[Skip to Content]
[Skip to Content Landing]

Use of Cardiopulmonary Exercise Testing to Evaluate Long COVID-19 Symptoms in AdultsA Systematic Review and Meta-analysis

Educational Objective
To identify the key insights or developments described in this article
1 Credit CME
Key Points

Question  Is exercise capacity reduced more than 3 months after SARS-CoV-2 infection among those with long COVID-19 (LC) symptoms compared with recovered individuals without symptoms, and what patterns of limitations on cardiopulmonary exercise testing (CPET) are common?

Findings  In this systematic review and meta-analysis of 38 studies comprising 2160 participants, exercise capacity was reduced by 4.9 mL/kg/min among individuals with symptoms consistent with LC compared with individuals without symptoms more than 3 months after SARS-CoV-2 infection. Findings among individuals with exertional intolerance suggest that deconditioning, dysfunctional breathing, chronotropic incompetence, and abnormal peripheral oxygen extraction and/or use may contribute to reduced exercise capacity.

Meaning  These findings suggest that CPET may provide insight into the mechanisms for reduced exercise capacity among individuals with LC.

Abstract

Importance  Reduced exercise capacity is commonly reported among individuals with COVID-19 symptoms more than 3 months after SARS-CoV-2 infection (long COVID-19 [LC]). Cardiopulmonary exercise testing (CPET) is the criterion standard to measure exercise capacity and identify patterns of exertional intolerance.

Objectives  To estimate the difference in exercise capacity among individuals with and without LC symptoms and characterize physiological patterns of limitations to elucidate possible mechanisms of LC.

Data Sources  A search of PubMed, EMBASE, Web of Science, preprint servers, conference abstracts, and cited references was performed on December 20, 2021, and again on May 24, 2022. A preprint search of medrxiv.org, biorxiv.org, and researchsquare.com was performed on June 9, 2022.

Study Selection  Studies of adults with SARS-CoV-2 infection more than 3 months earlier that included CPET-measured peak oxygen consumption (V̇o2) were screened independently by 2 blinded reviewers; 72 (2%) were selected for full-text review, and 35 (1%) met the inclusion criteria. An additional 3 studies were identified from preprint servers.

Data Extraction and Synthesis  Data extraction was performed by 2 independent reviewers according to the PRISMA reporting guideline. Data were pooled using random-effects models.

Main Outcomes and Measures  Difference in peak V̇o2 (in mL/kg/min) among individuals with and without persistent COVID-19 symptoms more than 3 months after SARS-CoV-2 infection.

Results  A total of 38 studies were identified that performed CPET on 2160 individuals 3 to 18 months after SARS-CoV-2 infection, including 1228 with symptoms consistent with LC. Most studies were case series of individuals with LC or cross-sectional assessments within posthospitalization cohorts. Based on a meta-analysis of 9 studies including 464 individuals with LC symptoms and 359 without symptoms, the mean peak V̇o2 was −4.9 (95% CI, −6.4 to −3.4) mL/kg/min among those with symptoms with a low degree of certainty. Deconditioning and peripheral limitations (abnormal oxygen extraction) were common, but dysfunctional breathing and chronotropic incompetence were also described. The existing literature was limited by small sample sizes, selection bias, confounding, and varying symptom definitions and CPET interpretations, resulting in high risk of bias and heterogeneity.

Conclusions and Relevance  The findings of this systematic review and meta-analysis study suggest that exercise capacity was reduced more than 3 months after SARS-CoV-2 infection among individuals with symptoms consistent with LC compared with individuals without LC symptoms, with low confidence. Potential mechanisms for exertional intolerance other than deconditioning include altered autonomic function (eg, chronotropic incompetence, dysfunctional breathing), endothelial dysfunction, and muscular or mitochondrial pathology.

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 Credit(s)™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

CME Disclosure Statement: Unless noted, all individuals in control of content reported no relevant financial relationships. If applicable, all relevant financial relationships have been mitigated.

Article Information

Accepted for Publication: August 25, 2022.

Published: October 12, 2022. doi:10.1001/jamanetworkopen.2022.36057

Open Access: This is an open access article distributed under the terms of the CC-BY License. © 2022 Durstenfeld MS et al. JAMA Network Open.

Corresponding Author: Matthew S. Durstenfeld, MD, MAS, Division of Cardiology, University of California, San Francisco at Zuckerberg San Francisco General Hospital, 1001 Potrero Ave, Room 5G8, San Francisco, CA 94110 (matthew.durstenfeld@ucsf.edu).

Author Contributions: Dr Durstenfeld had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: Durstenfeld, Sun, Peluso, Long, Hsue.

Acquisition, analysis, or interpretation of data: Durstenfeld, Tahir, Peluso, Deeks, Aras, Grandis, Beatty, Hsue.

Drafting of the manuscript: Durstenfeld, Sun, Tahir.

Critical revision of the manuscript for important intellectual content: Tahir, Peluso, Deeks, Aras, Grandis, Long, Beatty, Hsue.

Statistical analysis: Durstenfeld, Sun, Peluso.

Obtained funding: Durstenfeld, Peluso, Grandis, Long.

Administrative, technical, or material support: Durstenfeld, Tahir, Peluso, Deeks.

Supervision: Peluso, Aras, Grandis, Beatty, Hsue.

Conflict of Interest Disclosures: Dr Beatty reported receiving a salary in 2018 and 2019 and stock from 2019 to 2021 from Apple Inc and receiving grants from the National Heart, Lung, and Blood Institute (NHLBI) outside the submitted work. Dr Hsue reported receiving honoraria from Gilead Sciences Inc and Merck & Co Inc and receiving grants from Novartis AG outside the submitted work. No other disclosures were reported.

Funding/Support: This study was funded by grant K12 HL143961 from the NHLBI.

Role of the Funder/Sponsor: The sponsor had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

References
1.
Groff  D , Sun  A , Ssentongo  AE ,  et al.  Short-term and long-term rates of postacute sequelae of SARS-CoV-2 infection: a systematic review.   JAMA Netw Open. 2021;4(10):e2128568. doi:10.1001/jamanetworkopen.2021.28568 PubMedGoogle ScholarCrossref
2.
Hirschtick  JL , Titus  AR , Slocum  E ,  et al.  Population-based estimates of post-acute sequelae of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (PASC) prevalence and characteristics.   Clin Infect Dis. 2021;73(11):2055-2064. doi:10.1093/cid/ciab408 PubMedGoogle ScholarCrossref
3.
Taquet  M , Dercon  Q , Luciano  S , Geddes  JR , Husain  M , Harrison  PJ .  Incidence, co-occurrence, and evolution of long-COVID features: a 6-month retrospective cohort study of 273 618 survivors of COVID-19.   PLoS Med. 2021;18(9):e1003773. doi:10.1371/journal.pmed.1003773 PubMedGoogle ScholarCrossref
4.
Office for National Statistics. Technical article: updated estimates of the prevalence of post-acute symptoms among people with coronavirus (COVID-19) in the UK: 26 April 2020 to 1 August 2021. September 16, 2021. Accessed April 29, 2022. https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/articles/technicalarticleupdatedestimatesoftheprevalenceofpostacutesymptomsamongpeoplewithcoronaviruscovid19intheuk/26april2020to1august2021
5.
Yomogida  K , Zhu  S , Rubino  F , Figueroa  W , Balanji  N , Holman  E .  Post-acute sequelae of SARS-CoV-2 infection among adults aged ≥18 years—Long Beach, California, April 1-December 10, 2020.   MMWR Morb Mortal Wkly Rep. 2021;70(37):1274-1277. doi:10.15585/mmwr.mm7037a2 PubMedGoogle ScholarCrossref
6.
Xie  Y , Bowe  B , Al-Aly  Z .  Burdens of post-acute sequelae of COVID-19 by severity of acute infection, demographics and health status.   Nat Commun. 2021;12(1):6571. doi:10.1038/s41467-021-26513-3 PubMedGoogle ScholarCrossref
7.
Al-Aly  Z , Bowe  B , Xie  Y .  Long COVID after breakthrough SARS-CoV-2 infection.   Nat Med. 2022;28(7):1461-1467. doi:10.1038/s41591-022-01840-0 PubMedGoogle ScholarCrossref
8.
Huang  L , Yao  Q , Gu  X ,  et al.  1-Year outcomes in hospital survivors with COVID-19: a longitudinal cohort study.   Lancet. 2021;398(10302):747-758. doi:10.1016/S0140-6736(21)01755-4 PubMedGoogle ScholarCrossref
9.
American Thoracic Society; American College of Chest Physicians.  ATS/ACCP statement on cardiopulmonary exercise testing.   Am J Respir Crit Care Med. 2003;167(2):211-277. doi:10.1164/rccm.167.2.211 PubMedGoogle ScholarCrossref
10.
Wasserman  KHJ , Sue  DY , Stringer  W , Whipp  BJ . Principles of Exercise Testing and Interpretation. 4th ed. Lippincott Williams and Wilkins; 2005.
11.
Balady  GJ , Arena  R , Sietsema  K ,  et al; American Heart Association Exercise, Cardiac Rehabilitation, and Prevention Committee of the Council on Clinical Cardiology; Council on Epidemiology and Prevention; Council on Peripheral Vascular Disease; Interdisciplinary Council on Quality of Care and Outcomes Research.  Clinician’s guide to cardiopulmonary exercise testing in adults: a scientific statement from the American Heart Association.   Circulation. 2010;122(2):191-225. doi:10.1161/CIR.0b013e3181e52e69 PubMedGoogle ScholarCrossref
12.
Chan  VL , Lam  JY , Leung  WS , Lin  AW , Chu  CM .  Exercise limitation in survivors of severe acute respiratory syndrome (SARS).   Chest. 2004;126(4):737S. doi:10.1378/chest.126.4_MeetingAbstracts.737SGoogle ScholarCrossref
13.
Patterson  AJ , Sarode  A , Al-Kindi  S ,  et al.  Evaluation of dyspnea of unknown etiology in HIV patients with cardiopulmonary exercise testing and cardiovascular magnetic resonance imaging.   J Cardiovasc Magn Reson. 2020;22(1):74. doi:10.1186/s12968-020-00664-6 PubMedGoogle ScholarCrossref
14.
Davenport  TE , Lehnen  M , Stevens  SR , VanNess  JM , Stevens  J , Snell  CR .  Chronotropic intolerance: an overlooked determinant of symptoms and activity limitation in myalgic encephalomyelitis/chronic fatigue syndrome?   Front Pediatr. 2019;7:82. doi:10.3389/fped.2019.00082 PubMedGoogle ScholarCrossref
15.
Cook  DB , VanRiper  S , Dougherty  RJ ,  et al; MCAM Study Group.  Cardiopulmonary, metabolic, and perceptual responses during exercise in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS): a multi-site clinical assessment of ME/CFS (MCAM) sub-study.   PLoS One. 2022;17(3):e0265315. doi:10.1371/journal.pone.0265315 PubMedGoogle ScholarCrossref
16.
Joseph  P , Arevalo  C , Oliveira  RKF ,  et al.  Insights from invasive cardiopulmonary exercise testing of patients with myalgic encephalomyelitis/chronic fatigue syndrome.   Chest. 2021;160(2):642-651. doi:10.1016/j.chest.2021.01.082 PubMedGoogle ScholarCrossref
17.
Malhotra  R , Bakken  K , D’Elia  E , Lewis  GD .  Cardiopulmonary exercise testing in heart failure.   JACC Heart Fail. 2016;4(8):607-616. doi:10.1016/j.jchf.2016.03.022 PubMedGoogle ScholarCrossref
18.
Levett  DZH , Jack  S , Swart  M ,  et al; Perioperative Exercise Testing and Training Society (POETTS).  Perioperative cardiopulmonary exercise testing (CPET): consensus clinical guidelines on indications, organization, conduct, and physiological interpretation.   Br J Anaesth. 2018;120(3):484-500. doi:10.1016/j.bja.2017.10.020 PubMedGoogle ScholarCrossref
19.
Baratto  C , Caravita  S , Faini  A ,  et al.  Impact of COVID-19 on exercise pathophysiology: a combined cardiopulmonary and echocardiographic exercise study.   J Appl Physiol (1985). 2021;130(5):1470-1478. doi:10.1152/japplphysiol.00710.2020 PubMedGoogle ScholarCrossref
20.
Arena  R , Faghy  MA .  Cardiopulmonary exercise testing as a vital sign in patients recovering from COVID-19.   Expert Rev Cardiovasc Ther. 2021;19(10):877-880. doi:10.1080/14779072.2021.1985466 PubMedGoogle ScholarCrossref
21.
Naeije  R , Caravita  S .  Phenotyping long COVID.   Eur Respir J. 2021;58(2):2101763. doi:10.1183/13993003.01763-2021 PubMedGoogle ScholarCrossref
22.
Soriano  JB , Murthy  S , Marshall  JC , Relan  P , Diaz  JV ; WHO Clinical Case Definition Working Group on Post-COVID-19 Condition.  A clinical case definition of post-COVID-19 condition by a Delphi consensus.   Lancet Infect Dis. 2022;22(4):e102-e107. doi:10.1016/S1473-3099(21)00703-9 PubMedGoogle ScholarCrossref
23.
Cochrane’s Quality in Prognostic Studies tool. Accessed December 16, 2021. http://methods.cochrane.org/sites/methods.cochrane.org.prognosis/files/uploads/QUIPS%20tool.pdf
24.
Balshem  H , Helfand  M , Schünemann  HJ ,  et al.  GRADE guidelines, 3: rating the quality of evidence.   J Clin Epidemiol. 2011;64(4):401-406. doi:10.1016/j.jclinepi.2010.07.015 PubMedGoogle ScholarCrossref
25.
Higgins  JPTLT , Deeks  JJ . Choosing effect measures and computing estimates of effect. In: Higgins JPT, Thomas J, Chandler J, et al, eds. Cochrane Handbook for Systematic Reviews of Interventions. Version 6.3. Updated February 2022. Accessed May 12, 2022. https://training.cochrane.org/handbook/PDF/v6.3
26.
Durstenfeld  MS , Peluso  MJ , Kaveti  P ,  et al.  Inflammation during early post-acute COVID-19 is associated with reduced exercise capacity and Long COVID symptoms after 1 year.   medRxiv. Preprint posted online June 1, 2022. doi:10.1101/2022.05.17.22275235Google Scholar
27.
Cassar  MP , Tunnicliffe  EM , Petousi  N ,  et al.  Symptom persistence despite improvement in cardiopulmonary health—insights from longitudinal CMR, CPET and lung function testing post–COVID-19.   EClinicalMedicine. 2021;41:101159. doi:10.1016/j.eclinm.2021.101159 PubMedGoogle ScholarCrossref
28.
Blumberg  Y , Edelstein  M , Jabal  KA ,  et al.  Protective effect of BNT162b2 vaccination on aerobic capacity following mild to moderate SARS-CoV-2 infection: a cross sectional study, Israel, March-December 2021.   medRxiv. Preprint posted online January 2, 2022. doi:10.1101/2021.12.30.21268538 Google Scholar
29.
Szekely  Y , Lichter  Y , Sadon  S ,  et al.  Cardiorespiratory abnormalities in patients recovering from coronavirus disease 2019.   J Am Soc Echocardiogr. 2021;34(12):1273-1284.e9. doi:10.1016/j.echo.2021.08.022 PubMedGoogle ScholarCrossref
30.
Debeaumont  D , Boujibar  F , Ferrand-Devouge  E ,  et al.  Cardiopulmonary exercise testing to assess persistent symptoms at 6 months in people with COVID-19 who survived hospitalization: a pilot study.   Phys Ther. 2021;101(6):pzab099. doi:10.1093/ptj/pzab099 PubMedGoogle ScholarCrossref
31.
Ladlow  P , O’Sullivan  O , Bennett  AN ,  et al.  The effect of medium-term recovery status after COVID-19 illness on cardiopulmonary exercise capacity in a physically active adult population.   J Appl Physiol (1985). 2022;132(6):1525-1535. doi:10.1152/japplphysiol.00138.2022 PubMedGoogle ScholarCrossref
32.
Romero-Ortuno  R , Jennings  G , Xue  F , Duggan  E , Gormley  J , Monaghan  A .  Predictors of submaximal exercise test attainment in adults reporting long COVID symptoms.   J Clin Med. 2022;11(9):2376. doi:10.3390/jcm11092376 PubMedGoogle ScholarCrossref
33.
Skjørten  I , Ankerstjerne  OAW , Trebinjac  D ,  et al.  Cardiopulmonary exercise capacity and limitations 3 months after COVID-19 hospitalisation.   Eur Respir J. 2021;58(2):2100996. doi:10.1183/13993003.00996-2021 PubMedGoogle ScholarCrossref
34.
Vonbank  K , Lehmann  A , Bernitzky  D ,  et al.  Predictors of prolonged cardiopulmonary exercise impairment after COVID-19 infection: a prospective observational study.   Front Med (Lausanne). 2021;8:773788. doi:10.3389/fmed.2021.773788 PubMedGoogle ScholarCrossref
35.
Rinaldo  RF , Mondoni  M , Parazzini  EM ,  et al.  Severity does not impact on exercise capacity in COVID-19 survivors.   Respir Med. 2021;187:106577. doi:10.1016/j.rmed.2021.106577 PubMedGoogle ScholarCrossref
36.
Ribeiro Baptista  B , d’Humières  T , Schlemmer  F ,  et al.  Identification of factors impairing exercise capacity after severe COVID-19 pulmonary infection: a 3-month follow-up of prospective COVulnerability cohort.   Respir Res. 2022;23(1):68. doi:10.1186/s12931-022-01977-z PubMedGoogle ScholarCrossref
37.
Margalit  I , Yelin  D , Sagi  M ,  et al.  Risk factors and multidimensional assessment of long COVID fatigue: a nested case-control study.   Clin Infect Dis. 2022;ciac283. doi:10.1093/cid/ciac283 PubMedGoogle ScholarCrossref
38.
Barbagelata  L , Masson  W , Iglesias  D ,  et al.  Cardiopulmonary exercise testing in patients with post–COVID-19 syndrome.   Med Clin (Engl Ed). 2022;159(1):6-11. PubMedGoogle Scholar
39.
Singh  I , Joseph  P , Heerdt  PM ,  et al.  Persistent exertional intolerance after COVID-19: insights from invasive cardiopulmonary exercise testing.   Chest. 2022;161(1):54-63. doi:10.1016/j.chest.2021.08.010 PubMedGoogle ScholarCrossref
40.
de Boer  E , Petrache  I , Goldstein  NM ,  et al.  Decreased fatty acid oxidation and altered lactate production during exercise in patients with post-acute COVID-19 syndrome.   Am J Respir Crit Care Med. 2022;205(1):126-129. doi:10.1164/rccm.202108-1903LE PubMedGoogle ScholarCrossref
41.
Mohr  A , Dannerbeck  L , Lange  TJ ,  et al.  Cardiopulmonary exercise pattern in patients with persistent dyspnoea after recovery from COVID-19.   Multidiscip Respir Med. 2021;16(1):732. doi:10.4081/mrm.2021.732 PubMedGoogle ScholarCrossref
42.
Alba  GA , Ziehr  DR , Rouvina  JN ,  et al.  Exercise performance in patients with post-acute sequelae of SARS-CoV-2 infection compared to patients with unexplained dyspnea.   EClinicalMedicine. 2021;39:101066. doi:10.1016/j.eclinm.2021.101066 PubMedGoogle ScholarCrossref
43.
Mancini  DM , Brunjes  DL , Lala  A , Trivieri  MG , Contreras  JP , Natelson  BH .  Use of cardiopulmonary stress testing for patients with unexplained dyspnea post-coronavirus disease.   JACC Heart Fail. 2021;9(12):927-937. doi:10.1016/j.jchf.2021.10.002 PubMedGoogle ScholarCrossref
44.
Brown  JT , Saigal  A , Karia  N ,  et al.  Ongoing exercise intolerance following COVID-19: a magnetic resonance-augmented cardiopulmonary exercise test study.   J Am Heart Assoc. 2022;11(9):e024207. doi:10.1161/JAHA.121.024207 PubMedGoogle ScholarCrossref
45.
Abdallah  SJ , Voduc  N , Corrales-Medina  VF ,  et al.  Symptoms, pulmonary function, and functional capacity four months after COVID-19.   Ann Am Thorac Soc. 2021;18(11):1912-1917. doi:10.1513/AnnalsATS.202012-1489RL PubMedGoogle ScholarCrossref
46.
Motiejunaite  J , Balagny  P , Arnoult  F ,  et al.  Hyperventilation as one of the mechanisms of persistent dyspnoea in SARS-CoV-2 survivors.   Eur Respir J. 2021;58(2):2101578. doi:10.1183/13993003.01578-2021 PubMedGoogle ScholarCrossref
47.
Aparisi  Á , Ybarra-Falcón  C , García-Gómez  M ,  et al.  Exercise ventilatory inefficiency in post–COVID-19 syndrome: insights from a prospective evaluation.   J Clin Med. 2021;10(12):2591. doi:10.3390/jcm10122591 PubMedGoogle ScholarCrossref
48.
Crisafulli  E , Dorelli  G , Sartori  G , Dalle Carbonare  L .  Exercise ventilatory inefficiency may be a relevant CPET-feature in COVID-19 survivors.   Int J Cardiol. 2021;343:200. doi:10.1016/j.ijcard.2021.09.026 PubMedGoogle ScholarCrossref
49.
Dorelli  G , Braggio  M , Gabbiani  D ,  et al; on behalf of the Respicovid Study Investigators.  Importance of cardiopulmonary exercise testing amongst subjects recovering from COVID-19.   Diagnostics (Basel). 2021;11(3):507. doi:10.3390/diagnostics11030507 PubMedGoogle ScholarCrossref
50.
Frésard  I , Genecand  L , Altarelli  M ,  et al.  Dysfunctional breathing diagnosed by cardiopulmonary exercise testing in “long COVID” patients with persistent dyspnoea.   BMJ Open Respir Res. 2022;9(1):e001126. doi:10.1136/bmjresp-2021-001126 PubMedGoogle ScholarCrossref
51.
von Gruenewaldt  A , Nylander  E , Hedman  K .  Classification and occurrence of an abnormal breathing pattern during cardiopulmonary exercise testing in subjects with persistent symptoms following COVID-19 disease.   Physiol Rep. 2022;10(4):e15197. doi:10.14814/phy2.15197 PubMedGoogle ScholarCrossref
52.
Liu  M , Lv  F , Huang  Y , Xiao  K .  Follow-up study of the chest CT characteristics of COVID-19 survivors seven months after recovery.   Front Med (Lausanne). 2021;8:636298. doi:10.3389/fmed.2021.636298 PubMedGoogle ScholarCrossref
53.
Kersten  J , Baumhardt  M , Hartveg  P ,  et al.  Long COVID: distinction between organ damage and deconditioning.   J Clin Med. 2021;10(17):3782. doi:10.3390/jcm10173782 PubMedGoogle ScholarCrossref
54.
Evers  G , Schulze  AB , Osiaevi  I ,  et al.  Sustained impairment in cardiopulmonary exercise capacity testing in patients after COVID-19: a single center experience.   Can Respir J. 2022;2022:2466789. doi:10.1155/2022/2466789 PubMedGoogle ScholarCrossref
55.
Ambrosino  P , Parrella  P , Formisano  R ,  et al.  Cardiopulmonary exercise performance and endothelial function in convalescent COVID-19 patients.   J Clin Med. 2022;11(5):1452. doi:10.3390/jcm11051452 PubMedGoogle ScholarCrossref
56.
Pleguezuelos  E , Del Carmen  A , Llorensi  G ,  et al.  Severe loss of mechanical efficiency in COVID-19 patients.   J Cachexia Sarcopenia Muscle. 2021;12(4):1056-1063. doi:10.1002/jcsm.12739 PubMedGoogle ScholarCrossref
57.
Moulson  N , Gustus  SK , Scirica  C ,  et al.  Diagnostic evaluation and cardiopulmonary exercise test findings in young athletes with persistent symptoms following COVID-19.   Br J Sports Med. Published online May 18, 2022. doi:10.1136/bjsports-2021-105157PubMedGoogle ScholarCrossref
58.
Schaeffer  MR , Cowan  J , Milne  KM ,  et al.  Cardiorespiratory physiology, exertional symptoms, and psychological burden in post-COVID-19 fatigue.   Respir Physiol Neurobiol. 2022;302:103898. doi:10.1016/j.resp.2022.103898 PubMedGoogle ScholarCrossref
59.
Borrego Rodriguez  J , Berenguel Senen  A , De Cabo Porras  C ,  et al.  Cardiopulmonary exercise test in patients with persistent dyspnea after COVID-19 disease.   Eur Heart J. 2021;42(suppl 1):ehab724.2675. doi:10.1093/eurheartj/ehab724.2675 Google ScholarCrossref
60.
Raman  B , Cassar  MP , Tunnicliffe  EM ,  et al.  Medium-term effects of SARS-CoV-2 infection on multiple vital organs, exercise capacity, cognition, quality of life and mental health, post-hospital discharge.   EClinicalMedicine. 2021;31:100683. doi:10.1016/j.eclinm.2020.100683 PubMedGoogle ScholarCrossref
61.
Godinho  L , Freeman  A .  Cardiopulmonary exercise testing to evaluate exercise limitation and shortness of breath in long COVID.   Thorax. 2021;76(suppl 2):A19-A20. Google Scholar
62.
Jahn  K , Sava  M , Sommer  G ,  et al.  Exercise capacity impairment after COVID-19 pneumonia is mainly caused by deconditioning.   Eur Respir J. 2021;59(1):2101136. doi:10.1183/13993003.01136-2021 PubMedGoogle ScholarCrossref
63.
Johnsen  S , Sattler  SM , Miskowiak  KW ,  et al.  Descriptive analysis of long COVID sequelae identified in a multidisciplinary clinic serving hospitalised and non-hospitalised patients.   ERJ Open Res. 2021;7(3):00205-02021. doi:10.1183/23120541.00205-2021 PubMedGoogle ScholarCrossref
64.
Parkes  E , Shakespeare  J , Robbins  T , Kyrou  I , Randeva  H , Ali  A .  Utility of cardiopulmonary exercise testing (CPET) in the post–COVID-19 context: retrospective analysis of a single centre experience.   Research Square. Preprint posted online May 25, 2021. doi:10.21203/rs.3.rs-537361/v1 Google Scholar
65.
Rinaldo  RF , Mondoni  M , Parazzini  EM ,  et al.  Deconditioning as main mechanism of impaired exercise response in COVID-19 survivors.   Eur Respir J. 2021;58(2):2100870. doi:10.1183/13993003.00870-2021 PubMedGoogle ScholarCrossref
66.
Vannini  L , Quijada-Fumero  A , Martín  MPR , Pina  NC , Afonso  JSH .  Cardiopulmonary exercise test with stress echocardiography in COVID-19 survivors at 6 months follow-up.   Eur J Intern Med. 2021;94:101-104. doi:10.1016/j.ejim.2021.10.004 PubMedGoogle ScholarCrossref
67.
Barbara  C , Clavario  P , De Marzo  V ,  et al.  Effects of exercise rehabilitation in patients with long coronavirus disease 2019.   Eur J Prev Cardiol. 2022;29(7):e258-e260. doi:10.1093/eurjpc/zwac019 PubMedGoogle ScholarCrossref
68.
Clavario  P , De Marzo  V , Lotti  R ,  et al.  Cardiopulmonary exercise testing in COVID-19 patients at 3 months follow-up.   Int J Cardiol. 2021;340:113-118. doi:10.1016/j.ijcard.2021.07.033 PubMedGoogle ScholarCrossref
69.
Ladlow  P , O’Sullivan  O , Houston  A ,  et al.  Dysautonomia following COVID-19 is not associated with subjective limitations or symptoms but is associated with objective functional limitations.   Heart Rhythm. 2022;19(4):613-620. doi:10.1016/j.hrthm.2021.12.005 PubMedGoogle ScholarCrossref
70.
Peluso  MJ , Kelly  JD , Lu  S ,  et al.  Persistence, magnitude, and patterns of postacute symptoms and quality of life following onset of SARS-CoV-2 infection: cohort description and approaches for measurement.   Open Forum Infect Dis. 2021;9(2):ofab640. doi:10.1093/ofid/ofab640 PubMedGoogle ScholarCrossref
71.
Sudre  CH , Murray  B , Varsavsky  T ,  et al.  Attributes and predictors of long COVID.   Nat Med. 2021;27(4):626-631. doi:10.1038/s41591-021-01292-y PubMedGoogle ScholarCrossref
72.
Crameri  GAG , Bielecki  M , Züst  R , Buehrer  TW , Stanga  Z , Deuel  JW .  Reduced maximal aerobic capacity after COVID-19 in young adult recruits, Switzerland, May 2020.   Euro Surveill. 2020;25(36):2001542. doi:10.2807/1560-7917.ES.2020.25.36.2001542 PubMedGoogle ScholarCrossref
73.
Parpa  K , Michaelides  M .  Aerobic capacity of professional soccer players before and after COVID-19 infection.   Sci Rep. 2022;12(1):11850. doi:10.1038/s41598-022-16031-7 PubMedGoogle ScholarCrossref
74.
Novak  P , Mukerji  SS , Alabsi  HS ,  et al.  Multisystem involvement in post-acute sequelae of coronavirus disease 19.   Ann Neurol. 2022;91(3):367-379. doi:10.1002/ana.26286 PubMedGoogle ScholarCrossref
75.
Oaklander  AL , Mills  AJ , Kelley  M ,  et al.  Peripheral neuropathy evaluations of patients with prolonged long COVID.   Neurol Neuroimmunol Neuroinflamm. 2022;9(3):e1146. doi:10.1212/NXI.0000000000001146 PubMedGoogle ScholarCrossref
76.
Davis  HE , Assaf  GS , McCorkell  L ,  et al.  Characterizing long COVID in an international cohort: 7 months of symptoms and their impact.   EClinicalMedicine. 2021;38:101019. doi:10.1016/j.eclinm.2021.101019 PubMedGoogle ScholarCrossref
77.
Wright  J , Astill  SL , Sivan  M .  The relationship between physical activity and long COVID: a cross-sectional study.   Int J Environ Res Public Health. 2022;19(9):5093. doi:10.3390/ijerph19095093 PubMedGoogle ScholarCrossref
Close
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
Close
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close

Name Your Search

Save Search
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Close
Close

Lookup An Activity

or

My Saved Searches

You currently have no searches saved.

Close

My Saved Courses

You currently have no courses saved.

Close