[Skip to Content]
[Skip to Content Landing]

Treatment of HypertensionA Review

To identify the key insights or developments described in this article
1 Credit CME
Abstract

Importance  Hypertension, defined as persistent systolic blood pressure (SBP) at least 130 mm Hg or diastolic BP (DBP) at least 80 mm Hg, affects approximately 116 million adults in the US and more than 1 billion adults worldwide. Hypertension is associated with increased risk of cardiovascular disease (CVD) events (coronary heart disease, heart failure, and stroke) and death.

Observations  First-line therapy for hypertension is lifestyle modification, including weight loss, healthy dietary pattern that includes low sodium and high potassium intake, physical activity, and moderation or elimination of alcohol consumption. The BP-lowering effects of individual lifestyle components are partially additive and enhance the efficacy of pharmacologic therapy. The decision to initiate antihypertensive medication should be based on the level of BP and the presence of high atherosclerotic CVD risk. First-line drug therapy for hypertension consists of a thiazide or thiazidelike diuretic such as hydrochlorothiazide or chlorthalidone, an angiotensin-converting enzyme inhibitor or angiotensin receptor blocker such as enalapril or candesartan, and a calcium channel blocker such as amlodipine and should be titrated according to office and home SBP/DBP levels to achieve in most people an SBP/DBP target (<130/80 mm Hg for adults <65 years and SBP <130 mm Hg in adults ≥65 years). Randomized clinical trials have established the efficacy of BP lowering to reduce the risk of CVD morbidity and mortality. An SBP reduction of 10 mm Hg decreases risk of CVD events by approximately 20% to 30%. Despite the benefits of BP control, only 44% of US adults with hypertension have their SBP/DBP controlled to less than 140/90 mm Hg.

Conclusions and Relevance  Hypertension affects approximately 116 million adults in the US and more than 1 billion adults worldwide and is a leading cause of CVD morbidity and mortality. First-line therapy for hypertension is lifestyle modification, consisting of weight loss, dietary sodium reduction and potassium supplementation, healthy dietary pattern, physical activity, and limited alcohol consumption. When drug therapy is required, first-line therapies are thiazide or thiazidelike diuretics, angiotensin-converting enzyme inhibitor or angiotensin receptor blockers, and calcium channel blockers.

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 Credit(s)™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

CME Disclosure Statement: Unless noted, all individuals in control of content reported no relevant financial relationships. If applicable, all relevant financial relationships have been mitigated.

Article Information

Corresponding Author: Robert M. Carey, MD, University of Virginia Health System, PO Box 801414, Charlottesville, VA 22908-1414 (rmc4c@virginia.edu).

Accepted for Publication: October 4, 2022.

Author Contributions: Dr Carey had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: All authors.

Acquisition, analysis, or interpretation of data: Carey.

Drafting of the manuscript: All authors.

Critical revision of the manuscript for important intellectual content: All authors.

Supervision: Carey.

Conflict of Interest Disclosures: Dr Carey reported receiving grants from the National Institutes of Health (NIH) during the conduct of this work; serving as vice chair of the 2017 ACC/AHA High Blood Pressure Guideline Writing Committee; serving as chair of the AHA Scientific Statement on Resistant Hypertension; and serving as cochair of the Endocrine Society Clinical Practice Guideline on Primary Aldosteronism Panel. Dr Whelton reported serving as chair of the SPRINT Steering Committee and the 2017 ACC/AHA High Blood Pressure Guideline Writing Committee and reported receiving grants from the National Institutes of Health. Dr Moran reported receiving grants from the National Institutes of Health. No other disclosures were reported.

References
1.
Tsao  CW , Aday  AW , Almarzooq  ZI ,  et al.  Heart disease and stroke statistics–2022 update: a report from the American Heart Association.   Circulation. 2022;145(8):e153-e639. doi:10.1161/CIR.0000000000001052PubMedGoogle ScholarCrossref
2.
Whelton  PK , Carey  RM , Aronow  WS ,  et al.  2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines.   Hypertension. 2018;71(6):e13-e115. doi:10.1161/HYP.0000000000000065PubMedGoogle ScholarCrossref
3.
Ostchega  Y , Fryar  CD , Nwankwo  T , Nguyen  DT . Hypertension prevalence among adults aged 18 and over: United States, 2017-2018. NCHS Data Brief. 2020;(364):1-8.
4.
Chobufo  MD , Gayam  V , Soluny  J ,  et al.  Prevalence and control rates of hypertension in the USA: 2017-2018.   Int J Cardiol Hypertens. 2020;6:100044. doi:10.1016/j.ijchy.2020.100044PubMedGoogle ScholarCrossref
5.
Patel  SA , Winkel  M , Ali  MK , Narayan  KM , Mehta  NK .  Cardiovascular mortality associated with 5 leading risk factors: national and state preventable fractions estimated from survey data.   Ann Intern Med. 2015;163(4):245-253. doi:10.7326/M14-1753PubMedGoogle ScholarCrossref
6.
Ettehad  D , Emdin  CA , Kiran  A ,  et al.  Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and meta-analysis.   Lancet. 2016;387(10022):957-967. doi:10.1016/S0140-6736(15)01225-8PubMedGoogle ScholarCrossref
7.
Bundy  JD , Li  C , Stuchlik  P ,  et al.  Systolic blood pressure reduction and risk of cardiovascular disease and mortality: a systematic review and network meta-analysis.   JAMA Cardiol. 2017;2(7):775-781. doi:10.1001/jamacardio.2017.1421PubMedGoogle ScholarCrossref
8.
Muntner  P , Hardy  ST , Fine  LJ ,  et al.  Trends in blood pressure control among US adults with hypertension: 1999-2000 to 2017-2018.   JAMA. 2020;324(12):1190-1200. doi:10.1001/jama.2020.14545PubMedGoogle ScholarCrossref
9.
Poorolajal  J , Hooshmand  E , Bahrami  M , Ameri  P .  How much excess weight loss can reduce the risk of hypertension?   J Public Health (Oxf). 2017;39(3):e95-e102. doi:10.1093/pubmed/fdw077PubMedGoogle ScholarCrossref
10.
Fryar  CD , Carroll  MD , Afful  J . Prevalence of overweight, obesity and severe obesity among adults aged 20 and over: United States, 1960-1962 through 2017-2018: NCHS Health E-Stats. 2020. Accessed January 15, 2022. https://www.cdc.gov/nchs/nhanes/analyticguidelines.aspx
11.
Neter  JE , Stam  BE , Kok  FJ , Grobbee  DE , Geleijnse  JM .  Influence of weight reduction on blood pressure: a meta-analysis of randomized controlled trials.   Hypertension. 2003;42(5):878-884. doi:10.1161/01.HYP.0000094221.86888.AEPubMedGoogle ScholarCrossref
12.
Zhang  Z , Cogswell  ME , Gillespie  C ,  et al.  Association between usual sodium and potassium intake and blood pressure and hypertension among US adults: NHANES 2005-2010.   PLoS One. 2013;8(10):e75289. doi:10.1371/journal.pone.0075289PubMedGoogle ScholarCrossref
13.
He  FJ , Li  J , Macgregor  GA .  Effect of longer term modest salt reduction on blood pressure: Cochrane systematic review and meta-analysis of randomised trials.   BMJ. 2013;346:f1325. doi:10.1136/bmj.f1325PubMedGoogle ScholarCrossref
14.
Stamler  J .  The INTERSALT study: background, methods, findings, and implications.   Am J Clin Nutr. 1997;65(2)(suppl):626S-642S. doi:10.1093/ajcn/65.2.626SPubMedGoogle ScholarCrossref
15.
Filippini  T , Malavolti  M , Whelton  PK , Naska  A , Orsini  N , Vinceti  M .  Blood pressure effects of sodium reduction: dose-response meta-analysis of experimental studies.   Circulation. 2021;143(16):1542-1567. doi:10.1161/CIRCULATIONAHA.120.050371PubMedGoogle ScholarCrossref
16.
Filippini  T , Violi  F , D’Amico  R , Vinceti  M .  The effect of potassium supplementation on blood pressure in hypertensive subjects: a systematic review and meta-analysis.   Int J Cardiol. 2017;230:127-135. doi:10.1016/j.ijcard.2016.12.048PubMedGoogle ScholarCrossref
17.
Filippini  T , Naska  A , Kasdagli  MI ,  et al.  Potassium intake and blood pressure: a dose-response meta-analysis of randomized controlled trials.   J Am Heart Assoc. 2020;9(12):e015719. doi:10.1161/JAHA.119.015719PubMedGoogle ScholarCrossref
18.
Appel  LJ , Moore  TJ , Obarzanek  E ,  et al; DASH Collaborative Research Group.  A clinical trial of the effects of dietary patterns on blood pressure.   N Engl J Med. 1997;336(16):1117-1124. doi:10.1056/NEJM199704173361601PubMedGoogle ScholarCrossref
19.
Appel  LJ , Champagne  CM , Harsha  DW ,  et al; Writing Group of the PREMIER Collaborative Research Group.  Effects of comprehensive lifestyle modification on blood pressure control: main results of the PREMIER clinical trial.   JAMA. 2003;289(16):2083-2093. doi:10.1001/jama.289.16.2083PubMedGoogle ScholarCrossref
20.
Liu  X , Zhang  D , Liu  Y ,  et al.  Dose-response association between physical activity and incident hypertension: a systematic review and meta-analysis of cohort studies.   Hypertension. 2017;69(5):813-820. doi:10.1161/HYPERTENSIONAHA.116.08994PubMedGoogle ScholarCrossref
21.
Naci  H , Salcher-Konrad  M , Dias  S ,  et al.  How does exercise treatment compare with antihypertensive medications? a network meta-analysis of 391 randomised controlled trials assessing exercise and medication effects on systolic blood pressure.   Br J Sports Med. 2019;53(14):859-869. doi:10.1136/bjsports-2018-099921PubMedGoogle ScholarCrossref
22.
Klatsky  AL , Gunderson  E .  Alcohol and hypertension: a review.   J Am Soc Hypertens. 2008;2(5):307-317. doi:10.1016/j.jash.2008.03.010PubMedGoogle ScholarCrossref
23.
Roerecke  M , Kaczorowski  J , Tobe  SW , Gmel  G , Hasan  OSM , Rehm  J .  The effect of a reduction in alcohol consumption on blood pressure: a systematic review and meta-analysis.   Lancet Public Health. 2017;2(2):e108-e120. doi:10.1016/S2468-2667(17)30003-8PubMedGoogle ScholarCrossref
24.
Lichtenstein  AH , Appel  LJ , Vadiveloo  M ,  et al.  2021 Dietary guidance to improve cardiovascular health: a scientific statement from the American Heart Association.   Circulation. 2021;144(23):e472-e487. doi:10.1161/CIR.0000000000001031PubMedGoogle ScholarCrossref
25.
Whelton  PK , Appel  LJ , Espeland  MA ,  et al; TONE Collaborative Research Group.  Sodium reduction and weight loss in the treatment of hypertension in older persons: a randomized controlled trial of nonpharmacologic interventions in the elderly (TONE).   JAMA. 1998;279(11):839-846. doi:10.1001/jama.279.11.839PubMedGoogle ScholarCrossref
26.
Sacks  FM , Svetkey  LP , Vollmer  WM ,  et al; DASH-Sodium Collaborative Research Group.  Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet.   N Engl J Med. 2001;344(1):3-10. doi:10.1056/NEJM200101043440101PubMedGoogle ScholarCrossref
27.
Hall  ME , Cohen  JB , Ard  JD ,  et al; American Heart Association Council on Hypertension; Council on Arteriosclerosis, Thrombosis and Vascular Biology; Council on Lifestyle and Cardiometabolic Health; Stroke Council.  Weight-loss strategies for prevention and treatment of hypertension: a scientific statement from the American Heart Association.   Hypertension. 2021;78(5):e38-e50. doi:10.1161/HYP.0000000000000202PubMedGoogle ScholarCrossref
28.
Arterburn  DE , Telem  DA , Kushner  RF , Courcoulas  AP .  Benefits and risks of bariatric surgery in adults: a review.   JAMA. 2020;324(9):879-887. doi:10.1001/jama.2020.12567PubMedGoogle ScholarCrossref
29.
 The effects of nonpharmacologic interventions on blood pressure of persons with high normal levels: results of the Trials of Hypertension Prevention, phase I.   JAMA. 1992;267(9):1213-1220. doi:10.1001/jama.1992.03480090061028PubMedGoogle ScholarCrossref
30.
Trials of Hypertension Prevention Collaborative Research Group.  Effects of weight loss and sodium reduction intervention on blood pressure and hypertension incidence in overweight people with high-normal blood pressure: the Trials of Hypertension Prevention, phase II.   Arch Intern Med. 1997;157(6):657-667. doi:10.1001/archinte.1997.00440270105009PubMedGoogle ScholarCrossref
31.
Neal  B , Wu  Y , Feng  X ,  et al.  Effect of salt substitution on cardiovascular events and death.   N Engl J Med. 2021;385(12):1067-1077. doi:10.1056/NEJMoa2105675PubMedGoogle ScholarCrossref
32.
Whelton  PK , He  J , Cutler  JA ,  et al.  Effects of oral potassium on blood pressure: meta-analysis of randomized controlled clinical trials.   JAMA. 1997;277(20):1624-1632. doi:10.1001/jama.1997.03540440058033PubMedGoogle ScholarCrossref
33.
Pescatello  LS , Buchner  DM , Jakicic  JM ,  et al; 2018 Physical Activity Guidelines Advisory Committee.  Physical activity to prevent and treat hypertension: a systematic review.   Med Sci Sports Exerc. 2019;51(6):1314-1323. doi:10.1249/MSS.0000000000001943PubMedGoogle ScholarCrossref
34.
Börjesson  M , Onerup  A , Lundqvist  S , Dahlöf  B .  Physical activity and exercise lower blood pressure in individuals with hypertension: narrative review of 27 RCTs.   Br J Sports Med. 2016;50(6):356-361. doi:10.1136/bjsports-2015-095786PubMedGoogle ScholarCrossref
35.
Fuchs  FD , Chambless  LE .  Is the cardioprotective effect of alcohol real?   Alcohol. 2007;41(6):399-402. doi:10.1016/j.alcohol.2007.05.004PubMedGoogle ScholarCrossref
36.
Lewington  S , Clarke  R , Qizilbash  N , Peto  R , Collins  R ; Prospective Studies Collaboration.  Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies.   Lancet. 2002;360(9349):1903-1913. doi:10.1016/S0140-6736(02)11911-8PubMedGoogle ScholarCrossref
37.
Rapsomaniki  E , Timmis  A , George  J ,  et al.  Blood pressure and incidence of twelve cardiovascular diseases: lifetime risks, healthy life-years lost, and age-specific associations in 1.25 million people.   Lancet. 2014;383(9932):1899-1911. doi:10.1016/S0140-6736(14)60685-1PubMedGoogle ScholarCrossref
38.
Whelton  SP , McEvoy  JW , Shaw  L ,  et al.  Association of normal systolic blood pressure level with cardiovascular disease in the absence of risk factors.   JAMA Cardiol. 2020;5(9):1011-1018. doi:10.1001/jamacardio.2020.1731PubMedGoogle ScholarCrossref
39.
Muntner  P , Whelton  PK .  Using predicted cardiovascular disease risk in conjunction with blood pressure to guide antihypertensive medication treatment.   J Am Coll Cardiol. 2017;69(19):2446-2456. doi:10.1016/j.jacc.2017.02.066PubMedGoogle ScholarCrossref
40.
Blood Pressure Lowering Treatment Trialists’ Collaboration.  Blood pressure–lowering treatment based on cardiovascular risk: a meta-analysis of individual patient data.   Lancet. 2014;384(9943):591-598. doi:10.1016/S0140-6736(14)61212-5PubMedGoogle ScholarCrossref
41.
Herrett  E , Gadd  S , Jackson  R ,  et al.  Eligibility and subsequent burden of cardiovascular disease of four strategies for blood pressure–lowering treatment: a retrospective cohort study.   Lancet. 2019;394(10199):663-671. doi:10.1016/S0140-6736(19)31359-5PubMedGoogle ScholarCrossref
42.
Blood Pressure Lowering Treatment Trialists’ Collaboration.  Pharmacological blood pressure lowering for primary and secondary prevention of cardiovascular disease across different levels of blood pressure: an individual participant-level data meta-analysis.   Lancet. 2021;397(10285):1625-1636. doi:10.1016/S0140-6736(21)00590-0PubMedGoogle ScholarCrossref
43.
Jackson  R , Wells  S , Rodgers  A .  Will screening individuals at high risk of cardiovascular events deliver large benefits? yes.   BMJ. 2008;337:a1371. doi:10.1136/bmj.a1371PubMedGoogle ScholarCrossref
44.
Whelton  PK , Campbell  NRC , Lackland  DT ,  et al.  Strategies for prevention of cardiovascular disease in adults with hypertension.   J Clin Hypertens (Greenwich). 2020;22(2):132-134. doi:10.1111/jch.13797PubMedGoogle ScholarCrossref
45.
Capewell  S .  Will screening individuals at high risk of cardiovascular events deliver large benefits? no.   BMJ. 2008;337:a1395. doi:10.1136/bmj.a1395PubMedGoogle ScholarCrossref
46.
American College of Cardiology. ASCVD risk estimator plus. Accessed February 7, 2022. https://tools.acc.org/ascvd-risk-estimator-plus/#!/calculate/estimate/
47.
Jaeger  BC , Sakhuja  S , Hardy  ST ,  et al.  Predicted cardiovascular risk for United States adults with diabetes, chronic kidney disease, and at least 65 years of age.   J Hypertens. 2022;40(1):94-101. doi:10.1097/HJH.0000000000002982PubMedGoogle ScholarCrossref
48.
Wright  JT  Jr , Williamson  JD , Whelton  PK ,  et al; SPRINT Research Group.  A randomized trial of intensive versus standard blood-pressure control.   N Engl J Med. 2015;373(22):2103-2116. doi:10.1056/NEJMoa1511939PubMedGoogle ScholarCrossref
49.
Lewis  CE , Fine  LJ , Beddhu  S ,  et al; SPRINT Research Group.  Final report of a trial of intensive versus standard blood-pressure control.   N Engl J Med. 2021;384(20):1921-1930. doi:10.1056/NEJMoa1901281PubMedGoogle ScholarCrossref
50.
Zhang  W , Zhang  S , Deng  Y ,  et al; STEP Study Group.  Trial of intensive blood-pressure control in older patients with hypertension.   N Engl J Med. 2021;385(14):1268-1279. doi:10.1056/NEJMoa2111437PubMedGoogle ScholarCrossref
51.
ACCORD Study Group.  Cushman WC, Evans GW, Byington RP. Effects of intensive blood-pressure control in type 2 diabetes mellitus.   N Engl J Med. 2010;362(17):1575-1585. doi:10.1056/NEJMoa1001286Google ScholarCrossref
52.
Benavente  OR , Coffey  CS , Conwit  R ; SPS3 Study Group.  Blood-pressure targets in patients with recent lacunar stroke: the SPS3 randomised trial.   Lancet. 2013;382(9891):507-515. doi:10.1016/S0140-6736(13)60852-1Google ScholarCrossref
53.
Williamson  JD , Supiano  MA , Applegate  WB ,  et al; SPRINT Research Group.  Intensive vs standard blood pressure control and cardiovascular disease outcomes in adults aged ≥75 years: a randomized clinical trial.   JAMA. 2016;315(24):2673-2682. doi:10.1001/jama.2016.7050PubMedGoogle ScholarCrossref
54.
Juraschek  SP , Taylor  AA , Wright  JT  Jr ,  et al; SPRINT Research Group.  Orthostatic hypotension, cardiovascular outcomes, and adverse events: results from SPRINT.   Hypertension. 2020;75(3):660-667. doi:10.1161/HYPERTENSIONAHA.119.14309PubMedGoogle ScholarCrossref
55.
Juraschek  SP , Hu  JR , Cluett  JL ,  et al.  Effects of intensive blood pressure treatment on orthostatic hypotension: a systematic review and individual participant-based meta-analysis.   Ann Intern Med. 2021;174(1):58-68. doi:10.7326/M20-4298PubMedGoogle ScholarCrossref
56.
Yano  Y , Reis  JP , Colangelo  LA ,  et al.  Association of blood pressure classification in young adults using the 2017 American College of Cardiology/American Heart Association blood pressure guideline with cardiovascular events later in life.   JAMA. 2018;320(17):1774-1782. doi:10.1001/jama.2018.13551PubMedGoogle ScholarCrossref
57.
Lee  H , Yano  Y , Cho  SMJ ,  et al.  Cardiovascular risk of isolated systolic or diastolic hypertension in young adults.   Circulation. 2020;141(22):1778-1786. doi:10.1161/CIRCULATIONAHA.119.044838PubMedGoogle ScholarCrossref
58.
Jones  DW , Whelton  PK , Allen  N ,  et al; American Heart Association Council on Hypertension; Council on the Kidney in Cardiovascular Disease; Council on Arteriosclerosis, Thrombosis and Vascular Biology; Council on Cardiovascular Radiology and Intervention; Council on Lifelong Congenital Heart Disease and Heart Health in the Young; Stroke Council.  Management of stage 1 hypertension in adults with a low 10-year risk for cardiovascular disease: filling a guidance gap: a scientific statement from the American Heart Association.   Hypertension. 2021;77(6):e58-e67. doi:10.1161/HYP.0000000000000195PubMedGoogle ScholarCrossref
59.
DailyMed. National Library of Medicine. Accessed January 15, 2022. http://dailymed.nlm.nih.gov/dailymed/index.cfm
60.
Manisty  CH , Hughes  AD .  Meta-analysis of the comparative effects of different classes of antihypertensive agents on brachial and central systolic blood pressure, and augmentation index.   Br J Clin Pharmacol. 2013;75(1):79-92. doi:10.1111/j.1365-2125.2012.04342.xPubMedGoogle ScholarCrossref
61.
Williams  B , Mancia  G , Spiering  W ,  et al; ESC Scientific Document Group.  2018 ESC/ESH guidelines for the management of arterial hypertension.   Eur Heart J. 2018;39(33):3021-3104. doi:10.1093/eurheartj/ehy339PubMedGoogle ScholarCrossref
62.
Sakima  A , Satonaka  H , Nishida  N , Yatsu  K , Arima  H .  Optimal blood pressure targets for patients with hypertension: a systematic review and meta-analysis.   Hypertens Res. 2019;42(4):483-495. doi:10.1038/s41440-018-0123-4PubMedGoogle ScholarCrossref
63.
Kitagawa  K , Yamamoto  Y , Arima  H ,  et al; Recurrent Stroke Prevention Clinical Outcome (RESPECT) Study Group.  Effect of standard vs intensive blood pressure control on the risk of recurrent stroke: a randomized clinical trial and meta-analysis.   JAMA Neurol. 2019;76(11):1309-1318. doi:10.1001/jamaneurol.2019.2167PubMedGoogle ScholarCrossref
64.
Rocco  MV , Comeau  ME , Marion  MC , Freedman  BI , Hawfield  AT , Langefeld  CD ; SPRINT Research Group.  Effects of intensive systolic blood pressure control on all-cause hospitalizations.   Hypertension. 2020;76(6):1717-1724. doi:10.1161/HYPERTENSIONAHA.120.15868PubMedGoogle ScholarCrossref
65.
Carey  RM , Whelton  PK .  The evidence for the universal blood pressure goal of <130/80 mm Hg is strong: controversies in hypertension—pro side of the argument.   Hypertension. 2020;76(5):1384-1390. doi:10.1161/HYPERTENSIONAHA.120.14647PubMedGoogle ScholarCrossref
66.
de Boer  IH , Bangalore  S , Benetos  A ,  et al.  Diabetes and hypertension: a position statement by the American Diabetes Association.   Diabetes Care. 2017;40(9):1273-1284. doi:10.2337/dci17-0026PubMedGoogle ScholarCrossref
67.
American Diabetes Association.  10. Cardiovascular disease and risk management: standards of medical care in diabetes-2021.   Diabetes Care. 2021;44(9)(suppl 1):S125-S150. doi:10.2337/dc21-ad09aPubMedGoogle ScholarCrossref
68.
Kidney Disease: Improving Global Outcomes (KDIGO) Blood Pressure Work Group.  KDIGO 2021 clinical practice guideline for the management of blood pressure in chronic kidney disease.   Kidney Int. 2021;99(3S):S1-S87. doi:10.1016/j.kint.2020.11.003PubMedGoogle ScholarCrossref
69.
Carey  RM , Muntner  P , Bosworth  HB , Whelton  PK .  Prevention and control of hypertension: JACC health promotion series.   J Am Coll Cardiol. 2018;72(11):1278-1293. doi:10.1016/j.jacc.2018.07.008PubMedGoogle ScholarCrossref
70.
Carey  RM , Wright  JT  Jr , Taler  SJ , Whelton  PK .  Guideline-driven management of hypertension: an evidence-based update.   Circ Res. 2021;128(7):827-846. doi:10.1161/CIRCRESAHA.121.318083PubMedGoogle ScholarCrossref
71.
Bello  NA , Schwartz  JE , Kronish  IM ,  et al.  Number of measurements needed to obtain a reliable estimate of home blood pressure: results from the Improving the Detection of Hypertension Study.   J Am Heart Assoc. 2018;7(20):e008658. doi:10.1161/JAHA.118.008658PubMedGoogle ScholarCrossref
72.
Muntner  P , Shimbo  D , Carey  RM ,  et al.  Measurement of blood pressure in humans: a scientific statement from the American Heart Association.   Hypertension. 2019;73(5):e35-e66. doi:10.1161/HYP.0000000000000087PubMedGoogle ScholarCrossref
73.
Omboni  S , McManus  RJ , Bosworth  HB ,  et al.  Evidence and recommendations on the use of telemedicine for the management of arterial hypertension: an international expert position paper.   Hypertension. 2020;76(5):1368-1383. doi:10.1161/HYPERTENSIONAHA.120.15873PubMedGoogle ScholarCrossref
74.
Burnier  M , Egan  BM .  Adherence in hypertension.   Circ Res. 2019;124(7):1124-1140. doi:10.1161/CIRCRESAHA.118.313220PubMedGoogle ScholarCrossref
75.
Chow  CK , Atkins  ER , Hillis  GS ,  et al; QUARTET Investigators.  Initial treatment with a single pill containing quadruple combination of quarter doses of blood pressure medicines versus standard dose monotherapy in patients with hypertension (QUARTET): a phase 3, randomised, double-blind, active-controlled trial.   Lancet. 2021;398(10305):1043-1052. doi:10.1016/S0140-6736(21)01922-XPubMedGoogle ScholarCrossref
76.
Carter  BL , Ernst  ME , Cohen  JD .  Hydrochlorothiazide versus chlorthalidone: evidence supporting their interchangeability.   Hypertension. 2004;43(1):4-9. doi:10.1161/01.HYP.0000103632.19915.0EPubMedGoogle ScholarCrossref
77.
Peterzan  MA , Hardy  R , Chaturvedi  N , Hughes  AD .  Meta-analysis of dose-response relationships for hydrochlorothiazide, chlorthalidone, and bendroflumethiazide on blood pressure, serum potassium, and urate.   Hypertension. 2012;59(6):1104-1109. doi:10.1161/HYPERTENSIONAHA.111.190637PubMedGoogle ScholarCrossref
78.
Bakris  GL , Sica  D , White  WB ,  et al  Antihypertensive efficacy of hydrochlorothiazide vs chlorthalidone combined with azilsartan medoxomil.   Am J Med. 2012;125(12):1229e1-1229e10. doi:10.1016/j.amjmed.2012.05.023.Google ScholarCrossref
79.
Chen  P , Chaugai  S , Zhao  F , Wang  DW .  Cardioprotective effect of thiazide-like diuretics: a meta-analysis.   Am J Hypertens. 2015;28(12):1453-1463. doi:10.1093/ajh/hpv050PubMedGoogle ScholarCrossref
80.
Carey  RM , Calhoun  DA , Bakris  GL ,  et al; American Heart Association Professional/Public Education and Publications Committee of the Council on Hypertension; Council on Cardiovascular and Stroke Nursing; Council on Clinical Cardiology; Council on Genomic and Precision Medicine; Council on Peripheral Vascular Disease; Council on Quality of Care and Outcomes Research; Stroke Council.  Resistant hypertension: detection, evaluation, and management: a scientific statement of the American Heart Association.   Hypertension. 2018;72(5):e53-e90. doi:10.1161/HYP.0000000000000084PubMedGoogle ScholarCrossref
81.
HEARTS in the Americas: blood pressure measurement. PAHO. Accessed April 11, 2022. https://www.paho.org/en/hearts-americas/hearts-americas-blood-pressure-measurement
82.
US blood pressure validated device listing. Accessed April 13, 2022. https://www.validatebp.org/
83.
Keisler-Starkey  K , Bunch L. Health Insurance Coverage in the United States: 2020. US Government Publishing Office; 2021.
84.
Healthy People 2020: access to health services. US Department of Health and Human Services. Updated December 28, 2021. Accessed January 1, 2022. https://www.cdc.gov/nchs/healthy_people/hp2020.htm https://www.healthypeople.gov/2020/leading-health-indicators/2020-lhi-topics/Access-to-Health-Services/data - primary-care
85.
Egan  BM , Li  J , Sutherland  SE , Rakotz  MK , Wozniak  GD .  Hypertension control in the United States 2009 to 2018: factors underlying falling control rates during 2015 to 2018 across age- and race-ethnicity groups.   Hypertension. 2021;78(3):578-587. doi:10.1161/HYPERTENSIONAHA.120.16418PubMedGoogle ScholarCrossref
86.
The surgeon general’s Call to Action to Control Hypertension. Centers for Disease Control and Prevention. Published 2020. Updated October 22, 2020. Accessed January 1, 2022. https://www.cdc.gov/bloodpressure/CTA.htm
87.
Havranek  EP , Mujahid  MS , Barr  DA ,  et al; American Heart Association Council on Quality of Care and Outcomes Research, Council on Epidemiology and Prevention, Council on Cardiovascular and Stroke Nursing, Council on Lifestyle and Cardiometabolic Health, and Stroke Council.  Social determinants of risk and outcomes for cardiovascular disease: a scientific statement from the American Heart Association.   Circulation. 2015;132(9):873-898. doi:10.1161/CIR.0000000000000228PubMedGoogle ScholarCrossref
88.
Commodore-Mensah  Y , Turkson-Ocran  RA , Foti  K , Cooper  LA , Himmelfarb  CD .  Associations between social determinants and hypertension, stage 2 hypertension, and controlled blood pressure among men and women in the United States.   Am J Hypertens. 2021;34(7):707-717. doi:10.1093/ajh/hpab011PubMedGoogle ScholarCrossref
89.
Xiao  YK , Graham  G .  Where we live: the impact of neighborhoods and community factors on cardiovascular health in the United States.   Clin Cardiol. 2019;42(1):184-189. doi:10.1002/clc.23107PubMedGoogle ScholarCrossref
90.
Kaiser  P , Diez Roux  AV , Mujahid  M ,  et al.  Neighborhood environments and incident hypertension in the Multi-Ethnic Study of Atherosclerosis.   Am J Epidemiol. 2016;183(11):988-997. doi:10.1093/aje/kwv296PubMedGoogle ScholarCrossref
91.
Victor  RG , Lynch  K , Li  N ,  et al.  A cluster-randomized trial of blood-pressure reduction in Black barbershops.   N Engl J Med. 2018;378(14):1291-1301. doi:10.1056/NEJMoa1717250PubMedGoogle ScholarCrossref
92.
Schoenthaler  AM , Lancaster  KJ , Chaplin  W , Butler  M , Forsyth  J , Ogedegbe  G .  Cluster randomized clinical trial of FAITH (Faith-Based Approaches in the Treatment of Hypertension) in Blacks.   Circ Cardiovasc Qual Outcomes. 2018;11(10):e004691. doi:10.1161/CIRCOUTCOMES.118.004691PubMedGoogle ScholarCrossref
93.
Mills  KT , Obst  KM , Shen  W ,  et al.  Comparative effectiveness of implementation strategies for blood pressure control in hypertensive patients: a systematic review and meta-analysis.   Ann Intern Med. 2018;168(2):110-120. doi:10.7326/M17-1805PubMedGoogle ScholarCrossref
95.
Chang  TE , Ritchey  MD , Park  S ,  et al.  National rates of nonadherence to antihypertensive medications among insured adults with hypertension, 2015.   Hypertension. 2019;74(6):1324-1332. doi:10.1161/HYPERTENSIONAHA.119.13616PubMedGoogle ScholarCrossref
96.
Hamdidouche  I , Jullien  V , Boutouyrie  P , Billaud  E , Azizi  M , Laurent  S .  Routine urinary detection of antihypertensive drugs for systematic evaluation of adherence to treatment in hypertensive patients.   J Hypertens. 2017;35(9):1891-1898. doi:10.1097/HJH.0000000000001402PubMedGoogle ScholarCrossref
97.
Gallagher  BD , Muntner  P , Moise  N , Lin  JJ , Kronish  IM .  Are two commonly used self-report questionnaires useful for identifying antihypertensive medication nonadherence?   J Hypertens. 2015;33(5):1108-1113. doi:10.1097/HJH.0000000000000503PubMedGoogle ScholarCrossref
98.
Fuller  RH , Perel  P , Navarro-Ruan  T , Nieuwlaat  R , Haynes  RB , Huffman  MD .  Improving medication adherence in patients with cardiovascular disease: a systematic review.   Heart. 2018;104(15):1238-1243. doi:10.1136/heartjnl-2017-312571PubMedGoogle ScholarCrossref
Close
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
Close
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close

Name Your Search

Save Search
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Close
Close

Lookup An Activity

or

My Saved Searches

You currently have no searches saved.

Close

My Saved Courses

You currently have no courses saved.

Close