[Skip to Content]
[Skip to Content Landing]

Assessment of Changes in Child and Adolescent Screen Time During the COVID-19 PandemicA Systematic Review and Meta-analysis

Educational Objective
To identify the key insights or developments described in this article
1 Credit CME
Key Points

Question  To what extent has the COVID-19 pandemic been associated with changes in the duration, content, and context of daily screen time among children and adolescents globally?

Findings  In this systematic review and meta-analysis of 46 studies including 29 017 youths (≤18 years), pooled estimates comparing estimates taken before and during the COVID-19 pandemic revealed an increase in screen time of 84 min/d, or 52%. Screen time increases were highest for individuals aged 12 to 18 years and for handheld devices and personal computers.

Meaning  This study shows an association between the COVID-19 pandemic and increases in screen time; practitioners and pandemic recovery initiatives should focus on fostering healthy device habits, including moderating use, monitoring content, prioritizing device-free time, and using screens for creativity or connection.

Abstract

Importance  To limit the spread of COVID-19, numerous restrictions were imposed on youths, including school closures, isolation requirements, social distancing, and cancelation of extracurricular activities, which independently or collectively may have shifted screen time patterns.

Objective  To estimate changes in the duration, content, and context of screen time of children and adolescents by comparing estimates taken before the pandemic with those taken during the pandemic and to determine when and for whom screen time has increased the most.

Data Sources  Electronic databases were searched between January 1, 2020, and March 5, 2022, including MEDLINE, Embase, PsycINFO, and the Cochrane Central Register of Controlled Trials. A total of 2474 nonduplicate records were retrieved.

Study Selection  Study inclusion criteria were reported changes in the duration (minutes per day) of screen time before and during the pandemic; children, adolescents, and young adults (≤18 years); longitudinal or retrospective estimates; peer reviewed; and published in English.

Data Extraction and Synthesis  A total of 136 articles underwent full-text review. Data were analyzed from April 6, 2022, to May 5, 2022, with a random-effects meta-analysis.

Main Outcomes and Measures  Change in daily screen time comparing estimates taken before vs during the COVID-19 pandemic.

Results  The meta-analysis included 46 studies (146 effect sizes; 29 017 children; 57% male; and mean [SD] age, 9 [4.1] years) revealed that, from a baseline prepandemic value of 162 min/d (2.7 h/d), during the pandemic there was an increase in screen time of 84 min/d (1.4 h/d), representing a 52% increase. Increases were particularly marked for individuals aged 12 to 18 years (k [number of sample estimates] = 26; 110 min/d) and for device type (handheld devices [k = 20; 44 min/d] and personal computers [k = 13; 46 min/d]). Moderator analyses showed that increases were possibly larger in retrospective (k = 36; 116 min/d) vs longitudinal (k = 51; 65 min/d) studies. Mean increases were observed in samples examining both recreational screen time alone (k = 54; 84 min/d) and total daily screen time combining recreational and educational use (k = 33; 68 min/d).

Conclusions and Relevance  The COVID-19 pandemic has led to considerable disruptions in the lives and routines of children, adolescents, and families, which is likely associated with increased levels of screen time. Findings suggest that when interacting with children and caregivers, practitioners should place a critical focus on promoting healthy device habits, which can include moderating daily use; choosing age-appropriate programs; promoting device-free time, sleep, and physical activity; and encouraging children to use screens as a creative outlet or a means to meaningfully connect with others.

Sign in to take quiz and track your certificates

Buy This Activity

JN Learning™ is the home for CME and MOC from the JAMA Network. Search by specialty or US state and earn AMA PRA Category 1 Credit(s)™ from articles, audio, Clinical Challenges and more. Learn more about CME/MOC

CME Disclosure Statement: Unless noted, all individuals in control of content reported no relevant financial relationships. If applicable, all relevant financial relationships have been mitigated.

Article Information

Accepted for Publication: August 10, 2022.

Published Online: November 7, 2022. doi:10.1001/jamapediatrics.2022.4116

Corresponding Author: Sheri Madigan, PhD, Department of Psychology, University of Calgary, 2500 University Ave, Calgary, AB T2N 1N4, Canada (sheri.madigan@ucalgary.ca).

Author Contributions: Drs Madigan and Neville had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: Madigan, Eirich, Neville.

Acquisition, analysis, or interpretation of data: All authors.

Drafting of the manuscript: Madigan, Eirich, Pador, Neville.

Critical revision of the manuscript for important intellectual content: Eirich, McArthur, Neville.

Statistical analysis: Eirich, Neville.

Administrative, technical, or material support: Madigan, Eirich, Pador.

Supervision: Madigan.

Conflict of Interest Disclosures: None reported.

Additional Information: Data extracted from included studies, data used for the meta-analysis, and SAS mixed-model code are available on reasonable request to the corresponding author.

References
1.
Racine  N , Hetherington  E , McArthur  BA ,  et al.  Maternal depressive and anxiety symptoms before and during the COVID-19 pandemic in Canada: a longitudinal analysis.   Lancet Psychiatry. 2021;8(5):405-415. doi:10.1016/S2215-0366(21)00074-2 PubMedGoogle ScholarCrossref
2.
Pierce  M , Hope  H , Ford  T ,  et al.  Mental health before and during the COVID-19 pandemic: a longitudinal probability sample survey of the UK population.   Lancet Psychiatry. 2020;7(10):883-892. doi:10.1016/S2215-0366(20)30308-4 PubMedGoogle ScholarCrossref
3.
Racine  N , McArthur  BA , Cooke  JE , Eirich  R , Zhu  J , Madigan  S .  Global prevalence of depressive and anxiety symptoms in children and adolescents during covid-19: a meta-analysis.   JAMA Pediatr. 2021;175(11):1142-1150. doi:10.1001/jamapediatrics.2021.2482 PubMedGoogle ScholarCrossref
4.
McArthur  BA , Racine  N , Browne  D , McDonald  S , Tough  S , Madigan  S .  Recreational screen time before and during COVID-19 in school-aged children.   Acta Paediatr. 2021;110(10):2805-2807. doi:10.1111/apa.15966 PubMedGoogle ScholarCrossref
5.
Vanderloo  LM , Carsley  S , Aglipay  M , Cost  KT , Maguire  J , Birken  CS .  Applying harm reduction principles to address screen time in young children amidst the COVID-19 pandemic.   J Dev Behav Pediatr. 2020;41(5):335-336. doi:10.1097/DBP.0000000000000825 PubMedGoogle ScholarCrossref
6.
McArthur  BA , Browne  D , Tough  S , Madigan  S .  Trajectories of screen use during early childhood: predictors and associated behavior and learning outcomes.   Comput Human Behav. 2020;113:106501. doi:10.1016/j.chb.2020.106501 Google ScholarCrossref
7.
Trinh  MH , Sundaram  R , Robinson  SL ,  et al.  Association of trajectory and covariates of children’s screen media time.   JAMA Pediatr. 2020;174(1):71-78. doi:10.1001/jamapediatrics.2019.4488 PubMedGoogle ScholarCrossref
8.
Carter  B , Rees  P , Hale  L , Bhattacharjee  D , Paradkar  MS .  Association between portable screen-based media device access or use and sleep outcomes: a systematic review and meta-analysis.   JAMA Pediatr. 2016;170(12):1202-1208. doi:10.1001/jamapediatrics.2016.2341 PubMedGoogle ScholarCrossref
9.
Pearson  N , Braithwaite  RE , Biddle  SJH , van Sluijs  EMF , Atkin  AJ .  Associations between sedentary behaviour and physical activity in children and adolescents: a meta-analysis.   Obes Rev. 2014;15(8):666-675. doi:10.1111/obr.12188 PubMedGoogle ScholarCrossref
10.
Madigan  S , McArthur  BA , Anhorn  C , Eirich  R , Christakis  DA .  Associations between screen use and child language skills: a systematic review and meta-analysis.   JAMA Pediatr. 2020;174(7):665-675. doi:10.1001/jamapediatrics.2020.0327 PubMedGoogle ScholarCrossref
11.
Eirich  R , McArthur  BA , Anhorn  C , McGuinness  C , Christakis  DA , Madigan  S .  Association of screen time with internalizing and externalizing behavior problems in children 12 years or younger: a systematic review and meta-analysis.   JAMA Psychiatry. 2022;79(5):393-405. doi:10.1001/jamapsychiatry.2022.0155 PubMedGoogle ScholarCrossref
12.
Adelantado-Renau  M , Moliner-Urdiales  D , Cavero-Redondo  I , Beltran-Valls  MR , Martínez-Vizcaíno  V , Álvarez-Bueno  C .  Association between screen media use and academic performance among children and adolescents: a systematic review and meta-analysis.   JAMA Pediatr. 2019;173(11):1058-1067. doi:10.1001/jamapediatrics.2019.3176 PubMedGoogle ScholarCrossref
13.
Radesky  J , Hiniker  A , McLaren  C ,  et al.  Prevalence and characteristics of manipulative design in mobile applications used by children.   JAMA Netw Open. 2022;5(6):e2217641. doi:10.1001/jamanetworkopen.2022.17641 PubMedGoogle ScholarCrossref
14.
Welling  MS , Abawi  O , van den Eynde  E ,  et al.  Impact of the COVID-19 pandemic and related lockdown measures on lifestyle behaviors and well-being in children and adolescents with severe obesity.   Obes Facts. 2022;15(2):186-196. doi:10.1159/000520718 PubMedGoogle ScholarCrossref
15.
Morrison  SA , Meh  K , Sember  V , Starc  G , Jurak  G .  The effect of pandemic movement restriction policies on children’s physical fitness, activity, screen time, and sleep.   Front Public Health. 2021;9:785679. doi:10.3389/fpubh.2021.785679 PubMedGoogle ScholarCrossref
16.
Pietrobelli  A , Fearnbach  N , Ferruzzi  A ,  et al. Effects of COVID‐19 lockdown on lifestyle behaviors in children with obesity: longitudinal study update.  Obes Sci Pract. 2021;8(4):525–528. doi:10.1002/osp4.581PubMedCrossref
17.
UNESCO. Framework for reopening schools supplement: from reopening to recovery—key resources. March 2021. Accessed February 8, 2022. https://www.unicef.org/media/94871/file/Framework%20for%20Reopening%20Schools%20Supplement-From%20Reopening%20to%20Recovery-Key%20Resources.pdf
18.
Rideout  VJ , Robb  MB .  The Common Sense Census: Media Use by Kids Age Zero to Eight. Common Sense Media; 2020.
19.
Rideout  VJ , Robb  MB .  The Common Sense Census: Media Use by Tweens and Teens. Common Sense Media; 2019.
20.
Bucksch  J , Sigmundova  D , Hamrik  Z ,  et al.  International trends in adolescent screen-time behaviors from 2002 to 2010.   J Adolesc Health. 2016;58(4):417-425. doi:10.1016/j.jadohealth.2015.11.014 PubMedGoogle ScholarCrossref
21.
Sigmund  E , Sigmundová  D , Badura  P , Kalman  M , Hamrik  Z , Pavelka  J .  Temporal trends in overweight and obesity, physical activity and screen time among Czech adolescents from 2002 to 2014: a National Health Behaviour in School-aged Children study.   Int J Environ Res Public Health. 2015;12(9):11848-11868. doi:10.3390/ijerph120911848 PubMedGoogle ScholarCrossref
22.
DiBartolo  PM , Grills  AE .  Who is best at predicting children’s anxiety in response to a social evaluative task? a comparison of child, parent, and teacher reports.   J Anxiety Disord. 2006;20(5):630-645. doi:10.1016/j.janxdis.2005.06.003 PubMedGoogle ScholarCrossref
23.
Fang  K , Mu  M , Liu  K , He  Y .  Screen time and childhood overweight/obesity: a systematic review and meta-analysis.   Child Care Health Dev. 2019;45(5):744-753. doi:10.1111/cch.12701 PubMedGoogle ScholarCrossref
24.
Seo  HR , Jung  HS , Jung  DS , Choi  JW , Jo  SH .  Acute impact of the coronavirus disease outbreak on behavioral patterns and emotional states of pediatric psychiatric patients and caregivers in Daegu, South Korea.   Psychiatry Investig. 2021;18(9):913-922. doi:10.30773/pi.2021.0127 PubMedGoogle ScholarCrossref
25.
Rebelo  AT , Pinto  DH , Cunha  R ,  et al.  Impact of one-year pandemic on children with autism spectrum disorder.   Cogent Med. 2021;8:2002558. Google Scholar
26.
Garcia  JM , Lawrence  S , Brazendale  K , Leahy  N , Fukuda  D .  Brief report: the impact of the COVID-19 pandemic on health behaviors in adolescents with autism spectrum disorder.   Disabil Health J. 2021;14(2):101021. doi:10.1016/j.dhjo.2020.101021 PubMedGoogle ScholarCrossref
27.
Coughlin  SS .  Recall bias in epidemiologic studies.   J Clin Epidemiol. 1990;43(1):87-91. doi:10.1016/0895-4356(90)90060-3 PubMedGoogle ScholarCrossref
28.
Covidence. Covidence systematic review software. Accessed March 6, 2022. https://www.covidence.org
29.
National Heart, Lung, and Blood Institute. Study quality assessment tools: quality assessment tool for observational cohort and cross-sectional studies. Updated July 2021. Accessed January 15, 2021. https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools
30.
Yang  M .  A Review of Random Effects Modelling in SAS. Centre for Multilevel Modelling; 2003.
31.
Cohen  J .  Statistical Power Analysis for the Behavioral Sciences. 2nd ed. Lawrence Erlbaum; 1988.
32.
Hopkins  WG , Marshall  SW , Batterham  AM , Hanin  J .  Progressive statistics for studies in sports medicine and exercise science.   Med Sci Sports Exerc. 2009;41(1):3-13. doi:10.1249/MSS.0b013e31818cb278 PubMedGoogle ScholarCrossref
33.
Cumming  G .  The new statistics: why and how.   Psychol Sci. 2014;25(1):7-29. doi:10.1177/0956797613504966 PubMedGoogle ScholarCrossref
34.
Aguilar-Farias  N , Toledo-Vargas  M , Miranda-Marquez  S ,  et al.  Sociodemographic predictors of changes in physical activity, screen time, and sleep among toddlers and preschoolers in Chile during the COVID-19 pandemic.   Int J Environ Res Public Health. 2021;18(1):176. doi:10.3390/ijerph18010176 PubMedGoogle ScholarCrossref
35.
Beck  AL , Huang  JC , Lendzion  L , Fernandez  A , Martinez  S .  Impact of the coronavirus disease 2019 pandemic on parents’ perception of health behaviors in children with overweight and obesity.   Acad Pediatr. 2021;21(8):1434-1440. doi:10.1016/j.acap.2021.05.015 PubMedGoogle ScholarCrossref
36.
Brzęk  A , Strauss  M , Sanchis-Gomar  F , Leischik  R .  Physical activity, screen time, sedentary and sleeping habits of Polish preschoolers during the COVID-19 pandemic and WHO’s recommendations: an observational cohort study.   Int J Environ Res Public Health. 2021;18(21):11173. doi:10.3390/ijerph182111173 PubMedGoogle ScholarCrossref
37.
Burkart  S , Parker  H , Weaver  RG ,  et al.  Impact of the COVID-19 pandemic on elementary schoolers’ physical activity, sleep, screen time and diet: a quasi-experimental interrupted time series study.   Pediatr Obes. 2022;17(1):e12846. doi:10.1111/ijpo.12846 PubMedGoogle ScholarCrossref
38.
Cardy  RE , Dupuis  A , Anagnostou  E ,  et al.  Characterizing changes in screen time during the COVID-19 pandemic school closures in Canada and its perceived impact on children with autism spectrum disorder.   Front Psychiatry. 2021;12:702774. doi:10.3389/fpsyt.2021.702774 PubMedGoogle ScholarCrossref
39.
Chen  IH , Chen  CY , Pakpour  AH ,  et al.  Problematic internet-related behaviors mediate the associations between levels of internet engagement and distress among schoolchildren during COVID-19 lockdown: a longitudinal structural equation modeling study.   J Behav Addict. 2021;10(1):135-148. doi:10.1556/2006.2021.00006 PubMedGoogle ScholarCrossref
40.
Cheng  HP , Wong  JSL , Selveindran  NM , Hong  JYH .  Impact of COVID-19 lockdown on glycaemic control and lifestyle changes in children and adolescents with type 1 and type 2 diabetes mellitus.   Endocrine. 2021;73(3):499-506. doi:10.1007/s12020-021-02810-1 PubMedGoogle ScholarCrossref
41.
Eales  L , Gillespie  S , Alstat  RA , Ferguson  GM , Carlson  SM .  Children’s screen and problematic media use in the United States before and during the COVID-19 pandemic.   Child Dev. 2021;92(5):e866-e882. doi:10.1111/cdev.13652 PubMedGoogle ScholarCrossref
42.
Ghanamah  R , Eghbaria-Ghanamah  H .  Impact of COVID-19 pandemic on behavioral and emotional aspects and daily routines of Arab Israeli children.   Int J Environ Res Public Health. 2021;18(6):2946. doi:10.3390/ijerph18062946 PubMedGoogle ScholarCrossref
43.
Hossain  MS , Deeba  IM , Hasan  M ,  et al.  International study of 24-h movement behaviors of early years (SUNRISE): a pilot study from Bangladesh.   Pilot Feasibility Stud. 2021;7(1):176. doi:10.1186/s40814-021-00912-1 PubMedGoogle ScholarCrossref
44.
Hu  P , Samuels  S , Maciejewski  KR ,  et al.  Changes in weight-related health behaviors and social determinants of health among youth with overweight/obesity during the COVID-19 pandemic.   Child Obes. 2021;18(6):369-382. doi:10.1089/chi.2021.0196PubMedGoogle ScholarCrossref
45.
Jáuregui  A , Argumedo  G , Medina  C , Bonvecchio-Arenas  A , Romero-Martínez  M , Okely  AD .  Factors associated with changes in movement behaviors in toddlers and preschoolers during the COVID-19 pandemic: a national cross-sectional study in Mexico.   Prev Med Rep. 2021;24:101552. doi:10.1016/j.pmedr.2021.101552 PubMedGoogle ScholarCrossref
46.
Jia  P , Zhang  L , Yu  W ,  et al.  Impact of COVID-19 lockdown on activity patterns and weight status among youths in China: the COVID-19 Impact on Lifestyle Change Survey (COINLICS).   Int J Obes (Lond). 2021;45(3):695-699. doi:10.1038/s41366-020-00710-4 PubMedGoogle ScholarCrossref
47.
Kim  H , Ma  J , Lee  S , Gu  Y .  Change in Japanese children’s 24-hour movement guidelines and mental health during the COVID-19 pandemic.   Sci Rep. 2021;11(1):22972. doi:10.1038/s41598-021-01803-4 PubMedGoogle ScholarCrossref
48.
Kim  H , Ma  J , Kim  J , Xu  D , Lee  S .  Changes in adherence to the 24-hour movement guidelines and overweight and obesity among children in northeastern Japan: a longitudinal study before and during the COVID-19 pandemic.   Obesities. 2021;1(3):167-177. doi:10.3390/obesities1030015 Google ScholarCrossref
49.
López-Gil  JF , Tremblay  MS , Brazo-Sayavera  J .  Changes in healthy behaviors and meeting 24-h movement guidelines in Spanish and Brazilian preschoolers, children and adolescents during the COVID-19 lockdown.   Children (Basel). 2021;8(2):83. doi:10.3390/children8020083 PubMedGoogle ScholarCrossref
50.
López-Bueno  R , Calatayud  J , Ezzatvar  Y ,  et al.  Association between current physical activity and current perceived anxiety and mood in the initial phase of COVID-19 confinement.   Front Psychiatry. 2020;11:729. doi:10.3389/fpsyt.2020.00729 PubMedGoogle ScholarCrossref
51.
Ma  D , Wei  S , Li  SM ,  et al.  Progression of myopia in a natural cohort of Chinese children during COVID-19 pandemic.   Graefes Arch Clin Exp Ophthalmol. 2021;259(9):2813-2820. doi:10.1007/s00417-021-05305-x PubMedGoogle ScholarCrossref
52.
Maheux  AJ , Nesi  J , Galla  BM , Roberts  SR , Choukas-Bradley  S .  #Grateful: longitudinal associations between adolescents’ social media use and gratitude during the COVID-19 pandemic.   J Res Adolesc. 2021;31(3):734-747. doi:10.1111/jora.12650 PubMedGoogle ScholarCrossref
53.
Maltoni  G , Zioutas  M , Deiana  G , Biserni  GB , Pession  A , Zucchini  S .  Gender differences in weight gain during lockdown due to COVID-19 pandemic in adolescents with obesity.   Nutr Metab Cardiovasc Dis. 2021;31(7):2181-2185. doi:10.1016/j.numecd.2021.03.018 PubMedGoogle ScholarCrossref
54.
Medrano  M , Cadenas-Sanchez  C , Oses  M , Arenaza  L , Amasene  M , Labayen  I .  Changes in lifestyle behaviours during the COVID-19 confinement in Spanish children: a longitudinal analysis from the MUGI project.   Pediatr Obes. 2021;16(4):e12731. doi:10.1111/ijpo.12731 PubMedGoogle ScholarCrossref
55.
Mirhajianmoghadam  H , Piña  A , Ostrin  LA .  Objective and subjective behavioral measures in myopic and non-myopic children during the COVID-19 pandemic.   Transl Vis Sci Technol. 2021;10(11):4. doi:10.1167/tvst.10.11.4 PubMedGoogle ScholarCrossref
56.
Mohan  A , Sen  P , Shah  C , Jain  E , Jain  S .  Prevalence and risk factor assessment of digital eye strain among children using online e-learning during the COVID-19 pandemic: Digital Eye Strain Among Kids (DESK Study-1).   Indian J Ophthalmol. 2021;69(1):140-144. doi:10.4103/ijo.IJO_2535_20 PubMedGoogle ScholarCrossref
57.
Moore  SA , Faulkner  G , Rhodes  RE ,  et al.  Few Canadian children and youth were meeting the 24-hour movement behaviour guidelines 6-months into the COVID-19 pandemic: follow-up from a national study.   Appl Physiol Nutr Metab. 2021;46(10):1225-1240. doi:10.1139/apnm-2021-0354 PubMedGoogle ScholarCrossref
58.
Nathan  A , George  P , Ng  M ,  et al.  Impact of COVID-19 restrictions on western Australian children’s physical activity and screen time.   Int J Environ Res Public Health. 2021;18(5):2583. doi:10.3390/ijerph18052583 PubMedGoogle ScholarCrossref
59.
Ng  JYY , He  Q , Chong  KH , Okely  AD , Chan  CHS , Ha  AS .  The impact of COVID-19 on preschool-aged children’s movement behaviors in Hong Kong: a longitudinal analysis of accelerometer-measured data.   Int J Environ Res Public Health. 2021;18(22):11907. doi:10.3390/ijerph182211907 PubMedGoogle ScholarCrossref
60.
Delisle Nyström  C , Alexandrou  C , Henström  M ,  et al.  International Study of Movement Behaviors in the Early Years (SUNRISE): results from SUNRISE Sweden’s pilot and COVID-19 study.   Int J Environ Res Public Health. 2020;17(22):8491. doi:10.3390/ijerph17228491 PubMedGoogle ScholarCrossref
61.
Okely  AD , Kariippanon  KE , Guan  H ,  et al.  Global effect of COVID-19 pandemic on physical activity, sedentary behaviour and sleep among 3- to 5-year-old children: a longitudinal study of 14 countries.   BMC Public Health. 2021;21(1):940. doi:10.1186/s12889-021-10852-3 PubMedGoogle ScholarCrossref
62.
Ostermeier  E , Tucker  P , Clark  A , Seabrook  JA , Gilliland  J .  Parents’ report of Canadian elementary school children’s physical activity and screen time during the COVID-19 pandemic: a longitudinal study.   Int J Environ Res Public Health. 2021;18(23):12352. doi:10.3390/ijerph182312352 PubMedGoogle ScholarCrossref
63.
Peddie  MC , Scott  T , Haszard  JJ .  Using a 24 h activity recall (STAR-24) to describe activity in adolescent boys in New Zealand: comparisons between a sample collected before, and a sample collected during the COVID-19 lockdown.   Int J Environ Res Public Health. 2021;18(15):8035. doi:10.3390/ijerph18158035 PubMedGoogle ScholarCrossref
64.
Ribner  AD , Coulanges  L , Friedman  S , Libertus  ME ; I-FAM-Covid Consortium.  Screen time in the coronavirus 2019 era: international trends of increasing use among 3- to 7-year-old children.   J Pediatr. 2021;239:59-66. doi:10.1016/j.jpeds.2021.08.068 PubMedGoogle ScholarCrossref
65.
Saxena  R , Gupta  V , Rakheja  V , Dhiman  R , Bhardawaj  A , Vashist  P .  Lifestyle modification in school-going children before and after COVID-19 lockdown.   Indian J Ophthalmol. 2021;69(12):3623-3629. doi:10.4103/ijo.IJO_2096_21 PubMedGoogle ScholarCrossref
66.
Schnaiderman  D , Bailac  M , Borak  L ,  et al.  Psychological impact of COVID-19 lockdown in children and adolescents from San Carlos de Bariloche, Argentina: parents’ perspective.  Article in Spanish.  Arch Argent Pediatr. 2021;119(3):170-176. doi:10.5546/aap.2021.eng.170PubMedGoogle ScholarCrossref
67.
Schmidt  SCE , Anedda  B , Burchartz  A ,  et al.  Physical activity and screen time of children and adolescents before and during the COVID-19 lockdown in Germany: a natural experiment.   Sci Rep. 2020;10(1):21780. doi:10.1038/s41598-020-78438-4 PubMedGoogle ScholarCrossref
68.
Shoshani  A , Kor  A .  The mental health effects of the COVID-19 pandemic on children and adolescents: risk and protective factors.   Psychol Trauma. Published online December 20, 2021. doi:10.1037/tra0001188 PubMedGoogle ScholarCrossref
69.
Ten Velde  G , Lubrecht  J , Arayess  L ,  et al.  Physical activity behaviour and screen time in Dutch children during the COVID-19 pandemic: pre-, during- and post-school closures.   Pediatr Obes. 2021;16(9):e12779. doi:10.1111/ijpo.12779PubMedGoogle ScholarCrossref
70.
Xiang  M , Zhang  Z , Kuwahara  K .  Impact of COVID-19 pandemic on children and adolescents’ lifestyle behavior larger than expected.   Prog Cardiovasc Dis. 2020;63(4):531-532. doi:10.1016/j.pcad.2020.04.013 PubMedGoogle ScholarCrossref
71.
Yum  HR , Park  SH , Shin  SY .  Influence of coronavirus disease 2019 on myopic progression in children treated with low-concentration atropine.   PLoS One. 2021;16(9):e0257480. doi:10.1371/journal.pone.0257480 PubMedGoogle ScholarCrossref
72.
Zhang  X , Cheung  SSL , Chan  HN ,  et al.  Myopia incidence and lifestyle changes among school children during the COVID-19 pandemic: a population-based prospective study.   Br J Ophthalmol. Published online August 2, 2021. doi:10.1136/bjophthalmol-2021-319307 PubMedGoogle ScholarCrossref
73.
Gelman A. Scaling regression inputs by dividing by two standard deviations.  Stat Med. 2008;27(15):2865-2873. doi:10.1002/sim.3107PubMedCrossref
74.
Neville  RD , Lakes  KD , Hopkins  WG ,  et al.  Global changes in child and adolescent physical activity during the COVID-19 pandemic: a systematic review and meta-analysis.   JAMA Pediatr. 2022;176(9):886-894. doi:10.1001/jamapediatrics.2022.2313PubMedGoogle ScholarCrossref
75.
World Health Organization. To grow up healthy, children need to sit less and play more. April 24, 2019. Accessed April 24, 2022. https://www.who.int/news/item/24-04-2019-to-grow-up-healthy-children-need-to-sit-less-and-play-more
76.
Lauricella  AR , Cingel  DP , Blackwell  C , Wartella  E , Conway  A .  The mobile generation: youth and adolescent ownership and use of new media.   Commun Res Rep. 2014;31(4):357-364. doi:10.1080/08824096.2014.963221 Google ScholarCrossref
77.
Urberg  KA , Değirmencioğlu  SM , Tolson  JM , Halliday-Scher  K .  The structure of adolescent peer networks.   Dev Psychol. 1995;31(4):540-547. doi:10.1037/0012-1649.31.4.540 Google ScholarCrossref
78.
Rideout  V , Robb  MB .  The Role of Media During the Pandemic: Connection, Creativity, and Learning for Tweens and Teens. Common Sense Media; 2021.
79.
Jennings  NA , Caplovitz  AG .  Parenting and tweens’ media use during the COVID-19 pandemic.   Psychol Pop Media. 2022;11(3):311-315. doi:10.1037/ppm0000376 Google ScholarCrossref
80.
McArthur  BA , Eirich  R , McDonald  S , Tough  S , Madigan  S .  Predictors of preadolescent children’s recreational screen time duration during the COVID-19 pandemic.   J Dev Behav Pediatr. 2022;43(6):353-361. doi:10.1097/DBP.0000000000001057 PubMedGoogle ScholarCrossref
81.
Christakis  DA .  The effects of infant media usage: what do we know and what should we learn?   Acta Paediatr. 2009;98(1):8-16. doi:10.1111/j.1651-2227.2008.01027.x PubMedGoogle ScholarCrossref
82.
Li  X , Vanderloo  LM , Keown-Stoneman  CDG ,  et al.  Screen use and mental health symptoms in Canadian children and youth during the COVID-19 pandemic.   JAMA Netw Open. 2021;4(12):e2140875. doi:10.1001/jamanetworkopen.2021.40875 PubMedGoogle ScholarCrossref
83.
McArthur  BA , Racine  N , McDonald  S , Tough  S , Madigan  S .  Child and family factors associated with child mental health and well-being during COVID-19.   Eur Child Adolesc Psychiatry. Published online July 24, 2021. doi:10.1007/s00787-021-01849-9 PubMedGoogle ScholarCrossref
84.
Rosen  ML , Rodman  AM , Kasparek  SW ,  et al.  Promoting youth mental health during the COVID-19 pandemic: a longitudinal study.   PLoS One. 2021;16(8):e0255294. doi:10.1371/journal.pone.0255294 PubMedGoogle ScholarCrossref
85.
Tandon  PS , Zhou  C , Johnson  AM , Gonzalez  ES , Kroshus  E .  Association of children’s physical activity and screen time with mental health during the COVID-19 pandemic.   JAMA Netw Open. 2021;4(10):e2127892. doi:10.1001/jamanetworkopen.2021.27892 PubMedGoogle ScholarCrossref
86.
Przybylski  AK , Orben  A , Weinstein  N .  How much is too much? examining the relationship between digital screen engagement and psychosocial functioning in a confirmatory cohort study.   J Am Acad Child Adolesc Psychiatry. 2020;59(9):1080-1088. doi:10.1016/j.jaac.2019.06.017 PubMedGoogle ScholarCrossref
87.
Browne  D , Thompson  DA , Madigan  S .  Digital media use in children: clinical vs scientific responsibilities.   JAMA Pediatr. 2020;174(2):111-112. doi:10.1001/jamapediatrics.2019.4559 PubMedGoogle ScholarCrossref
88.
Madigan  S , Racine  N , Tough  S .  Prevalence of preschoolers meeting vs exceeding screen time guidelines.   JAMA Pediatr. 2020;174(1):93-95. doi:10.1001/jamapediatrics.2019.4495 PubMedGoogle ScholarCrossref
89.
Marsh S, Foley LS, Wilks DC, Maddison R. Family‐based interventions for reducing sedentary time in youth: a systematic review of randomized controlled trials.  Obes Rev. 2014;15(2):117-133. doi:10.1111/obr.12105PubMedCrossref
90.
Radesky  JS , Weeks  HM , Ball  R ,  et al.  Young children’s use of smartphones and tablets.   Pediatrics. 2020;146(1):e20193518. doi:10.1542/peds.2019-3518 PubMedGoogle ScholarCrossref
Close
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
Close
Want full access to the AMA Ed Hub?
After you sign up for AMA Membership, make sure you sign in or create a Physician account with the AMA in order to access all learning activities on the AMA Ed Hub
Buy this activity
Close
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Education Center Collection Sign In Modal Right
Close

Name Your Search

Save Search
With a personal account, you can:
  • Access free activities and track your credits
  • Personalize content alerts
  • Customize your interests
  • Fully personalize your learning experience
Close
Close

Lookup An Activity

or

My Saved Searches

You currently have no searches saved.

Close

My Saved Courses

You currently have no courses saved.

Close