[Skip to Content]
[Skip to Content Landing]

Acute Pulmonary EmbolismA Review

To identify the key insights or developments described in this article
1 Credit CME
Abstract

Importance  Pulmonary embolism (PE) is characterized by occlusion of blood flow in a pulmonary artery, typically due to a thrombus that travels from a vein in a lower limb. The incidence of PE is approximately 60 to 120 per 100 000 people per year. Approximately 60 000 to 100 000 patients die from PE each year in the US.

Observations  PE should be considered in patients presenting with acute chest pain, shortness of breath, or syncope. The diagnosis is determined by chest imaging. In patients with a systolic blood pressure of at least 90 mm Hg, the following 3 steps can be used to evaluate a patient with possible PE: assessment of the clinical probability of PE, D-dimer testing if indicated, and chest imaging if indicated. The clinical probability of PE can be assessed using a structured score or using clinical gestalt. In patients with a probability of PE that is less than 15%, the presence of 8 clinical characteristics (age <50 years, heart rate <100/min, an oxygen saturation level of > 94%, no recent surgery or trauma, no prior venous thromboembolism event, no hemoptysis, no unilateral leg swelling, and no estrogen use) identifies patients at very low risk of PE in whom no further testing is needed. In patients with low or intermediate clinical probability, a D-dimer level of less than 500 ng/mL is associated with a posttest probability of PE less than 1.85%. In these patients, PE can be excluded without chest imaging. A further refinement of D-dimer threshold is possible in patients aged 50 years and older, and in patients with a low likelihood of PE. Patients with a high probability of PE (ie, >40% probability) should undergo chest imaging, and D-dimer testing is not necessary. In patients with PE and a systolic blood pressure of 90 mm Hg or higher, compared with heparin combined with a vitamin K antagonist such as warfarin followed by warfarin alone, direct oral anticoagulants such as apixaban, edoxaban, rivaroxaban, or dabigatran, are noninferior for treating PE and have a 0.6% lower rate of bleeding. In patients with PE and systolic blood pressure lower than 90 mm Hg, systemic thrombolysis is recommended and is associated with an 1.6% absolute reduction of mortality (from 3.9% to 2.3%).

Conclusions and Relevance  In the US, PE affects approximately 370 000 patients per year and may cause approximately 60 000 to 100 000 deaths per year. First-line therapy consists of direct oral anticoagulants such as apixaban, edoxaban, rivaroxaban, or dabigatran, with thrombolysis reserved for patients with systolic blood pressure lower than 90 mm Hg.

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 Credit(s)™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

CME Disclosure Statement: Unless noted, all individuals in control of content reported no relevant financial relationships. If applicable, all relevant financial relationships have been mitigated.

Article Information

Corresponding Author: Yonathan Freund, MD, PhD, Service d’accueil des urgences, 47-83 Bd de l’Hôpital, 75013 Paris, France (yonathan.freund@aphp.fr).

Accepted for Publication: September 1, 2022.

Author Contributions: Dr Freund had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: All authors.

Acquisition, analysis, or interpretation of data: Cohen-Aubart, Bloom.

Drafting of the manuscript: Freund, Cohen-Aubart.

Critical revision of the manuscript for important intellectual content: All authors.

Administrative, technical, or material support: Bloom.

Supervision: Freund, Bloom.

Conflict of Interest Disclosures: None reported.

References
1.
Lehnert  P , Lange  T , Møller  CH , Olsen  PS , Carlsen  J .  Acute pulmonary embolism in a national danish cohort: increasing incidence and decreasing mortality.   Thromb Haemost. 2018;118(3):539-546. doi:10.1160/TH17-08-0531PubMedGoogle ScholarCrossref
2.
Keller  K , Hobohm  L , Ebner  M ,  et al.  Trends in thrombolytic treatment and outcomes of acute pulmonary embolism in Germany.   Eur Heart J. 2020;41(4):522-529. doi:10.1093/eurheartj/ehz236PubMedGoogle ScholarCrossref
3.
Virani  SS , Alonso  A , Benjamin  EJ ,  et al; American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee.  Heart disease and stroke statistics-2020 update: a report from the American Heart Association.   Circulation. 2020;141(9):e139-e596. doi:10.1161/CIR.0000000000000757PubMedGoogle ScholarCrossref
4.
Centers for Disease Control and Prevention.  Data and statistics on venous thromboembolism. Published April 25, 2022. Accessed July 1, 2022. https://www.cdc.gov/ncbddd/dvt/data.html
5.
Pernod  G , Caterino  J , Maignan  M , Tissier  C , Kassis  J , Lazarchick  J ; DIET study group.  D-dimer use and pulmonary embolism diagnosis in emergency units: why is there such a difference in pulmonary embolism prevalence between the United States of America and countries outside USA?   PLoS One. 2017;12(1):e0169268. doi:10.1371/journal.pone.0169268PubMedGoogle ScholarCrossref
6.
Freund  Y , Chauvin  A , Jimenez  S ,  et al.  Effect of a diagnostic strategy using an elevated and age-adjusted D-dimer threshold on thromboembolic events in emergency department patients with suspected pulmonary embolism: a randomized clinical trial.   JAMA. 2021;326(21):2141-2149. doi:10.1001/jama.2021.20750PubMedGoogle ScholarCrossref
7.
Lefevre-Scelles  A , Jeanmaire  P , Freund  Y , Joly  LM , Phillipon  AL , Roussel  M .  Investigation of pulmonary embolism in patients with chest pain in the emergency department: a retrospective multicenter study.   Eur J Emerg Med. 2020;27(5):357-361. doi:10.1097/MEJ.0000000000000680PubMedGoogle ScholarCrossref
8.
Feng  LB , Pines  JM , Yusuf  HR , Grosse  SDUS .  US trends in computed tomography use and diagnoses in emergency department visits by patients with symptoms suggestive of pulmonary embolism, 2001-2009.   Acad Emerg Med. 2013;20(10):1033-1040. doi:10.1111/acem.12221PubMedGoogle ScholarCrossref
9.
Wiener  RS , Schwartz  LM , Woloshin  S .  When a test is too good: how CT pulmonary angiograms find pulmonary emboli that do not need to be found.   BMJ. 2013;347:f3368. doi:10.1136/bmj.f3368PubMedGoogle ScholarCrossref
10.
Wiener  RS , Schwartz  LM , Woloshin  S .  Time trends in pulmonary embolism in the United States: evidence of overdiagnosis.   Arch Intern Med. 2011;171(9):831-837. doi:10.1001/archinternmed.2011.178PubMedGoogle ScholarCrossref
11.
Dobler  CC .  Overdiagnosis of pulmonary embolism: definition, causes and implications.   Breathe (Sheff). 2019;15(1):46-53. doi:10.1183/20734735.0339-2018PubMedGoogle ScholarCrossref
12.
Sonne-Holm  E , Kjærgaard  J , Bang  LE , Fosbøl  E , Carlsen  J , Winther-Jensen  M .  Pulmonary embolism: age specific temporal trends in incidence and mortality in Denmark 1999-2018.   Thromb Res. 2022;210:12-19. doi:10.1016/j.thromres.2021.12.011PubMedGoogle ScholarCrossref
13.
Previtali  E , Bucciarelli  P , Passamonti  SM , Martinelli  I .  Risk factors for venous and arterial thrombosis.   Blood Transfus. 2011;9(2):120-138. doi:10.2450/2010.0066-10PubMedGoogle Scholar
14.
Turetz  M , Sideris  AT , Friedman  OA , Triphathi  N , Horowitz  JM .  Epidemiology, pathophysiology, and natural history of pulmonary embolism.   Semin Intervent Radiol. 2018;35(2):92-98. doi:10.1055/s-0038-1642036PubMedGoogle ScholarCrossref
15.
Girard  P , Musset  D , Parent  F , Maitre  S , Phlippoteau  C , Simonneau  G .  High prevalence of detectable deep venous thrombosis in patients with acute pulmonary embolism.   Chest. 1999;116(4):903-908. doi:10.1378/chest.116.4.903PubMedGoogle ScholarCrossref
16.
Owens  CA , Bui  JT , Knuttinen  MG , Gaba  RC , Carrillo  TC .  Pulmonary embolism from upper extremity deep vein thrombosis and the role of superior vena cava filters: a review of the literature.   J Vasc Interv Radiol. 2010;21(6):779-787. doi:10.1016/j.jvir.2010.02.021PubMedGoogle ScholarCrossref
17.
Carrier  M , Lazo-Langner  A , Shivakumar  S ,  et al; SOME Investigators.  Screening for occult cancer in unprovoked venous thromboembolism.   N Engl J Med. 2015;373(8):697-704. doi:10.1056/NEJMoa1506623PubMedGoogle ScholarCrossref
18.
Konstantinides  SV , Meyer  G , Becattini  C ,  et al; ESC Scientific Document Group.  2019 ESC guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European Respiratory Society (ERS).   Eur Heart J. 2020;41(4):543-603. doi:10.1093/eurheartj/ehz405PubMedGoogle ScholarCrossref
19.
Stevens  SM , Ansell  JE .  Thrombophilic evaluation in patients with acute pulmonary embolism.   Semin Respir Crit Care Med. 2017;38(1):107-120. doi:10.1055/s-0036-1597564PubMedGoogle ScholarCrossref
20.
Wood  KE .  Major pulmonary embolism: review of a pathophysiologic approach to the golden hour of hemodynamically significant pulmonary embolism.   Chest. 2002;121(3):877-905. doi:10.1378/chest.121.3.877PubMedGoogle ScholarCrossref
21.
Agnelli  G , Becattini  C .  Acute pulmonary embolism.   N Engl J Med. 2010;363(3):266-274. doi:10.1056/NEJMra0907731PubMedGoogle ScholarCrossref
22.
Martínez-Sellés  M , Bueno  H , Sacristán  A ,  et al.  Chest pain in the emergency department: incidence, clinical characteristics and risk stratification.   Rev Esp Cardiol. 2008;61(9):953-959. doi:10.1016/S1885-5857(08)60256-XPubMedGoogle ScholarCrossref
23.
Laribi  S , Keijzers  G , van Meer  O ,  et al; AANZDEM and EURODEM study groups.  Epidemiology of patients presenting with dyspnea to emergency departments in Europe and the Asia-Pacific region.   Eur J Emerg Med. 2019;26(5):345-349. doi:10.1097/MEJ.0000000000000571PubMedGoogle ScholarCrossref
24.
Thiruganasambandamoorthy  V , Sivilotti  MLA , Rowe  BH ,  et al; North American Syncope Consortium.  Prevalence of pulmonary embolism among emergency department patients with syncope: a multicenter prospective cohort study.   Ann Emerg Med. 2019;73(5):500-510. doi:10.1016/j.annemergmed.2018.12.005PubMedGoogle ScholarCrossref
25.
Raynal  PA , Cachanado  M , Truchot  J ,  et al.  Prevalence of pulmonary embolism in emergency department patients with isolated syncope: a prospective cohort study.   Eur J Emerg Med. 2019;26(6):458-461. doi:10.1097/MEJ.0000000000000625PubMedGoogle ScholarCrossref
26.
Klok  FA , Huisman  MV .  Management of incidental pulmonary embolism.   Eur Respir J. 2017;49(6):1700275. doi:10.1183/13993003.00275-2017PubMedGoogle ScholarCrossref
27.
Kearon  C , de Wit  K , Parpia  S ,  et al; PEGeD Study Investigators.  Diagnosis of pulmonary embolism with D-dimer adjusted to clinical probability.   N Engl J Med. 2019;381(22):2125-2134. doi:10.1056/NEJMoa1909159PubMedGoogle ScholarCrossref
28.
Wells  PS , Anderson  DR , Rodger  M ,  et al.  Derivation of a simple clinical model to categorize patients probability of pulmonary embolism: increasing the models utility with the SimpliRED D-dimer.   Thromb Haemost. 2000;83(3):416-420. doi:10.1055/s-0037-1613830PubMedGoogle ScholarCrossref
29.
Le Gal  G , Righini  M , Roy  PM ,  et al.  Prediction of pulmonary embolism in the emergency department: the revised Geneva score.   Ann Intern Med. 2006;144(3):165-171. doi:10.7326/0003-4819-144-3-200602070-00004PubMedGoogle ScholarCrossref
30.
Carrier  M , Righini  M , Djurabi  RK ,  et al.  VIDAS D-dimer in combination with clinical pre-test probability to rule out pulmonary embolism: a systematic review of management outcome studies.   Thromb Haemost. 2009;101(5):886-892. doi:10.1160/TH-08-10-0689PubMedGoogle ScholarCrossref
31.
van Es  N , van der Hulle  T , van Es  J ,  et al.  Wells rule and D-dimer testing to rule out pulmonary embolism: a systematic review and individual-patient data meta-analysis.   Ann Intern Med. 2016;165(4):253-261. doi:10.7326/M16-0031PubMedGoogle ScholarCrossref
32.
Dronkers  CEA , van der Hulle  T , Le Gal  G ,  et al; Subcommittee on Predictive and Diagnostic Variables in Thrombotic Disease.  Towards a tailored diagnostic standard for future diagnostic studies in pulmonary embolism: communication from the SSC of the ISTH.   J Thromb Haemost. 2017;15(5):1040-1043. doi:10.1111/jth.13654PubMedGoogle ScholarCrossref
33.
Freund  Y , Roussel  M , Kline  J , Roy  PM , Bloom  B .  The failure rate does not equal the false-negative rate: a call for tailoring diagnostic strategy validation in low prevalence populations.   J Thromb Haemost. 2021;19(7):1832-1833. doi:10.1111/jth.15353PubMedGoogle ScholarCrossref
34.
Behringer  W , Freund  Y .  Clinical translation of diagnostic studies: pitfalls of the usual reported characteristics.   Eur J Emerg Med. 2021;28(3):165-166. doi:10.1097/MEJ.0000000000000830PubMedGoogle ScholarCrossref
35.
Pauker  SG , Kassirer  JP .  The threshold approach to clinical decision making.   N Engl J Med. 1980;302(20):1109-1117. doi:10.1056/NEJM198005153022003PubMedGoogle ScholarCrossref
36.
Penaloza  A , Verschuren  F , Meyer  G ,  et al.  Comparison of the unstructured clinician gestalt, the wells score, and the revised Geneva score to estimate pretest probability for suspected pulmonary embolism.   Ann Emerg Med. 2013;62(2):117-124.e2. doi:10.1016/j.annemergmed.2012.11.002PubMedGoogle ScholarCrossref
37.
Penaloza  A , Soulié  C , Moumneh  T ,  et al.  Pulmonary embolism rule-out criteria (PERC) rule in European patients with low implicit clinical probability (PERCEPIC): a multicentre, prospective, observational study.   Lancet Haematol. 2017;4(12):e615-e621. doi:10.1016/S2352-3026(17)30210-7PubMedGoogle ScholarCrossref
38.
Wolf  SJ , McCubbin  TR , Feldhaus  KM , Faragher  JP , Adcock  DM .  Prospective validation of Wells criteria in the evaluation of patients with suspected pulmonary embolism.   Ann Emerg Med. 2004;44(5):503-510. doi:10.1016/j.annemergmed.2004.04.002PubMedGoogle ScholarCrossref
39.
Kline  JA , Mitchell  AM , Kabrhel  C , Richman  PB , Courtney  DM .  Clinical criteria to prevent unnecessary diagnostic testing in emergency department patients with suspected pulmonary embolism.   J Thromb Haemost. 2004;2(8):1247-1255. doi:10.1111/j.1538-7836.2004.00790.xPubMedGoogle ScholarCrossref
40.
Freund  Y , Cachanado  M , Aubry  A ,  et al; PROPER Investigator Group.  Effect of the pulmonary embolism rule-out criteria on subsequent thromboembolic events among low-risk emergency department patients: the PROPER randomized clinical trial.   JAMA. 2018;319(6):559-566. doi:10.1001/jama.2017.21904PubMedGoogle ScholarCrossref
41.
Kabrhel  C .  Outcomes of high pretest probability patients undergoing D-dimer testing for pulmonary embolism: a pilot study.   J Emerg Med. 2008;35(4):373-377. doi:10.1016/j.jemermed.2007.08.070PubMedGoogle ScholarCrossref
42.
Righini  M , Van Es  J , Den Exter  PL ,  et al.  Age-adjusted D-dimer cutoff levels to rule out pulmonary embolism: the ADJUST-PE study.   JAMA. 2014;311(11):1117-1124. doi:10.1001/jama.2014.2135PubMedGoogle ScholarCrossref
43.
van der Hulle  T , Cheung  WY , Kooij  S ,  et al; YEARS study group.  Simplified diagnostic management of suspected pulmonary embolism (the YEARS study): a prospective, multicentre, cohort study.   Lancet. 2017;390(10091):289-297. doi:10.1016/S0140-6736(17)30885-1PubMedGoogle ScholarCrossref
44.
Patel  P , Patel  P , Bhatt  M ,  et al.  Systematic review and meta-analysis of test accuracy for the diagnosis of suspected pulmonary embolism.   Blood Adv. 2020;4(18):4296-4311. doi:10.1182/bloodadvances.2019001052PubMedGoogle ScholarCrossref
45.
Platz  E , Hassanein  AH , Shah  A , Goldhaber  SZ , Solomon  SD .  Regional right ventricular strain pattern in patients with acute pulmonary embolism.   Echocardiography. 2012;29(4):464-470. doi:10.1111/j.1540-8175.2011.01617.xPubMedGoogle ScholarCrossref
46.
Dresden  S , Mitchell  P , Rahimi  L ,  et al.  Right ventricular dilatation on bedside echocardiography performed by emergency physicians aids in the diagnosis of pulmonary embolism.   Ann Emerg Med. 2014;63(1):16-24. doi:10.1016/j.annemergmed.2013.08.016PubMedGoogle ScholarCrossref
47.
Roy  PM , Colombet  I , Durieux  P , Chatellier  G , Sors  H , Meyer  G .  Systematic review and meta-analysis of strategies for the diagnosis of suspected pulmonary embolism.   BMJ. 2005;331(7511):259. doi:10.1136/bmj.331.7511.259PubMedGoogle ScholarCrossref
48.
Kline  JA , Richardson  DM , Than  MP , Penaloza  A , Roy  PM .  Systematic review and meta-analysis of pregnant patients investigated for suspected pulmonary embolism in the emergency department.   Acad Emerg Med. 2014;21(9):949-959. doi:10.1111/acem.12471PubMedGoogle ScholarCrossref
49.
van der Pol  LM , Tromeur  C , Bistervels  IM ,  et al; Artemis Study Investigators.  Pregnancy-adapted YEARS algorithm for diagnosis of suspected pulmonary embolism.   N Engl J Med. 2019;380(12):1139-1149. doi:10.1056/NEJMoa1813865PubMedGoogle ScholarCrossref
50.
Tan  BK , Mainbourg  S , Friggeri  A ,  et al.  Arterial and venous thromboembolism in COVID-19: a study-level meta-analysis.   Thorax. 2021;76(10):970-979. doi:10.1136/thoraxjnl-2020-215383PubMedGoogle ScholarCrossref
51.
Freund  Y , Drogrey  M , Miró  Ò ,  et al; IMPROVING EMERGENCY CARE FHU Collaborators.  Association between pulmonary embolism and COVID-19 in emergency department patients undergoing computed tomography pulmonary angiogram: the PEPCOV international retrospective study.   Acad Emerg Med. 2020;27(9):811-820. doi:10.1111/acem.14096PubMedGoogle ScholarCrossref
52.
Revel  MP , Beeker  N , Porcher  R ,  et al; AP-HP /Universities/Inserm COVID-19 research collaboration, AP-HP Covid CDR Initiative.  What level of D-dimers can safely exclude pulmonary embolism in COVID-19 patients presenting to the emergency department?   Eur Radiol. 2022;32(4):2704-2712. doi:10.1007/s00330-021-08377-9PubMedGoogle ScholarCrossref
53.
Jiménez  D , Aujesky  D , Moores  L ,  et al; RIETE Investigators.  Simplification of the pulmonary embolism severity index for prognostication in patients with acute symptomatic pulmonary embolism.   Arch Intern Med. 2010;170(15):1383-1389. doi:10.1001/archinternmed.2010.199PubMedGoogle ScholarCrossref
54.
Sam  A , Sánchez  D , Gómez  V ,  et al.  The shock index and the simplified PESI for identification of low-risk patients with acute pulmonary embolism.   Eur Respir J. 2011;37(4):762-766. doi:10.1183/09031936.00070110PubMedGoogle ScholarCrossref
55.
Righini  M , Roy  PM , Meyer  G , Verschuren  F , Aujesky  D , Le Gal  G .  The Simplified Pulmonary Embolism Severity Index (PESI): validation of a clinical prognostic model for pulmonary embolism.   J Thromb Haemost. 2011;9(10):2115-2117. doi:10.1111/j.1538-7836.2011.04469.xPubMedGoogle ScholarCrossref
56.
Squizzato  A , Donadini  MP , Galli  L , Dentali  F , Aujesky  D , Ageno  W .  Prognostic clinical prediction rules to identify a low-risk pulmonary embolism: a systematic review and meta-analysis.   J Thromb Haemost. 2012;10(7):1276-1290. doi:10.1111/j.1538-7836.2012.04739.xPubMedGoogle ScholarCrossref
57.
EINSTEIN-PE Investigators; Büller  HR , Prins  MH , Lensin  AWA ,  et al.  Oral rivaroxaban for the treatment of symptomatic pulmonary embolism.   N Engl J Med. 2012;366(14):1287-1297. doi:10.1056/NEJMoa1113572PubMedGoogle ScholarCrossref
58.
Agnelli  G , Büller  HR , Cohen  A ,  et al; AMPLIFY Investigators.  Oral apixaban for the treatment of acute venous thromboembolism.   N Engl J Med. 2013;369(9):799-808. doi:10.1056/NEJMoa1302507PubMedGoogle ScholarCrossref
59.
Hokusai-VTE Investigators; Büller  HR , Décousus  H , Grosso  MA ,  et al.  Edoxaban versus warfarin for the treatment of symptomatic venous thromboembolism.   N Engl J Med. 2013;369(15):1406-1415. doi:10.1056/NEJMoa1306638PubMedGoogle ScholarCrossref
60.
Schulman  S , Kearon  C , Kakkar  AK ,  et al.  Dabigatran versus warfarin in the treatment of acute venous thromboembolism.   N Engl J Med. 2009;361(24):2342-2352. doi:10.1056/NEJMoa0906598PubMedGoogle ScholarCrossref
61.
Gómez-Outes  A , Terleira-Fernández  AI , Lecumberri  R , Suárez-Gea  ML , Vargas-Castrillón  E .  Direct oral anticoagulants in the treatment of acute venous thromboembolism: a systematic review and meta-analysis.   Thromb Res. 2014;134(4):774-782. doi:10.1016/j.thromres.2014.06.020PubMedGoogle ScholarCrossref
62.
Chopard  R , Badoz  M , Eveno  C ,  et al.  Early prescription of direct oral anticoagulant for the treatment of intermediate-high risk pulmonary embolism: a multi-center, observational cohort study.   Thromb Res. 2020;196:476-482. doi:10.1016/j.thromres.2020.10.003PubMedGoogle ScholarCrossref
63.
Schulman  S , Kearon  C , Kakkar  AK ,  et al; RE-MEDY Trial Investigators; RE-SONATE Trial Investigators.  Extended use of dabigatran, warfarin, or placebo in venous thromboembolism.   N Engl J Med. 2013;368(8):709-718. doi:10.1056/NEJMoa1113697PubMedGoogle ScholarCrossref
64.
Klok  FA , Toenges  G , Mavromanoli  AC ,  et al; PEITHO-2 investigators.  Early switch to oral anticoagulation in patients with acute intermediate-risk pulmonary embolism (PEITHO-2): a multinational, multicentre, single-arm, phase 4 trial.   Lancet Haematol. 2021;8(9):e627-e636. doi:10.1016/S2352-3026(21)00203-9PubMedGoogle ScholarCrossref
65.
Chornenki  NLJ , Poorzargar  K , Shanjer  M ,  et al.  Detection of right ventricular dysfunction in acute pulmonary embolism by computed tomography or echocardiography: a systematic review and meta-analysis.   J Thromb Haemost. 2021;19(10):2504-2513. doi:10.1111/jth.15453PubMedGoogle ScholarCrossref
66.
Yamamoto  T .  Management of patients with high-risk pulmonary embolism: a narrative review.   J Intensive Care. 2018;6:16. doi:10.1186/s40560-018-0286-8PubMedGoogle ScholarCrossref
67.
Jackson  CD , Cifu  AS , Burroughs-Ray  DC .  Antithrombotic therapy for venous thromboembolism.   JAMA. 2022;327(21):2141-2142. doi:10.1001/jama.2022.7325PubMedGoogle ScholarCrossref
68.
Marti  C , John  G , Konstantinides  S ,  et al.  Systemic thrombolytic therapy for acute pulmonary embolism: a systematic review and meta-analysis.   Eur Heart J. 2015;36(10):605-614. doi:10.1093/eurheartj/ehu218PubMedGoogle ScholarCrossref
69.
Zuo  Z , Yue  J , Dong  BR , Wu  T , Liu  GJ , Hao  Q .  Thrombolytic therapy for pulmonary embolism.   Cochrane Database Syst Rev. 2021;4:CD004437. doi:10.1002/14651858.CD004437.pub6PubMedGoogle ScholarCrossref
70.
Chatterjee  S , Chakraborty  A , Weinberg  I ,  et al.  Thrombolysis for pulmonary embolism and risk of all-cause mortality, major bleeding, and intracranial hemorrhage: a meta-analysis.   JAMA. 2014;311(23):2414-2421. doi:10.1001/jama.2014.5990PubMedGoogle ScholarCrossref
71.
Corsi  F , Lebreton  G , Bréchot  N ,  et al.  Life-threatening massive pulmonary embolism rescued by venoarterial-extracorporeal membrane oxygenation.   Crit Care. 2017;21(1):76. doi:10.1186/s13054-017-1655-8PubMedGoogle ScholarCrossref
72.
Meyer  G , Vicaut  E , Danays  T ,  et al; PEITHO Investigators.  Fibrinolysis for patients with intermediate-risk pulmonary embolism.   N Engl J Med. 2014;370(15):1402-1411. doi:10.1056/NEJMoa1302097PubMedGoogle ScholarCrossref
73.
Konstantinides  SV , Vicaut  E , Danays  T ,  et al.  Impact of thrombolytic therapy on the long-term outcome of intermediate-risk pulmonary embolism.   J Am Coll Cardiol. 2017;69(12):1536-1544. doi:10.1016/j.jacc.2016.12.039PubMedGoogle ScholarCrossref
74.
Kaufman  JA , Barnes  GD , Chaer  RA ,  et al.  Society of Interventional Radiology Clinical Practice Guideline for Inferior Vena Cava Filters in the Treatment of Patients with Venous Thromboembolic Disease: developed in collaboration with the American College of Cardiology, American College of Chest Physicians, American College of Surgeons Committee on Trauma, American Heart Association, Society for Vascular Surgery, and Society for Vascular Medicine.   J Vasc Interv Radiol. 2020;31(10):1529-1544. doi:10.1016/j.jvir.2020.06.014PubMedGoogle ScholarCrossref
75.
Bikdeli  B , Chatterjee  S , Desai  NR ,  et al.  Inferior vena cava filters to prevent pulmonary embolism: systematic review and meta-analysis.   J Am Coll Cardiol. 2017;70(13):1587-1597. doi:10.1016/j.jacc.2017.07.775PubMedGoogle ScholarCrossref
76.
Stevens  SM , Woller  SC , Baumann Kreuziger  L ,  et al.  Executive summary: antithrombotic therapy for VTE disease: second update of the CHEST guideline and expert panel report.   Chest. 2021;160(6):2247-2259. doi:10.1016/j.chest.2021.07.056PubMedGoogle ScholarCrossref
77.
Boutitie  F , Pinede  L , Schulman  S ,  et al.  Influence of preceding length of anticoagulant treatment and initial presentation of venous thromboembolism on risk of recurrence after stopping treatment: analysis of individual participants’ data from seven trials.   BMJ. 2011;342:d3036. doi:10.1136/bmj.d3036PubMedGoogle ScholarCrossref
78.
Couturaud  F , Sanchez  O , Pernod  G ,  et al; PADIS-PE Investigators.  Six months vs extended oral anticoagulation after a first episode of pulmonary embolism: the PADIS-PE randomized clinical trial.   JAMA. 2015;314(1):31-40. doi:10.1001/jama.2015.7046PubMedGoogle ScholarCrossref
79.
Raskob  G , Ageno  W , Cohen  AT ,  et al.  Extended duration of anticoagulation with edoxaban in patients with venous thromboembolism: a post-hoc analysis of the Hokusai-VTE study.   Lancet Haematol. 2016;3(5):e228-e236. doi:10.1016/S2352-3026(16)00023-5PubMedGoogle ScholarCrossref
80.
Pawar  A , Gagne  JJ , Gopalakrishnan  C ,  et al.  Association of type of oral anticoagulant dispensed with adverse clinical outcomes in patients extending anticoagulation therapy beyond 90 days after hospitalization for venous thromboembolism.   JAMA. 2022;327(11):1051-1060. doi:10.1001/jama.2022.1920PubMedGoogle ScholarCrossref
81.
Agnelli  G , Becattini  C , Meyer  G ,  et al; Caravaggio Investigators.  Apixaban for the treatment of venous thromboembolism associated with cancer.   N Engl J Med. 2020;382(17):1599-1607. doi:10.1056/NEJMoa1915103PubMedGoogle ScholarCrossref
82.
Yoo  HH , Nunes-Nogueira  VS , Fortes Villas Boas  PJ .  Anticoagulant treatment for subsegmental pulmonary embolism.   Cochrane Database Syst Rev. 2020;2(2):CD010222. doi:10.1002/14651858.CD010222.pub4PubMedGoogle ScholarCrossref
83.
Tektonidou  MG , Andreoli  L , Limper  M ,  et al.  EULAR recommendations for the management of antiphospholipid syndrome in adults.   Ann Rheum Dis. 2019;78(10):1296-1304. doi:10.1136/annrheumdis-2019-215213PubMedGoogle ScholarCrossref
84.
Pengo  V , Denas  G , Zoppellaro  G ,  et al.  Rivaroxaban vs warfarin in high-risk patients with antiphospholipid syndrome.   Blood. 2018;132(13):1365-1371. doi:10.1182/blood-2018-04-848333PubMedGoogle ScholarCrossref
85.
Regitz-Zagrosek  V , Roos-Hesselink  JW , Bauersachs  J ,  et al; ESC Scientific Document Group.  2018 ESC Guidelines for the management of cardiovascular diseases during pregnancy.   Eur Heart J. 2018;39(34):3165-3241. doi:10.1093/eurheartj/ehy340PubMedGoogle ScholarCrossref
86.
Cuker  A , Arepally  GM , Chong  BH ,  et al.  American Society of Hematology 2018 guidelines for management of venous thromboembolism: heparin-induced thrombocytopenia.   Blood Adv. 2018;2(22):3360-3392. doi:10.1182/bloodadvances.2018024489PubMedGoogle ScholarCrossref
87.
Maughan  BC , Frueh  L , McDonagh  MS , Casciere  B , Kline  JA .  Outpatient treatment of low-risk pulmonary embolism in the era of direct oral anticoagulants: a systematic review.   Acad Emerg Med. 2021;28(2):226-239. doi:10.1111/acem.14108PubMedGoogle ScholarCrossref
88.
Roy  PM , Penaloza  A , Hugli  O ,  et al; HOME-PE Study Group.  Triaging acute pulmonary embolism for home treatment by Hestia or simplified PESI criteria: the HOME-PE randomized trial.   Eur Heart J. 2021;42(33):3146-3157. doi:10.1093/eurheartj/ehab373PubMedGoogle ScholarCrossref
89.
Vinson  DR , Mark  DG , Chettipally  UK ,  et al; eSPEED Investigators of the KP CREST Network.  Increasing safe outpatient management of emergency department patients with pulmonary embolism: a controlled pragmatic trial.   Ann Intern Med. 2018;169(12):855-865. doi:10.7326/M18-1206PubMedGoogle ScholarCrossref
90.
Kahn  SR , Hirsch  AM , Akaberi  A ,  et al.  Functional and exercise limitations after a first episode of pulmonary embolism: results of the ELOPE prospective cohort study.   Chest. 2017;151(5):1058-1068. doi:10.1016/j.chest.2016.11.030PubMedGoogle ScholarCrossref
91.
Klok  FA , van der Hulle  T , den Exter  PL , Lankeit  M , Huisman  MV , Konstantinides  S .  The post-PE syndrome: a new concept for chronic complications of pulmonary embolism.   Blood Rev. 2014;28(6):221-226. doi:10.1016/j.blre.2014.07.003PubMedGoogle ScholarCrossref
92.
Condon  DF , Nickel  NP , Anderson  R , Mirza  S , de Jesus Perez  VA .  The 6th World Symposium on Pulmonary Hypertension: what’s old is new.   F1000Res. 2019;8:F1000 faculty rev-888. doi:10.12688/f1000research.18811.1PubMedGoogle ScholarCrossref
93.
de Perrot  M , Granton  J , Fadel  E .  Pulmonary hypertension after pulmonary emboli: an underrecognized condition.   CMAJ. 2006;174(12):1706. doi:10.1503/cmaj.051646PubMedGoogle ScholarCrossref
94.
Delcroix  M , Lang  I , Pepke-Zaba  J ,  et al.  Long-term outcome of patients with chronic thromboembolic pulmonary hypertension: results from an international prospective registry.   Circulation. 2016;133(9):859-871. doi:10.1161/CIRCULATIONAHA.115.016522PubMedGoogle ScholarCrossref
95.
Kim  NH , Delcroix  M , Jais  X ,  et al.  Chronic thromboembolic pulmonary hypertension.   Eur Respir J. 2019;53(1):1801915. doi:10.1183/13993003.01915-2018PubMedGoogle ScholarCrossref
AMA CME Accreditation Information

Credit Designation Statement: The American Medical Association designates this Journal-based CME activity activity for a maximum of 1.00  AMA PRA Category 1 Credit(s)™. Physicians should claim only the credit commensurate with the extent of their participation in the activity.

Successful completion of this CME activity, which includes participation in the evaluation component, enables the participant to earn up to:

  • 1.00 Medical Knowledge MOC points in the American Board of Internal Medicine's (ABIM) Maintenance of Certification (MOC) program;;
  • 1.00 Self-Assessment points in the American Board of Otolaryngology – Head and Neck Surgery’s (ABOHNS) Continuing Certification program;
  • 1.00 MOC points in the American Board of Pediatrics’ (ABP) Maintenance of Certification (MOC) program;
  • 1.00 Lifelong Learning points in the American Board of Pathology’s (ABPath) Continuing Certification program; and
  • 1.00 credit toward the CME [and Self-Assessment requirements] of the American Board of Surgery’s Continuous Certification program

It is the CME activity provider's responsibility to submit participant completion information to ACCME for the purpose of granting MOC credit.

Close
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
Close
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close

Name Your Search

Save Search
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Close
Close

Lookup An Activity

or

My Saved Searches

You currently have no searches saved.

Close

My Saved Courses

You currently have no courses saved.

Close