-cell origin of 5q myelodysplastic syndromes.   Blood. 2007;110(8):3005-3014. doi:10.1182/blood-2007-03-079368PubMedGoogle ScholarCrossref
14.
Shastri  A , Will  B , Steidl  U , Verma  A .  Stem and progenitor cell alterations in myelodysplastic syndromes.   Blood. 2017;129(12):1586-1594. doi:10.1182/blood-2016-10-696062PubMedGoogle ScholarCrossref
15.
Genovese  G , Jaiswal  S , Ebert  BL , McCarroll  SA .  Clonal hematopoiesis and blood-cancer risk.   N Engl J Med. 2015;372(11):1071-1072. doi:10.1056/NEJMc1500684PubMedGoogle ScholarCrossref
16.
Jaiswal  S , Fontanillas  P , Flannick  J ,  et al.  Age-related clonal hematopoiesis associated with adverse outcomes.   N Engl J Med. 2014;371(26):2488-2498. doi:10.1056/NEJMoa1408617PubMedGoogle ScholarCrossref
17.
Genovese  G , Kähler  AK , Handsaker  RE ,  et al.  Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence.   N Engl J Med. 2014;371(26):2477-2487. doi:10.1056/NEJMoa1409405PubMedGoogle ScholarCrossref
18.
Sekeres  MA , Schoonen  WM , Kantarjian  H ,  et al.  Characteristics of US patients with myelodysplastic syndromes: results of six cross-sectional physician surveys.   J Natl Cancer Inst. 2008;100(21):1542-1551. doi:10.1093/jnci/djn349PubMedGoogle ScholarCrossref
19.
Toma  A , Fenaux  P , Dreyfus  F , Cordonnier  C .  Infections in myelodysplastic syndromes.   Haematologica. 2012;97(10):1459-1470. doi:10.3324/haematol.2012.063420PubMedGoogle ScholarCrossref
20.
Radakovich  N , Meggendorfer  M , Malcovati  L ,  et al.  A geno-clinical decision model for the diagnosis of myelodysplastic syndromes.   Blood Adv. 2021;5(21):4361-4369. doi:10.1182/bloodadvances.2021004755PubMedGoogle ScholarCrossref
21.
Kuriyama  K , Tomonaga  M , Matsuo  T , Ginnai  I , Ichimaru  M .  Diagnostic significance of detecting pseudo-Pelger-Huët anomalies and micro-megakaryocytes in myelodysplastic syndrome.   Br J Haematol. 1986;63(4):665-669. doi:10.1111/j.1365-2141.1986.tb07550.xPubMedGoogle ScholarCrossref
22.
Kwok  B , Hall  JM , Witte  JS ,  et al.  MDS-associated somatic mutations and clonal hematopoiesis are common in idiopathic cytopenias of undetermined significance.   Blood. 2015;126(21):2355-2361. doi:10.1182/blood-2015-08-667063PubMedGoogle ScholarCrossref
23.
Khoury  JD , Solary  E , Abla  O ,  et al.  The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms.   Leukemia. 2022;36(7):1703-1719. doi:10.1038/s41375-022-01613-1PubMedGoogle ScholarCrossref
24.
Malcovati  L , Gallì  A , Travaglino  E ,  et al.  Clinical significance of somatic mutation in unexplained blood cytopenia.   Blood. 2017;129(25):3371-3378. doi:10.1182/blood-2017-01-763425PubMedGoogle ScholarCrossref
25.
Estey  E , Hasserjian  RP , Döhner  H .  Distinguishing AML from MDS: a fixed blast percentage may no longer be optimal.   Blood. 2022;139(3):323-332. doi:10.1182/blood.2021011304PubMedGoogle ScholarCrossref
26.
Sanz  GF , Sanz  MA , Greenberg  PL .  Prognostic factors and scoring systems in myelodysplastic syndromes.   Haematologica. 1998;83(4):358-368.PubMedGoogle Scholar
27.
Greenberg  P , Cox  C , LeBeau  MM ,  et al.  International scoring system for evaluating prognosis in myelodysplastic syndromes.   Blood. 1997;89(6):2079-2088. doi:10.1182/blood.V89.6.2079PubMedGoogle ScholarCrossref
28.
Pfeilstöcker  M , Tuechler  H , Sanz  G ,  et al.  Time-dependent changes in mortality and transformation risk in MDS.   Blood. 2016;128(7):902-910. doi:10.1182/blood-2016-02-700054PubMedGoogle ScholarCrossref
29.
Bersanelli  M , Travaglino  E , Meggendorfer  M ,  et al.  Classification and personalized prognostic assessment on the basis of clinical and genomic features in myelodysplastic syndromes.   J Clin Oncol. 2021;39(11):1223-1233. doi:10.1200/JCO.20.01659PubMedGoogle ScholarCrossref
30.
Nazha  A , Komrokji  R , Meggendorfer  M ,  et al.  Personalized prediction model to risk stratify patients with myelodysplastic syndromes.   J Clin Oncol. 2021;39(33):3737-3746. doi:10.1200/JCO.20.02810PubMedGoogle ScholarCrossref
31.
Sekeres  MA , Patel  BJ .  Lowering the boom on lower-risk myelodysplastic syndromes.   Hematology Am Soc Hematol Educ Program. 2019;2019(1):367-372. doi:10.1182/hematology.2019000040PubMedGoogle ScholarCrossref
32.
Platzbecker  U , Fenaux  P , Adès  L ,  et al.  Proposals for revised IWG 2018 hematological response criteria in patients with MDS included in clinical trials.   Blood. 2019;133(10):1020-1030. doi:10.1182/blood-2018-06-857102PubMedGoogle ScholarCrossref
33.
Naqvi  K , Garcia-Manero  G , Sardesai  S ,  et al.  Association of comorbidities with overall survival in myelodysplastic syndrome: development of a prognostic model.   J Clin Oncol. 2011;29(16):2240-2246. doi:10.1200/JCO.2010.31.3353PubMedGoogle ScholarCrossref
34.
Gabrilove  J , Paquette  R , Lyons  RM ,  et al.  Phase 2, single-arm trial to evaluate the effectiveness of darbepoetin alfa for correcting anaemia in patients with myelodysplastic syndromes.   Br J Haematol. 2008;142(3):379-393. doi:10.1111/j.1365-2141.2008.07181.xPubMedGoogle ScholarCrossref
35.
Platzbecker  U , Symeonidis  A , Oliva  EN ,  et al.  A phase 3 randomized placebo-controlled trial of darbepoetin alfa in patients with anemia and lower-risk myelodysplastic syndromes.   Leukemia. 2017;31(9):1944-1950. doi:10.1038/leu.2017.192PubMedGoogle ScholarCrossref
36.
Golshayan  AR , Jin  T , Maciejewski  J ,  et al.  Efficacy of growth factors compared to other therapies for low-risk myelodysplastic syndromes.   Br J Haematol. 2007;137(2):125-132. doi:10.1111/j.1365-2141.2007.06546.xPubMedGoogle ScholarCrossref
37.
Suragani  RNVS , Cadena  SM , Cawley  SM ,  et al.  Transforming growth factor-β superfamily ligand trap ACE-536 corrects anemia by promoting late-stage erythropoiesis.   Nat Med. 2014;20(4):408-414. doi:10.1038/nm.3512PubMedGoogle ScholarCrossref
38.
Fenaux  P , Giagounidis  A , Selleslag  D ,  et al; MDS-004 Lenalidomide del5q Study Group.  A randomized phase 3 study of lenalidomide versus placebo in RBC transfusion-dependent patients with low-/intermediate-1-risk myelodysplastic syndromes with del5q.   Blood. 2011;118(14):3765-3776. doi:10.1182/blood-2011-01-330126PubMedGoogle ScholarCrossref
39.
Giagounidis  A , Mufti  GJ , Fenaux  P ,  et al.  Results of a randomized, double-blind study of romiplostim versus placebo in patients with low/intermediate-1-risk myelodysplastic syndrome and thrombocytopenia.   Cancer. 2014;120(12):1838-1846. doi:10.1002/cncr.28663PubMedGoogle ScholarCrossref
40.
Oliva  EN , Alati  C , Santini  V ,  et al.  Eltrombopag versus placebo for low-risk myelodysplastic syndromes with thrombocytopenia (EQoL-MDS): phase 1 results of a single-blind, randomised, controlled, phase 2 superiority trial.   Lancet Haematol. 2017;4(3):e127-e136. doi:10.1016/S2352-3026(17)30012-1PubMedGoogle ScholarCrossref
41.
Kantarjian  HM , Fenaux  P , Sekeres  MA ,  et al.  Long-term follow-up for up to 5 years on the risk of leukaemic progression in thrombocytopenic patients with lower-risk myelodysplastic syndromes treated with romiplostim or placebo in a randomised double-blind trial.   Lancet Haematol. 2018;5(3):e117-e126. doi:10.1016/S2352-3026(18)30016-4PubMedGoogle ScholarCrossref
42.
Komrokji  RS , Mailloux  AW , Chen  DT ,  et al.  A phase II multicenter rabbit anti-thymocyte globulin trial in patients with myelodysplastic syndromes identifying a novel model for response prediction.   Haematologica. 2014;99(7):1176-1183. doi:10.3324/haematol.2012.083345PubMedGoogle ScholarCrossref
43.
Passweg  JR , Giagounidis  AAN , Simcock  M ,  et al.  Immunosuppressive therapy for patients with myelodysplastic syndrome: a prospective randomized multicenter phase III trial comparing antithymocyte globulin plus cyclosporine with best supportive care–SAKK 33/99.   J Clin Oncol. 2011;29(3):303-309. doi:10.1200/JCO.2010.31.2686PubMedGoogle ScholarCrossref
44.
Komrokji  R , Swern  AS , Grinblatt  D ,  et al.  Azacitidine in lower-risk myelodysplastic syndromes: a meta-analysis of data from prospective studies.   Oncologist. 2018;23(2):159-170. doi:10.1634/theoncologist.2017-0215PubMedGoogle ScholarCrossref
45.
Garcia-Manero  G , Griffiths  EA , Steensma  DP ,  et al.  Oral cedazuridine/decitabine for MDS and CMML: a phase 2 pharmacokinetic/pharmacodynamic randomized crossover study.   Blood. 2020;136(6):674-683. doi:10.1182/blood.2019004143PubMedGoogle ScholarCrossref
46.
Fenaux  P , Mufti  GJ , Hellstrom-Lindberg  E ,  et al; International Vidaza High-Risk MDS Survival Study Group.  Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study.   Lancet Oncol. 2009;10(3):223-232. doi:10.1016/S1470-2045(09)70003-8PubMedGoogle ScholarCrossref
47.
Sekeres  MA , Othus  M , List  AF ,  et al.  Randomized phase ii study of azacitidine alone or in combination with lenalidomide or with vorinostat in higher-risk myelodysplastic syndromes and chronic myelomonocytic leukemia: North American Intergroup Study SWOG S1117.   J Clin Oncol. 2017;35(24):2745-2753. doi:10.1200/JCO.2015.66.2510PubMedGoogle ScholarCrossref
48.
Prebet  T , Sun  Z , Figueroa  ME ,  et al.  Prolonged administration of azacitidine with or without entinostat for myelodysplastic syndrome and acute myeloid leukemia with myelodysplasia-related changes: results of the US Leukemia Intergroup Trial E1905.   J Clin Oncol. 2014;32(12):1242-1248. doi:10.1200/JCO.2013.50.3102PubMedGoogle ScholarCrossref
49.
Lübbert  M , Suciu  S , Baila  L ,  et al.  Low-dose decitabine versus best supportive care in elderly patients with intermediate- or high-risk myelodysplastic syndrome (MDS) ineligible for intensive chemotherapy: final results of the randomized phase III study of the European Organisation for Research and Treatment of Cancer Leukemia Group and the German MDS Study Group.   J Clin Oncol. 2011;29(15):1987-1996. doi:10.1200/JCO.2010.30.9245PubMedGoogle ScholarCrossref
50.
Denny  SD , Kuchibhatla  MN , Cohen  HJ .  Impact of anemia on mortality, cognition, and function in community-dwelling elderly.   Am J Med. 2006;119(4):327-334. doi:10.1016/j.amjmed.2005.08.027PubMedGoogle ScholarCrossref
51.
Culleton  BF , Manns  BJ , Zhang  J , Tonelli  M , Klarenbach  S , Hemmelgarn  BR .  Impact of anemia on hospitalization and mortality in older adults.   Blood. 2006;107(10):3841-3846. doi:10.1182/blood-2005-10-4308PubMedGoogle ScholarCrossref
52.
Hellström-Lindberg  E , Gulbrandsen  N , Lindberg  G ,  et al; Scandinavian MDS Group.  A validated decision model for treating the anaemia of myelodysplastic syndromes with erythropoietin + granulocyte colony-stimulating factor: significant effects on quality of life.   Br J Haematol. 2003;120(6):1037-1046. doi:10.1046/j.1365-2141.2003.04153.xPubMedGoogle ScholarCrossref
53.
Jädersten  M , Malcovati  L , Dybedal  I ,  et al.  Treatment with erythropoietin and G-CSF improves survival in MDS patients with low transfusion need. American Society of Hematology Annual Meeting Abstract.   Blood. 2006;108(11):521. doi:10.1182/blood.V108.11.521.521Google ScholarCrossref
54.
Malcovati  L , Karimi  M , Papaemmanuil  E ,  et al.  SF3B1 mutation identifies a distinct subset of myelodysplastic syndrome with ring sideroblasts.   Blood. 2015;126(2):233-241. doi:10.1182/blood-2015-03-633537PubMedGoogle ScholarCrossref
55.
Fenaux  P , Platzbecker  U , Mufti  GJ ,  et al.  Luspatercept in patients with lower-risk myelodysplastic syndromes.   N Engl J Med. 2020;382(2):140-151. doi:10.1056/NEJMoa1908892PubMedGoogle ScholarCrossref
56.
Patnaik  MM , Lasho  TL , Finke  CM ,  et al.  WHO-defined ‘myelodysplastic syndrome with isolated del(5q)’ in 88 consecutive patients: survival data, leukemic transformation rates and prevalence of JAK2, MPL and IDH mutations.   Leukemia. 2010;24(7):1283-1289. doi:10.1038/leu.2010.105PubMedGoogle ScholarCrossref
57.
Ebert  BL , Pretz  J , Bosco  J ,  et al.  Identification of RPS14 as a 5q- syndrome gene by RNA interference screen.   Nature. 2008;451(7176):335-339. doi:10.1038/nature06494PubMedGoogle ScholarCrossref
58.
Krönke  J , Fink  EC , Hollenbach  PW ,  et al.  Lenalidomide induces ubiquitination and degradation of CK1α in del(5q) MDS.   Nature. 2015;523(7559):183-188. doi:10.1038/nature14610PubMedGoogle ScholarCrossref
59.
Sekeres  MA , Maciejewski  JP , Giagounidis  AA ,  et al.  Relationship of treatment-related cytopenias and response to lenalidomide in patients with lower-risk myelodysplastic syndromes.   J Clin Oncol. 2008;26(36):5943-5949. doi:10.1200/JCO.2007.15.5770PubMedGoogle ScholarCrossref
60.
Kantarjian  H , Giles  F , List  A ,  et al.  The incidence and impact of thrombocytopenia in myelodysplastic syndromes.   Cancer. 2007;109(9):1705-1714. doi:10.1002/cncr.22602PubMedGoogle ScholarCrossref
61.
Bussel  JB , Soff  G , Balduzzi  A , Cooper  N , Lawrence  T , Semple  JW .  A review of romiplostim mechanism of action and clinical applicability.   Drug Des Dev Ther. 2021;15:2243-2268. doi:10.2147/DDDT.S299591PubMedGoogle ScholarCrossref
62.
Duong  VH , Al Ali  N , Zhang  L ,  et al.  A sequential two-stage dose escalation study of eltrombopag in patients with myelodysplastic syndrome and thrombocytopenia after hypomethylating agent failure.   Leuk Lymphoma. 2020;61(8):1901-1907. doi:10.1080/10428194.2020.1751841PubMedGoogle ScholarCrossref
63.
Saunthararajah  Y , Triozzi  P , Rini  B ,  et al.  p53-Independent, normal stem cell sparing epigenetic differentiation therapy for myeloid and other malignancies.   Semin Oncol. 2012;39(1):97-108. doi:10.1053/j.seminoncol.2011.11.011PubMedGoogle ScholarCrossref
64.
Jabbour  E , Short  NJ , Montalban-Bravo  G ,  et al.  Randomized phase 2 study of low-dose decitabine vs low-dose azacitidine in lower-risk MDS and MDS/MPN.   Blood. 2017;130(13):1514-1522. doi:10.1182/blood-2017-06-788497PubMedGoogle ScholarCrossref
65.
Madanat  Y , Sekeres  MA .  Optimizing the use of hypomethylating agents in myelodysplastic syndromes: selecting the candidate, predicting the response, and enhancing the activity.   Semin Hematol. 2017;54(3):147-153. doi:10.1053/j.seminhematol.2017.06.001PubMedGoogle ScholarCrossref
66.
Sekeres  MA , Watts  J , Radinoff  A ,  et al.  Randomized phase 2 trial of pevonedistat plus azacitidine versus azacitidine for higher-risk MDS/CMML or low-blast AML.   Leukemia. 2021;35(7):2119-2124. doi:10.1038/s41375-021-01125-4PubMedGoogle ScholarCrossref
67.
Zeidan  AM , Davidoff  AJ , Long  JB ,  et al.  Comparative clinical effectiveness of azacitidine versus decitabine in older patients with myelodysplastic syndromes.   Br J Haematol. 2016;175(5):829-840. doi:10.1111/bjh.14305PubMedGoogle ScholarCrossref
68.
Garcia-Manero  G , Montalban-Bravo  G , Berdeja  JG ,  et al.  Phase 2, randomized, double-blind study of pracinostat in combination with azacitidine in patients with untreated, higher-risk myelodysplastic syndromes.   Cancer. 2017;123(6):994-1002. doi:10.1002/cncr.30533PubMedGoogle ScholarCrossref
69.
Stein  EM , Fathi  AT , DiNardo  CD ,  et al.  Enasidenib in patients with mutant IDH2 myelodysplastic syndromes: a phase 1 subgroup analysis of the multicentre, AG221-C-001 trial.   Lancet Haematol. 2020;7(4):e309-e319. doi:10.1016/S2352-3026(19)30284-4PubMedGoogle ScholarCrossref
70.
Wei  AH , Strickland  SA  Jr , Hou  JZ ,  et al.  Venetoclax combined with low-dose cytarabine for previously untreated patients with acute myeloid leukemia: results from a phase ib/ii study.   J Clin Oncol. 2019;37(15):1277-1284. doi:10.1200/JCO.18.01600PubMedGoogle ScholarCrossref
71.
Prébet  T , Gore  SD , Esterni  B ,  et al.  Outcome of high-risk myelodysplastic syndrome after azacitidine treatment failure.   J Clin Oncol. 2011;29(24):3322-3327. doi:10.1200/JCO.2011.35.8135PubMedGoogle ScholarCrossref
72.
Cutler  CS , Lee  SJ , Greenberg  P ,  et al.  A decision analysis of allogeneic bone marrow transplantation for the myelodysplastic syndromes: delayed transplantation for low-risk myelodysplasia is associated with improved outcome.   Blood. 2004;104(2):579-585. doi:10.1182/blood-2004-01-0338PubMedGoogle ScholarCrossref
73.
Koreth  J , Pidala  J , Perez  WS ,  et al.  Role of reduced-intensity conditioning allogeneic hematopoietic stem-cell transplantation in older patients with de novo myelodysplastic syndromes: an international collaborative decision analysis.   J Clin Oncol. 2013;31(21):2662-2670. doi:10.1200/JCO.2012.46.8652PubMedGoogle ScholarCrossref
74.
Nakamura  R , Saber  W , Martens  MJ ,  et al.  Biologic assignment trial of reduced-intensity hematopoietic cell transplantation based on donor availability in patients 50-75 years of age with advanced myelodysplastic syndrome.   J Clin Oncol. 2021;39(30):3328-3339. doi:10.1200/JCO.20.03380PubMedGoogle ScholarCrossref
75.
Atallah  E , Logan  B , Chen  M ,  et al.  Comparison of patient age groups in transplantation for myelodysplastic syndrome: the Medicare Coverage With Evidence Development Study.   JAMA Oncol. 2020;6(4):486-493. doi:10.1001/jamaoncol.2019.5140PubMedGoogle ScholarCrossref
AMA CME Accreditation Information

Credit Designation Statement: The American Medical Association designates this Journal-based CME activity activity for a maximum of 1.00  AMA PRA Category 1 Credit(s)™. Physicians should claim only the credit commensurate with the extent of their participation in the activity.

Successful completion of this CME activity, which includes participation in the evaluation component, enables the participant to earn up to:

  • 1.00 Medical Knowledge MOC points in the American Board of Internal Medicine's (ABIM) Maintenance of Certification (MOC) program;;
  • 1.00 Self-Assessment points in the American Board of Otolaryngology – Head and Neck Surgery’s (ABOHNS) Continuing Certification program;
  • 1.00 MOC points in the American Board of Pediatrics’ (ABP) Maintenance of Certification (MOC) program;
  • 1.00 Lifelong Learning points in the American Board of Pathology’s (ABPath) Continuing Certification program; and
  • 1.00 CME points in the American Board of Surgery’s (ABS) Continuing Certification program

It is the CME activity provider's responsibility to submit participant completion information to ACCME for the purpose of granting MOC credit.

Close
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
Close
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close

Name Your Search

Save Search
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Close
Close

Lookup An Activity

or

My Saved Searches

You currently have no searches saved.

Close

My Saved Courses

You currently have no courses saved.

Close