[Skip to Content]
[Skip to Content Landing]

An Overview of Clinical Development of Agents for Metastatic or Advanced Breast Cancer Without ERBB2 Amplification (HER2-Low)

To identify the key insights or developments described in this article
1 Credit CME
Abstract

Importance  Erb-b2 receptor tyrosine kinase 2 (ERBB2; formerly HER2 [human epidermal growth factor receptor 2]) is an important prognostic and predictive factor in breast cancer. Anti-ERBB2 therapies have improved outcomes in ERBB2-positive breast cancer. However, based on current definitions, tumors with low ERBB2 expression are included in the ERBB2-negative subtype, and therefore, are ineligible for anti-ERBB2 therapies; patients with ERBB2-low (immunohistochemistry [IHC] 1 positive [+] or IHC 2+/in situ hybridization [ISH] negative [−]) tumors account for up to approximately 50% of breast cancer cases. Although the prognostic role of ERBB2-low needs to be defined, ERBB2 offers a potential therapeutic target in these patients.

Observations  Most breast cancer tumors have some ERBB2 expression, with ERBB2-low being more common in hormone receptor–positive than in hormone receptor–negative breast cancer. Although an early clinical study failed to demonstrate benefit of adjuvant trastuzumab for ERBB2-low disease, several novel anti-ERBB2 therapies have shown efficacy in ERBB2-low breast cancer, including the antibody-drug conjugate trastuzumab deruxtecan in a phase 3 trial, and trastuzumab duocarmazine and the bispecific antibody zenocutuzumab in early-phase studies. Although reports are conflicting, some differences in biology and patient outcomes have been found between ERBB2-low and ERBB2 IHC-0 breast cancer. Currently, no established guidelines exist for scoring ERBB2-low expression in breast cancer because the focus has been on binary classification as ERBB2-positive or ERBB2-negative. Additional interpretive cutoffs may be needed to select patients for treatment with effective agents in ERBB2-low breast cancer, along with standardized laboratory quality assurance programs to ensure consistent patient identification for eligibility for ERBB2-low targeting agents.

Conclusions and Relevance  This review suggests that ERBB2-low may be a distinct, clinically relevant breast cancer entity warranting reassessment of traditional diagnostic and therapeutic paradigms. Ongoing clinical trials and further investigations may provide optimized strategies for diagnosing and treating ERBB2-low breast cancer, including reproducible, consistent definitions to identify patients in this diagnostic category and demonstration of benefits of emerging therapies.

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 Credit(s)™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

CME Disclosure Statement: Unless noted, all individuals in control of content reported no relevant financial relationships. If applicable, all relevant financial relationships have been mitigated.

Article Information

Accepted for Publication: July 26, 2022.

Published Online: September 15, 2022. doi:10.1001/jamaoncol.2022.4175

Corresponding Author: Aleix Prat, MD, PhD, Hospital Clinic of Barcelona, Villarroel 170, Escalera 2, Planta 5, 08036 Barcelona, Spain (alprat@clinic.cat).

Conflict of Interest Disclosures: Dr Prat reported grants and personal fees from Daiichi Sankyo, AstraZeneca, and Pfizer during the conduct of the study; and personal fees from Amgen, Bristol Myers Squibb, Eli Lilly, Merck Sharp & Dohme, Nanostring Technologies, Novartis, Oncolytics Biotech, Puma Biotechnology, and Roche outside the submitted work. In additional, Dr Prat is a cofounder and stock owner of Reveal Genomics and reports 2 patents licensed to Reveal Genomics (HER2DX and WO 2018/103834). Dr Bardia reported grants and consulting fees from Genentech, Novartis, Pfizer, Merck, Sanofi, Radius Health, Immunomedics/Gilead, Daiichi Sankyo/AstraZeneca, Eli Lilly, and Foundation Medicine during the conduct of the study. Dr Curigliano reported advisory board membership and personal fees from AstraZeneca, Daiichi Sankyo, Bristol Myers Squibb, Roche, and Seagen; speaking fees from Novartis, Eli Lilly, Pfizer, and Gilead; and grants from Foundation One and Merck, all outside the submitted work. Dr Hammond reported personal fees from Daiichi Sankyo during the conduct of the study. Dr Loibl reported advisory board membership fees and/or funded research paid to the institute by Seagen, AbbVie, Amgen, AstraZeneca, Bristol Myers Squibb, Celgene, Daiichi Sankyo, EirGenix, GlaxoSmithKline, Gilead, Eli Lilly, Merck, Molecular Health, Novartis, Pfizer, Pierre Fabre, Relay Therapeutics, Roche, Sanofi, and Seagen, all outside the submitted work. In addition, Dr Loibl reported patents for EP14153692.0 (pending immunsignature in TNBC), EP21152186.9 (pending signature for CDK 4/6 inhibitor), EP15702464.7 (issued predicting response to an anti-ERBB2 containing therapy), EP19808852.8 (pending), and Digital Ki67 Evaluator (royalties paid from VM Scope GmbH to institute). Dr Tolaney reported grants and honoraria from AstraZeneca, Eli Lilly, Merck, Nektar, Novartis, Pfizer, Genentech/Roche, Gilead, Exelixis, Bristol Myers Squibb, Eisai, Nanostring, Puma Biotechnology, Cyclacel, Sanofi, Odonate, Seagen, and Daiichi Sankyo; and personal fees from Athenex, OncoPep, Kyowa Kirin Pharmaceuticals, Samsung Bioepis, CytomX, Certara, Mersana Therapeutics, Ellipses Pharma, 4D Pharma, OncoSec Medical, Chugai Pharmaceuticals, BeyondSpring Pharmaceuticals, OncXerna, Zymeworks, Zentalis, Blueprint Medicines, Reveal Genomics, ARC Therapeutics, and ZetaGen, all outside the submitted work. Dr Viale reported consulting fees from AstraZeneca and Agilent; advisory board fees from Daiichi Sankyo, Roche, and Merck Sharp & Dohme Oncology during the conduct of the study; and grants from AstraZeneca, all outside the submitted work.

Funding/Support: Financial support for the writing of the manuscript was provided by AstraZeneca, which in March 2019 entered into a global development and commercialization collaboration agreement with Daiichi Sankyo for trastuzumab deruxtecan (DS-8201).

Additional Contributions: Medical writing support was provided by Jackie Highland, PhD (Articulatescience) and funded by AstraZeneca in accordance with Good Publication Practice guidelines. The manuscript was reviewed for medical accuracy by AstraZeneca and Daiichi Sankyo; however, the authors retained full control of the content and made the final decisions for all aspects of this article.

References
1.
Ahn  S , Woo  JW , Lee  K , Park  SY .  HER2 status in breast cancer: changes in guidelines and complicating factors for interpretation.   J Pathol Transl Med. 2020;54(1):34-44. doi:10.4132/jptm.2019.11.03 PubMedGoogle ScholarCrossref
2.
National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology Breast Cancer. Version 2. 2022. Accessed January 27, 2022. https://www.nccn.org/professionals/physician_gls/pdf/breast.pdf
3.
Gennari  A , André  F , Barrios  CH ,  et al; ESMO Guidelines Committee.  ESMO Clinical Practice Guideline for the diagnosis, staging and treatment of patients with metastatic breast cancer.   Ann Oncol. 2021;32(12):1475-1495. doi:10.1016/j.annonc.2021.09.019 PubMedGoogle ScholarCrossref
4.
Loibl  S , Poortmans  P , Morrow  M , Denkert  C , Curigliano  G .  Breast cancer.   Lancet. 2021;397(10286):1750-1769. doi:10.1016/S0140-6736(20)32381-3 PubMedGoogle ScholarCrossref
5.
National Cancer Institute. Drugs approved for breast cancer. Accessed January 27, 2022. https://www.cancer.gov/about-cancer/treatment/drugs/breast
6.
Wolff  AC , Hammond  MEH , Allison  KH ,  et al.  Human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline focused update.   J Clin Oncol. 2018;36(20):2105-2122. doi:10.1200/JCO.2018.77.8738 PubMedGoogle ScholarCrossref
7.
Denkert  C , Seither  F , Schneeweiss  A ,  et al.  Clinical and molecular characteristics of HER2-low-positive breast cancer: pooled analysis of individual patient data from four prospective, neoadjuvant clinical trials.   Lancet Oncol. 2021;22(8):1151-1161. doi:10.1016/S1470-2045(21)00301-6 PubMedGoogle ScholarCrossref
8.
Scott  M , Vandenberghe  ME , Scorer  P , Boothman  A-M , Barker  C .  Prevalence of HER2 low in breast cancer subtypes using the VENTANA anti-HER2/neu (4B5) assay.   J Clin Oncol. 2021;39(suppl 15):1021. doi:10.1200/JCO.2021.39.15_suppl.1021Google ScholarCrossref
9.
Perez  EA , Cortés  J , Gonzalez-Angulo  AM , Bartlett  JM .  HER2 testing: current status and future directions.   Cancer Treat Rev. 2014;40(2):276-284. doi:10.1016/j.ctrv.2013.09.001 PubMedGoogle ScholarCrossref
10.
Slamon  DJ , Leyland-Jones  B , Shak  S ,  et al.  Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2.   N Engl J Med. 2001;344(11):783-792. doi:10.1056/NEJM200103153441101 PubMedGoogle ScholarCrossref
11.
Tarantino  P , Hamilton  E , Tolaney  SM ,  et al.  HER2-low breast cancer: pathological and clinical landscape.   J Clin Oncol. 2020;38(17):1951-1962. doi:10.1200/JCO.19.02488 PubMedGoogle ScholarCrossref
12.
Exman  P , Tolaney  SM .  HER2-positive metastatic breast cancer: a comprehensive review.   Clin Adv Hematol Oncol. 2021;19(1):40-50.PubMedGoogle Scholar
13.
de Moura Leite  L , Cesca  MG , Tavares  MC ,  et al.  HER2-low status and response to neoadjuvant chemotherapy in HER2 negative early breast cancer.   Breast Cancer Res Treat. 2021;190(1):155-163. doi:10.1007/s10549-021-06365-7 PubMedGoogle ScholarCrossref
14.
Mutai  R , Barkan  T , Moore  A ,  et al.  Prognostic impact of HER2-low expression in hormone receptor positive early breast cancer.   Breast. 2021;60:62-69. doi:10.1016/j.breast.2021.08.016 PubMedGoogle ScholarCrossref
15.
Agostinetto  E , Rediti  M , Fimereli  D ,  et al.  HER2-low breast cancer: molecular characteristics and prognosis.   Cancers (Basel). 2021;13(11):2824. doi:10.3390/cancers13112824 PubMedGoogle ScholarCrossref
16.
Miglietta  F , Griguolo  G , Bottosso  M ,  et al.  Evolution of HER2-low expression from primary to recurrent breast cancer.   NPJ Breast Cancer. 2021;7(1):137. doi:10.1038/s41523-021-00343-4 PubMedGoogle ScholarCrossref
17.
Viale  G , Niikura  N , Tokunaga  E ,  et al. Retrospective study to estimate the prevalence of HER2-low breast cancer (BC) and describe its clinicopathological characteristics. ASCO Annual Meeting; June 3-7, 2022; Chicago, IL. Accessed August 15, 2022. https://ascopubs.org/doi/abs/10.1200/JCO.2022.40.16_suppl.1087
18.
Sanchez Bayona  RS , Luna  A , Tolosa  P ,  et al.  HER2-low vs HER2-zero metastatic breast carcinoma: a clinical and genomic descriptive analysis.   Ann Oncol. 2021;32(suppl 2):S29-S30. doi:10.1016/j.annonc.2021.03.036Google ScholarCrossref
19.
Omar  AMA , Darwish  AMA . Retrospective analysis of HER2-low in young breast cancer patients. J Clin Oncol. 2021;39(suppl 15). Accessed August 15, 2022. https://ascopubs.org/doi/abs/10.1200/JCO.2021.39.15_suppl.e12515
20.
Schettini  F , Chic  N , Brasó-Maristany  F ,  et al.  Clinical, pathological, and PAM50 gene expression features of HER2-low breast cancer.   NPJ Breast Cancer. 2021;7(1):1. doi:10.1038/s41523-020-00208-2 PubMedGoogle ScholarCrossref
21.
Bao  KKH , Sutanto  L , Tse  SSW , Man Cheung  K , Chan  JCH .  The association of ERBB2-low expression with the efficacy of cyclin-dependent kinase 4/6 inhibitor in hormone receptor-positive, ERBB2-negative metastatic breast cancer.   JAMA Netw Open. 2021;4(11):e2133132. doi:10.1001/jamanetworkopen.2021.33132 PubMedGoogle ScholarCrossref
22.
Daiichi Sankyo. Enhertu fam-trastuzumab deruxtecan-nxki). Prescribing information. 2022. Accessed August 17, 2022. https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/761139s021lbl.pdf
23.
Cardoso  F , Senkus  E , Costa  A ,  et al.  4th ESO-ESMO International Consensus Guidelines for Advanced Breast Cancer (ABC 4).   Ann Oncol. 2018;29(8):1634-1657. doi:10.1093/annonc/mdy192 PubMedGoogle ScholarCrossref
24.
Tarantino  P , Nicolò  E , Zagami  P ,  et al.  Characterization of low HER2 expressions in de-novo metastatic breast cancer.   Ann Oncol. 2021;32(suppl 2):S31. doi:10.1016/j.annonc.2021.03.040Google ScholarCrossref
25.
Jordan  NV , Bardia  A , Wittner  BS ,  et al.  HER2 expression identifies dynamic functional states within circulating breast cancer cells.   Nature. 2016;537(7618):102-106. doi:10.1038/nature19328 PubMedGoogle ScholarCrossref
26.
Roßwag  S , Cotarelo  CL , Pantel  K ,  et al.  Functional characterization of circulating tumor cells (CTCs) from metastatic ER+/HER2- breast cancer reveals dependence on HER2 and FOXM1 for endocrine therapy resistance and tumor cell survival: implications for treatment of ER+/HER2- breast cancer.   Cancers (Basel). 2021;13(8):1810. doi:10.3390/cancers13081810 PubMedGoogle ScholarCrossref
27.
Medford  AJ , Dubash  TD , Juric  D ,  et al.  Blood-based monitoring identifies acquired and targetable driver HER2 mutations in endocrine-resistant metastatic breast cancer.   NPJ Precis Oncol. 2019;3:18. doi:10.1038/s41698-019-0090-5 PubMedGoogle ScholarCrossref
28.
Tarantino  P .  Prognostic and biologic significance of HER2-low expression in early breast cancer.   Ann Oncol. 2022;33(suppl 3):S123-S147. doi:10.1016/j.annonc.2022.03.016 Google ScholarCrossref
29.
Modi  S , Park  H , Murthy  RK ,  et al.  Antitumor activity and safety of trastuzumab deruxtecan in patients with HER2-low-expressing advanced breast cancer: results from a phase Ib study.   J Clin Oncol. 2020;38(17):1887-1896. doi:10.1200/JCO.19.02318 PubMedGoogle ScholarCrossref
30.
Banerji  U , van Herpen  CML , Saura  C ,  et al.  Trastuzumab duocarmazine in locally advanced and metastatic solid tumours and HER2-expressing breast cancer: a phase 1 dose-escalation and dose-expansion study.   Lancet Oncol. 2019;20(8):1124-1135. doi:10.1016/S1470-2045(19)30328-6 PubMedGoogle ScholarCrossref
31.
Wang  J , Liu  Y , Zhang  Q ,  et al.  RC48-ADC, a HER2-targeting antibody-drug conjugate, in patients with HER2-positive and HER2-low expressing advanced or metastatic breast cancer: a pooled analysis of two studies.   J Clin Oncol. 2021;39(suppl 15):1022. doi:10.1200/JCO.2021.39.15_suppl.1022Google ScholarCrossref
32.
Clifton  GT , Hale  D , Vreeland  TJ ,  et al.  Results of a randomized phase IIb trial of nelipepimut-S + trastuzumab versus trastuzumab to prevent recurrences in patients with high-risk HER2 low-expressing breast cancer.   Clin Cancer Res. 2020;26(11):2515-2523. doi:10.1158/1078-0432.CCR-19-2741 PubMedGoogle ScholarCrossref
33.
Graziani  EI , Sung  M , Ma  D ,  et al.  PF-06804103, a site-specific anti-HER2 antibody-drug conjugate for the treatment of HER2-expressing breast, gastric, and lung cancers.   Mol Cancer Ther. 2020;19(10):2068-2078. doi:10.1158/1535-7163.MCT-20-0237PubMedGoogle ScholarCrossref
34.
Fehrenbacher  L , Cecchini  RS , Geyer  CE  Jr ,  et al.  NSABP B-47/NRG oncology phase III randomized trial comparing adjuvant chemotherapy with or without trastuzumab in high-risk invasive breast cancer negative for HER2 by FISH and with IHC 1+ or 2.   J Clin Oncol. 2020;38(5):444-453. doi:10.1200/JCO.19.01455 PubMedGoogle ScholarCrossref
35.
Gianni  L , Lladó  A , Bianchi  G ,  et al.  Open-label, phase II, multicenter, randomized study of the efficacy and safety of two dose levels of pertuzumab, a human epidermal growth factor receptor 2 dimerization inhibitor, in patients with human epidermal growth factor receptor 2-negative metastatic breast cancer.   J Clin Oncol. 2010;28(7):1131-1137. doi:10.1200/JCO.2009.24.1661 PubMedGoogle ScholarCrossref
36.
Burris  HA  III , Rugo  HS , Vukelja  SJ ,  et al.  Phase II study of the antibody drug conjugate trastuzumab-DM1 for the treatment of human epidermal growth factor receptor 2 (HER2)-positive breast cancer after prior HER2-directed therapy.   J Clin Oncol. 2011;29(4):398-405. doi:10.1200/JCO.2010.29.5865 PubMedGoogle ScholarCrossref
37.
Krop  IE , LoRusso  P , Miller  KD ,  et al.  A phase II study of trastuzumab emtansine in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer who were previously treated with trastuzumab, lapatinib, an anthracycline, a taxane, and capecitabine.   J Clin Oncol. 2012;30(26):3234-3241. doi:10.1200/JCO.2011.40.5902 PubMedGoogle ScholarCrossref
38.
Modi  S , Jacot  W , Yamashita  T ,  et al; DESTINY-Breast04 Trial Investigators.  Trastuzumab deruxtecan in previously treated HER2-low advanced breast cancer.   N Engl J Med. 2022;387(1):9-20. Published online June 5, 2022. doi:10.1056/NEJMoa2203690 PubMedGoogle ScholarCrossref
39.
Hamilton  E , Shapiro  CL , Petrylak  D ,  et al.  Trastuzumab deruxtecan with nivolumab in patients with HER2-expressing, advanced breast cancer: a 2-part, phase 1b, multicenter, open-label study.   Cancer Res. 2021;81(4)(suppl):PD3-PD07. doi:10.1158/1538-7445.SABCS20-PD3-07Google ScholarCrossref
40.
Schmid  P , Im  SA , Armstrong  A ,  et al.  BEGONIA: phase 1b/2 study of durvalumab (D) combinations in locally advanced/metastatic triple-negative breast cancer (TNBC)—initial results from arm 1, d+ paclitaxel (P), and arm 6, d+ trastuzumab deruxtecan (T-DXd).   J Clin Oncol. 2021;39(suppl 15):1023. doi:10.1200/JCO.2021.39.15_suppl.1023Google ScholarCrossref
41.
Cardoso  F , Dirix  L , Conte  P ,  et al.  Phase II study of single agent trifunctional antibody ertumaxomab (anti-HER-2 & anti-CD3) in HER-2 low expressing hormone-refractory advanced breast cancer patients (ABC).   Cancer Res. 2010;70(24_Supplement):P3-14-21. doi:10.1158/0008-5472.SABCS10-P3-14-21Google ScholarCrossref
42.
Pistilli  B , Wildiers  H , Hamilton  EP ,  et al.  Clinical activity of MCLA-128 (zenocutuzumab) in combination with endocrine therapy (ET) in ER+/HER2-low, non-amplified metastatic breast cancer (MBC) patients (pts) with ET-resistant disease who had progressed on a CDK4/6 inhibitor (CDK4/6i).   J Clin Oncol. 2020;38(suppl 15):1037. doi:10.1200/JCO.2020.38.15_suppl.1037Google ScholarCrossref
43.
Nordstrom  JL , Gorlatov  S , Zhang  W ,  et al.  Anti-tumor activity and toxicokinetics analysis of MGAH22, an anti-HER2 monoclonal antibody with enhanced Fcγ receptor binding properties.   Breast Cancer Res. 2011;13(6):R123. doi:10.1186/bcr3069 PubMedGoogle ScholarCrossref
44.
ClinicalTrials.gov. Phase 2 study of the monoclonal antibody MGAH22 (margetuximab) in patients with relapsed or refractory advanced breast cancer. Accessed January 28, 2022.https://clinicaltrials.gov/ct2/show/NCT01828021.
45.
Swain  SM , Nishino  M , Lancaster  LH ,  et al.  Multidisciplinary clinical guidance on trastuzumab deruxtecan (T-DXd)−related interstitial lung disease/pneumonitis—Focus on proactive monitoring, diagnosis, and management.   Cancer Treat Rev. 2022;106:102378. doi:10.1016/j.ctrv.2022.102378 PubMedGoogle ScholarCrossref
46.
Daiichi Sankyo Europe GmbH. Enhertu (trastuzumab deruxtecan). Summary of product characteristics. 2021. Accessed August 17, 2022. https://www.ema.europa.eu/en/documents/product-information/enhertu-epar-product-information_en.pdf
47.
Daiichi Sankyo/AstraZeneca Canada. Enhertu (trastuzumab deruxtecan). Product monograph. 2021. Accessed August 17, 2022. https://www.astrazeneca.ca/content/dam/az-ca/downloads/productinformation/enhertu-product-monograph-en.pdf
48.
Daiichi Sankyo. Enhertu (trastuzumab deruxtecan) in Japan. Prescribing information. 2021. Accessed August 17, 2022. https://www.pmda.go.jp/files/000238707.pdf
49.
Ogitani  Y , Aida  T , Hagihara  K ,  et al.  DS-8201a, a novel HER2-targeting ADC with a novel DNA topoisomerase I inhibitor, demonstrates a promising antitumor efficacy with differentiation from T-DM1.   Clin Cancer Res. 2016;22(20):5097-5108. doi:10.1158/1078-0432.CCR-15-2822PubMedGoogle ScholarCrossref
50.
Deeks  ED .  Disitamab vedotin: first approval.   Drugs. 2021;81(16):1929-1935. doi:10.1007/s40265-021-01614-x PubMedGoogle ScholarCrossref
51.
ClinicalTrials.gov. A study of RC48-ADC for the treatment of locally advanced or metastatic breast cancer with low expression of HER2. Accessed January 28, 2022.https://clinicaltrials.gov/ct2/show/NCT04400695.
52.
Skidmore  L , Sakamuri  S , Knudsen  NA ,  et al.  ARX788, a site-specific anti-HER2 antibody-drug conjugate, demonstrates potent and selective activity in HER2-low and T-DM1-resistant breast and gastric cancers.   Mol Cancer Ther. 2020;19(9):1833-1843. doi:10.1158/1535-7163.MCT-19-1004 PubMedGoogle ScholarCrossref
53.
ClinicalTrials.gov. Study of A166 in patients with relapsed/refractory cancers expressing HER2 antigen or having amplified HER2 gene. Accessed January 28, 2022. https://clinicaltrials.gov/ct2/show/NCT03602079
54.
ClinicalTrials.gov. Phase 1 study of FS-1502 in patients with HER2 expressed advanced solid tumors and breast cancer. Accessed January 28, 2022. https://clinicaltrials.gov/ct2/show/NCT03944499
55.
Diéras  V , Deluche  E , Lusque  A ,  et al. Trastuzumab deruxtecan for advanced breast cancer patients, regardless of HER2 status: a phase II study with biomarkers analysis (DAISY). 2021 San Antonio Breast Cancer Symposium. Abstract PD8-02. Presented December 9, 2021. Accessed August 17, 2022. https://ascopost.com/issues/march-10-2022/t-dxd-shows-activity-in-her2-low-her2-undetectable-breast-cancer/
56.
Allison  KH , Wolff  AC .  ERBB2-low breast cancer—is it a fact or fiction, and do we have the right assay?   JAMA Oncol. 2022;8(4):610-611. doi:10.1001/jamaoncol.2021.7082 PubMedGoogle ScholarCrossref
57.
Fernandez  AI , Liu  M , Bellizzi  A ,  et al.  Examination of low ERBB2 protein expression in breast cancer tissue.   JAMA Oncol. 2022;8(4):1-4. doi:10.1001/jamaoncol.2021.7239 PubMedGoogle ScholarCrossref
58.
Sha  W , Vadde  S , Song  Z ,  et al.  SAR443216, a novel trispecific T cell engager with potent T cell-dependent cytotoxicity for HER2-low tumors.   Cancer Res. 2021;81(suppl 13):1825. doi:10.1158/1538-7445.AM2021-1825Google ScholarCrossref
59.
Gupta  S , Zhang  J , Jerusalem  G .  The association of chemotherapy versus hormonal therapy and health outcomes among patients with hormone receptor-positive, HER2-negative metastatic breast cancer: experience from the patient perspective.   Expert Rev Pharmacoecon Outcomes Res. 2014;14(6):929-940. doi:10.1586/14737167.2014.949243 PubMedGoogle ScholarCrossref
60.
Li  CH , Karantza  V , Aktan  G , Lala  M .  Current treatment landscape for patients with locally recurrent inoperable or metastatic triple-negative breast cancer: a systematic literature review.   Breast Cancer Res. 2019;21(1):143. doi:10.1186/s13058-019-1210-4 PubMedGoogle ScholarCrossref
61.
Twelves  C , Jove  M , Gombos  A , Awada  A .  Cytotoxic chemotherapy: still the mainstay of clinical practice for all subtypes metastatic breast cancer.   Crit Rev Oncol Hematol. 2016;100:74-87. doi:10.1016/j.critrevonc.2016.01.021 PubMedGoogle ScholarCrossref
62.
Bardia  A , Mayer  IA , Vahdat  LT ,  et al.  Sacituzumab govitecan-hziy in refractory metastatic triple-negative breast cancer.   N Engl J Med. 2019;380(8):741-751. doi:10.1056/NEJMoa1814213 PubMedGoogle ScholarCrossref
63.
Sharifi  MN , Anandan  A , Grogan  P , O’Regan  RM .  Therapy after cyclin-dependent kinase inhibition in metastatic hormone receptor-positive breast cancer: Resistance mechanisms and novel treatment strategies.   Cancer. 2020;126(15):3400-3416. doi:10.1002/cncr.32931 PubMedGoogle ScholarCrossref
64.
Hugo  HS , Bardia  A , Marmé  F ,  et al.  Primary results from TROPiCS-02: a randomized phase 3 study of sacituzumab govitecan (SG) versus treatment of physician’s choice (TPC) in patients (Pts) with hormone receptor–positive/HER2-negative (HR+/HER2-) advanced breast cancer.   J Clin Oncol. 2022;40(suppl 17). Google Scholar
65.
Giuliano  M , Trivedi  MV , Schiff  R .  Bidirectional crosstalk between the estrogen receptor and human epidermal growth factor receptor 2 signaling pathways in breast cancer: molecular basis and clinical implications.   Breast Care (Basel). 2013;8(4):256-262. doi:10.1159/000354253 PubMedGoogle ScholarCrossref
66.
Carey  L , Solovieff  N , André  F ,  et al. Correlative analysis of overall survival by intrinsic subtype across the MONALEESA-2, −3, and −7 studies of ribociclib + endocrine therapy in patients with HR+/HER2− advanced breast cancer. San Antonio Breast Cancer Symposium; December 7-10, 2021; San Antonio, TX. Accessed August 15, 2022. https://www.medicalcongress.novartisoncology.com/SABCS/BC/pdf/Ribocilcib/Carey_Oral_GS2-00.pdf
67.
Allison  KH , Hammond  MEH , Dowsett  M ,  et al.  Estrogen and progesterone receptor testing in breast cancer: ASCO/CAP guideline update.   J Clin Oncol. 2020;38(12):1346-1366. doi:10.1200/JCO.19.02309 PubMedGoogle ScholarCrossref
68.
Hamilton  E , Shastry  M , Shiller  SM , Ren  R .  Targeting HER2 heterogeneity in breast cancer.   Cancer Treat Rev. 2021;100:102286. doi:10.1016/j.ctrv.2021.102286 PubMedGoogle ScholarCrossref
69.
Gustavson  M , Haneder  S , Spitzmueller  A ,  et al. Novel approach to HER2 quantification: digital pathology coupled with AI-based image and data analysis delivers objective and quantitative HER2 expression analysis for enrichment of responders to trastuzumab deruxtecan (T-DXd; DS-8201), specifically in HER2-low patients. Poster presented at 2020 San Antonio Breast Cancer Symposia; December 8-11, 2020. Accessed August 15, 2022. https://aacrjournals.org/cancerres/issue/81/4_Supplement
70.
Dekker  TJA .  HER2-targeted therapies in HER2-low-expressing breast cancer.   J Clin Oncol. 2020;38(28):3350-3351. doi:10.1200/JCO.20.00657 PubMedGoogle ScholarCrossref
71.
ClinicalTrials.gov. Study of trastuzumab deruxtecan (T-DXd) vs investigator's choice chemotherapy in HER2-low, hormone receptor positive, metastatic breast cancer (DB-06). Accessed March 24, 2022. https://clinicaltrials.gov/ct2/show/NCT04494425
72.
Lambein  K , Van Bockstal  M , Vandemaele  L ,  et al.  Distinguishing score 0 from score 1+ in HER2 immunohistochemistry-negative breast cancer: clinical and pathobiological relevance.   Am J Clin Pathol. 2013;140(4):561-566. doi:10.1309/AJCP4A7KTAYHZSOE PubMedGoogle ScholarCrossref
73.
Baehner  FL , Achacoso  N , Maddala  T ,  et al.  Human epidermal growth factor receptor 2 assessment in a case-control study: comparison of fluorescence in situ hybridization and quantitative reverse transcription polymerase chain reaction performed by central laboratories.   J Clin Oncol. 2010;28(28):4300-4306. doi:10.1200/JCO.2009.24.8211 PubMedGoogle ScholarCrossref
74.
Viale  G , Slaets  L , Bogaerts  J ,  et al; TRANSBIG Consortium & the MINDACT Investigators.  High concordance of protein (by IHC), gene (by FISH; HER2 only), and microarray readout (by TargetPrint) of ER, PgR, and HER2: results from the EORTC 10041/BIG 03-04 MINDACT trial.   Ann Oncol. 2014;25(4):816-823. doi:10.1093/annonc/mdu026 PubMedGoogle ScholarCrossref
75.
Prat  A , Guarneri  V , Pascual  T ,  et al.  Development and validation of the new HER2DX assay for predicting pathological response and survival outcome in early-stage HER2-positive breast cancer.   EBioMedicine. 2022;75:103801. doi:10.1016/j.ebiom.2021.103801 PubMedGoogle ScholarCrossref
76.
Griguolo  G , Brasó-Maristany  F , González-Farré  B ,  et al.  ERBB2 mRNA expression and response to ado-rastuzumab emtansine (T-DM1) in HER2-positive breast cancer.   Cancers (Basel). 2020;12(7):E1902. doi:10.3390/cancers12071902 PubMedGoogle ScholarCrossref
77.
Do  M , Kim  H , Yeo  I ,  et al.  Clinical application of multiple reaction monitoring-mass spectrometry to human epidermal growth factor receptor 2 measurements as a potential diagnostic tool for breast cancer therapy.   Clin Chem. 2020;66(10):1339-1348. doi:10.1093/clinchem/hvaa178 PubMedGoogle ScholarCrossref
78.
Glass  B , Vandenberghe  ME , Chavali  ST ,  et al.  Machine learning models to quantify HER2 for real-time tissue image analysis in prospective clinical trials.   J Clin Oncol. 2021;39(suppl 15):3061. doi:10.1200/JCO.2021.39.15_suppl.3061Google ScholarCrossref
79.
Jakobsen  MR , Teerapakpinyo  C , Shuangshoti  S , Keelawat  S .  Comparison between digital image analysis and visual assessment of immunohistochemical HER2 expression in breast cancer.   Pathol Res Pract. 2018;214(12):2087-2092. doi:10.1016/j.prp.2018.10.015 PubMedGoogle ScholarCrossref
80.
Vandenberghe  ME , Scott  ML , Scorer  PW , Söderberg  M , Balcerzak  D , Barker  C .  Relevance of deep learning to facilitate the diagnosis of HER2 status in breast cancer.   Sci Rep. 2017;7:45938. doi:10.1038/srep45938 PubMedGoogle ScholarCrossref
Close
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
Close
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close

Name Your Search

Save Search
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Close
Close

Lookup An Activity

or

My Saved Searches

You currently have no searches saved.

Close

My Saved Courses

You currently have no courses saved.

Close