[Skip to Content]
[Skip to Content Landing]

SARS CoV-2 Seroprevalence in Selected States of High and Low Disease Burden in Nigeria

Educational Objective
To identify the key insights or developments described in this article
1 Credit CME
Key Points

Question  What is the serologic prevalence of SARS CoV-2 in states with high and low disease burdens in Nigeria?

Findings  In this cross-sectional study including 4904 participants, a high seroprevalence of 78.9% was obtained across 12 states in Nigeria. Seropositivity was consistent across the states surveyed, ranging from 69.8% in Lagos to 87.7% in Borno.

Meaning  The results from this study suggest that COVID-19 infection is prevalent in Nigeria despite the low hospitalization rate recorded at the time of sampling.

Abstract

Importance  The global impact of COVID-19 has led to an increased need to continuously assess disease surveillance tools. The utility of SARS-CoV-2 serologic tools in determining immunity levels across different age groups and locations in helping to quickly assess the burden of COVID-19 with significant health policy implications is unknown.

Objective  To determine the prevalence of SARS-CoV-2 antibodies with respect to the age group and sex of participants.

Design, Setting, and Participants  A cross-sectional survey of 4904 individuals across 12 states with high and low COVID-19 disease burden in Nigeria was carried out between June 29 and August 21, 2021.

Main Outcomes and Measures  Enzyme-linked immunosorbent assay was used for the detection of specific SARS-CoV-2 immunoglobulin G and immunoglobulin M antibodies, such as the nucleocapsid protein-NCP and spike protein S1. Interviewer-administered questionnaires provided information on participants’ history of disease and associated risk factors.

Results  A total of 4904 individuals participated in the study (3033 were female [61.8%]; mean [SD] age, 26.7 [6.51] years). A high seroprevalence of SARS-CoV-2 (78.9%) was obtained. Seropositivity was consistent across the states surveyed, ranging from 69.8% in Lagos to 87.7% in Borno. There was no association between sex and seropositivity (female, 2414 [79.6%]; male, 1456 [77.8%]; P = .61); however, an association was noted between age and seropositivity, with the peak prevalence observed in participants aged 15 to 19 years (616 [83.6%]; P = .001). Similarly, loss of appetite (751 [82.3%]; P = .04) and smell (309 [84.4%]; P = .01) were associated with seropositivity.

Conclusions and Relevance  In this cross-sectional study, a high SARS-CoV-2 seroprevalence was obtained among the study population during the low level of vaccination at the time of the survey. Thus, there is a need for both an efficacy and antibody neutralization test study to ascertain the efficacy of the antibody detected and the potential for herd immunity in Nigeria.

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 Credit(s)™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

CME Disclosure Statement: Unless noted, all individuals in control of content reported no relevant financial relationships. If applicable, all relevant financial relationships have been mitigated.

Article Information

Accepted for Publication: August 26, 2022.

Published: October 11, 2022. doi:10.1001/jamanetworkopen.2022.36053

Open Access: This is an open access article distributed under the terms of the CC-BY License. © 2022 Kolawole OM et al. JAMA Network Open.

Corresponding Authors: Olatunji Matthew Kolawole, PhD, Microbiology, University of Ilorin, Ilorin, Main Campus, Ilorin, Kwara state 240003, Nigeria (tomak7475@gmail.com); Oyewale Tomori, PhD, Redeemer’s University, EDE, ACEGID, University Road, Gbongan-Osogbo Road, Akoda, Ede, OSUN 232103, Nigeria (oyewaletomori@gmail.com).

Author Contributions: Dr Kolawole had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: Kolawole, Tomori, Agbonlahor, Ekanem, Abdulsalam, Okojie, Braide, Uzochukwu, Bello, Shehu, Gureje, Onwujekwe, Onyedum, Ezike, Bukbuk, Amazigo, Habib, Ufere, Azodoh.

Acquisition, analysis, or interpretation of data: Kolawole, Tomori, Agbonlahor, Ekanem, Bakare, Abdulsalam, Braide, Uzochukwu, Rafindadi, Bello, Shehu, Gureje, Lecky, Onwujekwe, Onyedum, Ezike, Bukbuk, Ashir, Anyaehie, Amazigo, Habib, Azodoh.

Drafting of the manuscript: Kolawole, Ekanem, Abdulsalam, Uzochukwu, Lecky, Ashir, Anyaehie, Habib, Ufere, Azodoh.

Critical revision of the manuscript for important intellectual content: Kolawole, Tomori, Agbonlahor, Ekanem, Bakare, Abdulsalam, Okojie, Braide, Uzochukwu, Rafindadi, Bello, Shehu, Gureje, Onwujekwe, Onyedum, Ezike, Bukbuk, Ashir, Anyaehie, Amazigo, Habib, Ufere.

Statistical analysis: Kolawole, Tomori, Okojie, Braide, Uzochukwu, Bello, Shehu, Onwujekwe, Ezike, Bukbuk, Ashir, Habib.

Obtained funding: Kolawole, Tomori, Ufere, Azodoh.

Administrative, technical, or material support: Kolawole, Tomori, Agbonlahor, Ekanem, Bakare, Braide, Bello, Shehu, Lecky, Onwujekwe, Onyedum, Ezike, Bukbuk, Ashir, Anyaehie, Amazigo, Ufere, Azodoh.

Supervision: Kolawole, Tomori, Agbonlahor, Ekanem, Abdulsalam, Okojie, Braide, Uzochukwu, Rafindadi, Shehu, Gureje, Lecky, Onwujekwe, Onyedum, Ezike, Bukbuk, Ashir, Anyaehie, Habib, Azodoh.

Conflict of Interest Disclosures: No disclosures were reported.

Funding/Support: This study was funded by a grant from the World Health Organization (WHO)-AFRO (AFNGA2018479-Award 70397).

Role of the Funder/Sponsor: The funding organization had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Additional Contributions: We acknowledge Jeremiah Ikhevha Ogah, PhD, for creating the online platform for data entry, collation, and analysis of the data for this project; financial compensation was provided. We appreciate the contributions of WHO state coordinators in Nigeria and the Ministries of Health and Education in Abuja, Kwara, Kaduna, Sokoto, Edo, Akwa-Ibom, Lagos, Ondo, Enugu, Imo, Borno, and Yobe states. Acknowledgments also go to Lahor Research Diagnostics & Environmental Ltd and Biosensors Medical Diagnostics Ltd for their role in the laboratory analysis of the samples.

References
1.
Centers for Disease Control and Prevention. Delta variant: what we know about the science. 2021. Accessed September 10, 2022. https://www.cdc.gov/coronavirus/2019-ncov/variants/delta-variant.html
2.
Lernout  T , Kabamba-Mukadi  B , Saegeman  V ,  et al.  The value of seroprevalence data as surveillance tool for Lyme borreliosis in the general population: the experience of Belgium.   BMC Public Health. 2019;19(1):597. doi:10.1186/s12889-019-6914-y PubMedGoogle ScholarCrossref
3.
Xu  X , Sun  J , Nie  S ,  et al.  Seroprevalence of immunoglobulin M and G antibodies against SARS-CoV-2 in China.   Nat Med. 2020;26(8):1193-1195. doi:10.1038/s41591-020-0949-6 PubMedGoogle ScholarCrossref
4.
Sood  N , Simon  P , Ebner  P ,  et al.  Seroprevalence of SARS-CoV-2–specific antibodies among adults in Los Angeles County, California, on April 10-11, 2020.   JAMA. 2020;323(23):2425-2427. doi:10.1001/jama.2020.8279 PubMedGoogle ScholarCrossref
5.
Pollán  M , Pérez-Gómez  B , Pastor-Barriuso  R ,  et al; ENE-COVID Study Group.  Prevalence of SARS-CoV-2 in Spain (ENE-COVID): a nationwide, population-based seroepidemiological study.   Lancet. 2020;396(10250):535-544. doi:10.1016/S0140-6736(20)31483-5 PubMedGoogle ScholarCrossref
6.
Stringhini  S , Wisniak  A , Piumatti  G ,  et al.  Seroprevalence of anti-SARS-CoV-2 IgG antibodies in Geneva, Switzerland (SEROCoV-POP): a population-based study.   Lancet. 2020;396(10247):313-319. doi:10.1016/S0140-6736(20)31304-0 PubMedGoogle ScholarCrossref
7.
Uyoga  S , Adetifa  IMO , Karanja  HK ,  et al.  Seroprevalence of anti-SARS-CoV-2 IgG antibodies in Kenyan blood donors.   Science. 2021;371(6524):79-82. doi:10.1126/science.abe1916 PubMedGoogle ScholarCrossref
8.
Chibwana  MG , Jere  KC , Kamn’gona  R ,  et al.  High SARS-CoV-2 seroprevalence in health care workers but relatively low numbers of deaths in urban Malawi.   medRxiv. Preprint posted online August 5, 2020. doi:10.1101/2020.07.30.20164970Google Scholar
9.
Majiya  H , Aliyu-Paiko  M , Balogu  VT ,  et al.  Seroprevalence of COVID-19 in Niger State.   medRxiv. Preprint posted online August 5, 2020. doi:10.1101/2020.08.04.20168112Google Scholar
10.
Okpala  OV , Dim  CC , Ugwu  CI ,  et al.  Population seroprevalence of SARS-CoV-2 antibodies in Anambra State, South-East, Nigeria.   Int J Infect Dis. 2021;110:171-178. doi:10.1016/j.ijid.2021.07.040 PubMedGoogle ScholarCrossref
11.
Chisale  MRO , Ramazanu  S , Mwale  SE ,  et al.  Seroprevalence of anti-SARS-CoV-2 antibodies in Africa: A systematic review and meta-analysis.   Rev Med Virol. 2022;32(2):e2271. doi:10.1002/rmv.2271 PubMedGoogle ScholarCrossref
12.
Kammon  AM , El-Arabi  AA , Erhouma  EA , Mehemed  TM , Mohamed  OA .  Seroprevalence of antibodies against SARS-CoV-2 among public community and health-care workers in Alzintan City of Libya.   medRxiv. Preprint posted online May 26, 2020. doi:10.1101/2020.05.25.20109470Google Scholar
13.
Halatoko  WA , Konu  YR , Gbeasor-Komlanvi  FA ,  et al.  Prevalence of SARS-CoV-2 among high-risk populations in Lomé (Togo) in 2020.   PLoS One. 2020;15(11):e0242124. doi:10.1371/journal.pone.0242124 PubMedGoogle ScholarCrossref
14.
Mostafa  A , Kandil  S , El-Sayed  MH ,  et al.  SARS-CoV-2 seroconversion among 4040 Egyptian healthcare workers in 12 resource-limited healthcare facilities: a prospective cohort study.   Int J Infect Dis. 2021;104:534-542. doi:10.1016/j.ijid.2021.01.037 PubMedGoogle ScholarCrossref
15.
Sykes  W , Mhlanga  L , Swanevelder  R ,  et al.  Prevalence of anti-SARS-CoV-2 antibodies among blood donors in Northern Cape, KwaZulu-Natal, Eastern Cape, and Free State provinces of South Africa in  January 2021. Res Sq. Preprint posted online February 12, 2021. doi:10.21203/rs.3.rs-233375/v1
16.
Nnama-Okechukwu  CU , Chukwu  NE , Nkechukwu  CN .  COVID-19 in Nigeria: knowledge and compliance with preventive measures.   Soc Work Public Health. 2020;35(7):590-602. doi:10.1080/19371918.2020.1806985 PubMedGoogle ScholarCrossref
17.
Bajema  KL , Wiegand  RE , Cuffe  K ,  et al.  Estimated SARS-CoV-2 Seroprevalence in the US as of September 2020.   JAMA Intern Med. 2021;181(4):450-460. doi:10.1001/jamainternmed.2020.7976 PubMedGoogle ScholarCrossref
18.
Nwosu  K , Fokam  J , Wanda  F ,  et al.  SARS-CoV-2 antibody seroprevalence and associated risk factors in an urban district in Cameroon.   Nat Commun. 2021;12(1):5851. doi:10.1038/s41467-021-25946-0 PubMedGoogle ScholarCrossref
19.
Rice  BL , Annapragada  A , Baker  RE ,  et al.  Variation in SARS-CoV-2 outbreaks across sub-Saharan Africa.   Nat Med. 2021;27(3):447-453. doi:10.1038/s41591-021-01234-8 PubMedGoogle ScholarCrossref
20.
Chen  X , Chen  Z , Azman  AS ,  et al.  Serological evidence of human infection with SARS-CoV-2: a systematic review and meta-analysis.   Lancet Glob Health. 2021;9(5):e598-e609. doi:10.1016/S2214-109X(21)00026-7 PubMedGoogle ScholarCrossref
21.
Lai  CC , Wang  JH , Hsueh  PR .  Population-based seroprevalence surveys of anti-SARS-CoV-2 antibody: an up-to-date review.   Int J Infect Dis. 2020;101:314-322. doi:10.1016/j.ijid.2020.10.011 PubMedGoogle ScholarCrossref
22.
Rostami  A , Sepidarkish  M , Leeflang  MMG ,  et al.  SARS-CoV-2 seroprevalence worldwide: a systematic review and meta-analysis.   Clin Microbiol Infect. 2021;27(3):331-340. doi:10.1016/j.cmi.2020.10.020 PubMedGoogle ScholarCrossref
23.
Africa  CDC . Outbreak Brief 57: coronavirus disease 2019 (COVID-19) pandemic. 2021. Accessed December 02, 2021. https://africacdc.org/download/outbreak-brief-57-coronavirus-disease-2019-covid-19-pandemic/
24.
Nega Alemu  B , Addissie  A , Mamo  G ,  et al.  Sero-prevalence of anti-SARS-CoV-2 antibodies in Addis Ababa, Ethiopia.   bioRxiv. Preprint posted online October 13, 2020. doi:10.1101/2020.10.13.337287Google Scholar
25.
Wangeci Kagucia  E , Gitonga  JN , Kalu  C ,  et al.  Seroprevalence of anti-SARS-CoV-2 IgG antibodies among truck drivers and assistants in Kenya.   medRxiv. Preprint posted online February 17, 2021. doi:10.1101/2021.02.12.21251294Google Scholar
26.
Mukwege  D , Byabene  AK , Akonkwa  EM ,  et al.  High SARS-CoV-2 seroprevalence in healthcare workers in Bukavu, Eastern Democratic Republic of Congo.   Am J Trop Med Hyg. 2021;104(4):1526-1530. doi:10.4269/ajtmh.20-1526 PubMedGoogle ScholarCrossref
27.
Chosidow  O , Bernigaud  C , Guillemot  D ,  et al.  Ivermectin as a potential treatment for COVID-19?   PLoS Negl Trop Dis. 2021;15(6):e0009446. doi:10.1371/journal.pntd.0009446 PubMedGoogle ScholarCrossref
28.
López-Medina  E , López  P , Hurtado  IC ,  et al.  Effect of ivermectin on time to resolution of symptoms among adults with mild COVID-19: a randomized clinical trial.   JAMA. 2021;325(14):1426-1435. doi:10.1001/jama.2021.3071 PubMedGoogle ScholarCrossref
29.
Popp  M , Stegemann  M , Metzendorf  MI ,  et al.  Ivermectin for preventing and treating COVID-19.   Cochrane Database Syst Rev. 2021;7(7):CD015017. PubMedGoogle Scholar
30.
Sauré  D , O’Ryan  M , Torres  JP , Zuniga  M , Santelices  E , Basso  LJ .  Dynamic IgG seropositivity after rollout of CoronaVac and BNT162b2 COVID-19 vaccines in Chile: a sentinel surveillance study.   Lancet Infect Dis. 2022;22(1):56-63. doi:10.1016/S1473-3099(21)00479-5 PubMedGoogle ScholarCrossref
31.
Agyeman  AA , Chin  KL , Landersdorfer  CB , Liew  D , Ofori-Asenso  R .  Smell and taste dysfunction in patients with COVID-19: a systematic review and meta-analysis.   Mayo Clin Proc. 2020;95(8):1621-1631. doi:10.1016/j.mayocp.2020.05.030 PubMedGoogle ScholarCrossref
32.
DeFrancesco  L .  Whither COVID-19 vaccines?   Nat Biotechnol. 2020;38(10):1132-1145. doi:10.1038/s41587-020-0697-7 PubMedGoogle ScholarCrossref
33.
Lechien  JR , Chiesa-Estomba  CM , De Siati  DR ,  et al.  Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): a multicenter European study.   Eur Arch Otorhinolaryngol. 2020;277(8):2251-2261. doi:10.1007/s00405-020-05965-1 PubMedGoogle ScholarCrossref
34.
Mercante  G , Ferreli  F , De Virgilio  A ,  et al.  Prevalence of taste and smell dysfunction in coronavirus disease 2019.   JAMA Otolaryngol Head Neck Surg. 2020;146(8):723-728. doi:10.1001/jamaoto.2020.1155 PubMedGoogle ScholarCrossref
35.
von Bartheld  CS , Hagen  MM , Butowt  R .  Prevalence of chemosensory dysfunction in COVID-19 patients: a systematic review and meta-analysis reveals significant ethnic differences.   ACS Chem Neurosci. 2020;11(19):2944-2961. doi:10.1021/acschemneuro.0c00460 PubMedGoogle ScholarCrossref
Close
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
Close
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close

Name Your Search

Save Search
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Close
Close

Lookup An Activity

or

My Saved Searches

You currently have no searches saved.

Close

My Saved Courses

You currently have no courses saved.

Close